8227127: Era designator not displayed correctly using the COMPAT provider
Reviewed-by: rriggs
/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "runtime/os.hpp"
#include "utilities/globalDefinitions.hpp"
// Basic error support
// Info for oops within a java object. Defaults are zero so
// things will break badly if incorrectly initialized.
int heapOopSize = 0;
int LogBytesPerHeapOop = 0;
int LogBitsPerHeapOop = 0;
int BytesPerHeapOop = 0;
int BitsPerHeapOop = 0;
// Object alignment, in units of HeapWords.
// Defaults are -1 so things will break badly if incorrectly initialized.
int MinObjAlignment = -1;
int MinObjAlignmentInBytes = -1;
int MinObjAlignmentInBytesMask = 0;
int LogMinObjAlignment = -1;
int LogMinObjAlignmentInBytes = -1;
// Oop encoding heap max
uint64_t OopEncodingHeapMax = 0;
// Something to help porters sleep at night
void basic_types_init() {
#ifdef ASSERT
#ifdef _LP64
assert(min_intx == (intx)CONST64(0x8000000000000000), "correct constant");
assert(max_intx == CONST64(0x7FFFFFFFFFFFFFFF), "correct constant");
assert(max_uintx == CONST64(0xFFFFFFFFFFFFFFFF), "correct constant");
assert( 8 == sizeof( intx), "wrong size for basic type");
assert( 8 == sizeof( jobject), "wrong size for basic type");
#else
assert(min_intx == (intx)0x80000000, "correct constant");
assert(max_intx == 0x7FFFFFFF, "correct constant");
assert(max_uintx == 0xFFFFFFFF, "correct constant");
assert( 4 == sizeof( intx), "wrong size for basic type");
assert( 4 == sizeof( jobject), "wrong size for basic type");
#endif
assert( (~max_juint) == 0, "max_juint has all its bits");
assert( (~max_uintx) == 0, "max_uintx has all its bits");
assert( (~max_julong) == 0, "max_julong has all its bits");
assert( 1 == sizeof( jbyte), "wrong size for basic type");
assert( 2 == sizeof( jchar), "wrong size for basic type");
assert( 2 == sizeof( jshort), "wrong size for basic type");
assert( 4 == sizeof( juint), "wrong size for basic type");
assert( 4 == sizeof( jint), "wrong size for basic type");
assert( 1 == sizeof( jboolean), "wrong size for basic type");
assert( 8 == sizeof( jlong), "wrong size for basic type");
assert( 4 == sizeof( jfloat), "wrong size for basic type");
assert( 8 == sizeof( jdouble), "wrong size for basic type");
assert( 1 == sizeof( u1), "wrong size for basic type");
assert( 2 == sizeof( u2), "wrong size for basic type");
assert( 4 == sizeof( u4), "wrong size for basic type");
assert(wordSize == BytesPerWord, "should be the same since they're used interchangeably");
assert(wordSize == HeapWordSize, "should be the same since they're also used interchangeably");
int num_type_chars = 0;
for (int i = 0; i < 99; i++) {
if (type2char((BasicType)i) != 0) {
assert(char2type(type2char((BasicType)i)) == i, "proper inverses");
num_type_chars++;
}
}
assert(num_type_chars == 11, "must have tested the right number of mappings");
assert(char2type(0) == T_ILLEGAL, "correct illegality");
{
for (int i = T_BOOLEAN; i <= T_CONFLICT; i++) {
BasicType vt = (BasicType)i;
BasicType ft = type2field[vt];
switch (vt) {
// the following types might plausibly show up in memory layouts:
case T_BOOLEAN:
case T_BYTE:
case T_CHAR:
case T_SHORT:
case T_INT:
case T_FLOAT:
case T_DOUBLE:
case T_LONG:
case T_OBJECT:
case T_ADDRESS: // random raw pointer
case T_METADATA: // metadata pointer
case T_NARROWOOP: // compressed pointer
case T_NARROWKLASS: // compressed klass pointer
case T_CONFLICT: // might as well support a bottom type
case T_VOID: // padding or other unaddressed word
// layout type must map to itself
assert(vt == ft, "");
break;
default:
// non-layout type must map to a (different) layout type
assert(vt != ft, "");
assert(ft == type2field[ft], "");
}
// every type must map to same-sized layout type:
assert(type2size[vt] == type2size[ft], "");
}
}
// These are assumed, e.g., when filling HeapWords with juints.
