8227127: Era designator not displayed correctly using the COMPAT provider
Reviewed-by: rriggs
/*
* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2019 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "asm/macroAssembler.inline.hpp"
#include "code/codeCache.hpp"
#include "compiler/disassembler.hpp"
#include "depChecker_ppc.hpp"
#include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
#include "gc/cms/parOopClosures.inline.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "gc/shared/genOopClosures.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
// Macro to print instruction bits.
// numbering of instruction bits on ppc64 is (highest) 0 1 ... 30 31 (lowest).
#define print_instruction_bits(st, instruction, start_bit, end_bit) \
{ assert((start_bit) <= (end_bit), "sanity check"); \
for (int i=(31-(start_bit));i>=(31-(end_bit));i--) { \
(st)->print("%d", ((instruction) >> i) & 0x1); \
} \
}
// Macro to decode "bo" instruction bits.
#define print_decoded_bo_bits(env, instruction, end_bit) \
{ int bo_bits = (instruction >> (31 - (end_bit))) & 0x1f; \
if ( ((bo_bits & 0x1c) == 0x4) || ((bo_bits & 0x1c) == 0xc) ) { \
switch (bo_bits & 0x3) { \
case (0 << 1) | (0 << 0): env->print("[no_hint]"); break; \
case (0 << 1) | (1 << 0): env->print("[reserved]"); break; \
case (1 << 1) | (0 << 0): env->print("[not_taken]"); break; \
case (1 << 1) | (1 << 0): env->print("[taken]"); break; \
default: break; \
} \
} else if ( ((bo_bits & 0x14) == 0x10) ) { \
switch (bo_bits & 0x9) { \
case (0 << 3) | (0 << 0): env->print("[no_hint]"); break; \
case (0 << 3) | (1 << 0): env->print("[reserved]"); break; \
case (1 << 3) | (0 << 0): env->print("[not_taken]"); break; \
case (1 << 3) | (1 << 0): env->print("[taken]"); break; \
default: break; \
} \
} \
}
// Macro to decode "bh" instruction bits.
#define print_decoded_bh_bits(env, instruction, end_bit, is_bclr) \
{ int bh_bits = (instruction >> (31 - (end_bit))) & 0x3; \
if (is_bclr) { \
switch (bh_bits) { \
case (0 << 1) | (0 << 0): env->print("[subroutine_return]"); break; \
case (0 << 1) | (1 << 0): env->print("[not_return_but_same]"); break; \
case (1 << 1) | (0 << 0): env->print("[reserved]"); break; \
case (1 << 1) | (1 << 0): env->print("[not_predictable]"); break; \
default: break; \
} \
} else { \
switch (bh_bits) { \
case (0 << 1) | (0 << 0): env->print("[not_return_but_same]"); break; \
case (0 << 1) | (1 << 0): env->print("[reserved]"); break; \
case (1 << 1) | (0 << 0): env->print("[reserved]"); break; \
case (1 << 1) | (1 << 0): env->print("[not_predictable]"); break; \
default: break; \
} \
} \
}
address Disassembler::find_prev_instr(address here, int n_instr) {
if (!os::is_readable_pointer(here)) return NULL; // obviously a bad location to decode
// Find most distant possible starting point.
// Narrow down because we don't want to SEGV while printing.
address start = here - n_instr*Assembler::instr_maxlen(); // starting point can't be further away.
while ((start < here) && !os::is_readable_range(start, here)) {
start = align_down(start, os::min_page_size()) + os::min_page_size();
}
if (start >= here) {
// Strange. Can only happen with here on page boundary.
return NULL;
}
return start;
}
address Disassembler::decode_instruction0(address here, outputStream * st, address virtual_begin ) {
if (is_abstract()) {
// The disassembler library was not loaded (yet),
// use AbstractDisassembler's decode method.
return decode_instruction_abstract(here, st, Assembler::instr_len(here), Assembler::instr_maxlen());
}
// Currently, "special decoding" doesn't work when decoding error files.
// When decoding an instruction from a hs_err file, the given
// instruction address 'start' points to the instruction's virtual address
// which is not equal to the address where the instruction is located.
// Therefore, we will either crash or decode garbage.
if (is_decode_error_file()) {
return here;
}
//---< Decode some well-known "instructions" >---
address next;
uint32_t instruction = *(uint32_t*)here;
// Align at next tab position.
const uint tabspacing = 8;
const uint pos = st->position();
const uint aligned_pos = ((pos+tabspacing-1)/tabspacing)*tabspacing;
st->fill_to(aligned_pos);
if (instruction == 0x0) {
st->print("illtrap .data 0x0");
next = here + Assembler::instr_len(here);
} else if (instruction == 0xbadbabe) {
st->print(".data 0xbadbabe");
next = here + Assembler::instr_len(here);
} else if (Assembler::is_endgroup(instruction)) {
st->print("endgroup");
next = here + Assembler::instr_len(here);
} else {
next = here;
}