assert(is_power_of_2(sizeof(juint)), "juint must be power of 2");
assert(is_power_of_2(HeapWordSize), "HeapWordSize must be power of 2");
assert((size_t)HeapWordSize >= sizeof(juint),
"HeapWord should be at least as large as juint");
assert(sizeof(NULL) == sizeof(char*), "NULL must be same size as pointer");
#endif
if( JavaPriority1_To_OSPriority != -1 )
os::java_to_os_priority[1] = JavaPriority1_To_OSPriority;
if( JavaPriority2_To_OSPriority != -1 )
os::java_to_os_priority[2] = JavaPriority2_To_OSPriority;
if( JavaPriority3_To_OSPriority != -1 )
os::java_to_os_priority[3] = JavaPriority3_To_OSPriority;
if( JavaPriority4_To_OSPriority != -1 )
os::java_to_os_priority[4] = JavaPriority4_To_OSPriority;
if( JavaPriority5_To_OSPriority != -1 )
os::java_to_os_priority[5] = JavaPriority5_To_OSPriority;
if( JavaPriority6_To_OSPriority != -1 )
os::java_to_os_priority[6] = JavaPriority6_To_OSPriority;
if( JavaPriority7_To_OSPriority != -1 )
os::java_to_os_priority[7] = JavaPriority7_To_OSPriority;
if( JavaPriority8_To_OSPriority != -1 )
os::java_to_os_priority[8] = JavaPriority8_To_OSPriority;
if( JavaPriority9_To_OSPriority != -1 )
os::java_to_os_priority[9] = JavaPriority9_To_OSPriority;
if(JavaPriority10_To_OSPriority != -1 )
os::java_to_os_priority[10] = JavaPriority10_To_OSPriority;
// Set the size of basic types here (after argument parsing but before
// stub generation).
if (UseCompressedOops) {
// Size info for oops within java objects is fixed
heapOopSize = jintSize;
LogBytesPerHeapOop = LogBytesPerInt;
LogBitsPerHeapOop = LogBitsPerInt;
BytesPerHeapOop = BytesPerInt;
BitsPerHeapOop = BitsPerInt;
} else {
heapOopSize = oopSize;
LogBytesPerHeapOop = LogBytesPerWord;
LogBitsPerHeapOop = LogBitsPerWord;
BytesPerHeapOop = BytesPerWord;
BitsPerHeapOop = BitsPerWord;
}
_type2aelembytes[T_OBJECT] = heapOopSize;
_type2aelembytes[T_ARRAY] = heapOopSize;
}
// Map BasicType to signature character
char type2char_tab[T_CONFLICT+1]={ 0, 0, 0, 0, 'Z', 'C', 'F', 'D', 'B', 'S', 'I', 'J', 'L', '[', 'V', 0, 0, 0, 0, 0};
// Map BasicType to Java type name
const char* type2name_tab[T_CONFLICT+1] = {
NULL, NULL, NULL, NULL,
"boolean",
"char",
"float",
"double",
"byte",
"short",
"int",
"long",
"object",
"array",
"void",
"*address*",
"*narrowoop*",
"*metadata*",
"*narrowklass*",
"*conflict*"
};
BasicType name2type(const char* name) {
for (int i = T_BOOLEAN; i <= T_VOID; i++) {
BasicType t = (BasicType)i;
if (type2name_tab[t] != NULL && 0 == strcmp(type2name_tab[t], name))
return t;
}
return T_ILLEGAL;
}
// Map BasicType to size in words
int type2size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, -1};
BasicType type2field[T_CONFLICT+1] = {
(BasicType)0, // 0,
(BasicType)0, // 1,
(BasicType)0, // 2,
(BasicType)0, // 3,
T_BOOLEAN, // T_BOOLEAN = 4,
T_CHAR, // T_CHAR = 5,
T_FLOAT, // T_FLOAT = 6,
T_DOUBLE, // T_DOUBLE = 7,
T_BYTE, // T_BYTE = 8,
T_SHORT, // T_SHORT = 9,
T_INT, // T_INT = 10,
T_LONG, // T_LONG = 11,
T_OBJECT, // T_OBJECT = 12,
T_OBJECT, // T_ARRAY = 13,
T_VOID, // T_VOID = 14,
T_ADDRESS, // T_ADDRESS = 15,
T_NARROWOOP, // T_NARROWOOP= 16,
T_METADATA, // T_METADATA = 17,
T_NARROWKLASS, // T_NARROWKLASS = 18,
T_CONFLICT // T_CONFLICT = 19,
};
BasicType type2wfield[T_CONFLICT+1] = {
(BasicType)0, // 0,
(BasicType)0, // 1,
(BasicType)0, // 2,
(BasicType)0, // 3,
T_INT, // T_BOOLEAN = 4,
T_INT, // T_CHAR = 5,
T_FLOAT, // T_FLOAT = 6,
T_DOUBLE, // T_DOUBLE = 7,
T_INT, // T_BYTE = 8,
T_INT, // T_SHORT = 9,
T_INT, // T_INT = 10,
T_LONG, // T_LONG = 11,
T_OBJECT, // T_OBJECT = 12,
T_OBJECT, // T_ARRAY = 13,
T_VOID, // T_VOID = 14,
T_ADDRESS, // T_ADDRESS = 15,
T_NARROWOOP, // T_NARROWOOP = 16,
T_METADATA, // T_METADATA = 17,
T_NARROWKLASS, // T_NARROWKLASS = 18,
T_CONFLICT // T_CONFLICT = 19,
};
int _type2aelembytes[T_CONFLICT+1] = {
0, // 0
0, // 1
0, // 2
0, // 3
T_BOOLEAN_aelem_bytes, // T_BOOLEAN = 4,
T_CHAR_aelem_bytes, // T_CHAR = 5,
T_FLOAT_aelem_bytes, // T_FLOAT = 6,
T_DOUBLE_aelem_bytes, // T_DOUBLE = 7,
T_BYTE_aelem_bytes, // T_BYTE = 8,
T_SHORT_aelem_bytes, // T_SHORT = 9,
T_INT_aelem_bytes, // T_INT = 10,
T_LONG_aelem_bytes, // T_LONG = 11,
T_OBJECT_aelem_bytes, // T_OBJECT = 12,
T_ARRAY_aelem_bytes, // T_ARRAY = 13,
0, // T_VOID = 14,
T_OBJECT_aelem_bytes, // T_ADDRESS = 15,
T_NARROWOOP_aelem_bytes, // T_NARROWOOP= 16,
T_OBJECT_aelem_bytes, // T_METADATA = 17,
T_NARROWKLASS_aelem_bytes, // T_NARROWKLASS= 18,
0 // T_CONFLICT = 19,
};
#ifdef ASSERT
int type2aelembytes(BasicType t, bool allow_address) {
assert(allow_address || t != T_ADDRESS, " ");
return _type2aelembytes[t];
}
#endif
// Support for 64-bit integer arithmetic
// The following code is mostly taken from JVM typedefs_md.h and system_md.c
static const jlong high_bit = (jlong)1 << (jlong)63;
static const jlong other_bits = ~high_bit;
jlong float2long(jfloat f) {
jlong tmp = (jlong) f;
if (tmp != high_bit) {
return tmp;
} else {
if (g_isnan((jdouble)f)) {
return 0;
}
if (f < 0) {
return high_bit;
} else {
return other_bits;
}
}
}
jlong double2long(jdouble f) {
jlong tmp = (jlong) f;
if (tmp != high_bit) {
return tmp;
} else {
if (g_isnan(f)) {
return 0;
}
if (f < 0) {
return high_bit;
} else {
return other_bits;
}
}
}
// least common multiple
size_t lcm(size_t a, size_t b) {
size_t cur, div, next;
cur = MAX2(a, b);
div = MIN2(a, b);
assert(div != 0, "lcm requires positive arguments");
while ((next = cur % div) != 0) {
cur = div; div = next;
}
julong result = julong(a) * b / div;
assert(result <= (size_t)max_uintx, "Integer overflow in lcm");
return size_t(result);
}
// Test that nth_bit macro and friends behave as
// expected, even with low-precedence operators.
STATIC_ASSERT(nth_bit(3) == 0x8);
STATIC_ASSERT(nth_bit(1|2) == 0x8);
STATIC_ASSERT(right_n_bits(3) == 0x7);
STATIC_ASSERT(right_n_bits(1|2) == 0x7);
STATIC_ASSERT(left_n_bits(3) == (intptr_t) LP64_ONLY(0xE000000000000000) NOT_LP64(0xE0000000));
STATIC_ASSERT(left_n_bits(1|2) == (intptr_t) LP64_ONLY(0xE000000000000000) NOT_LP64(0xE0000000));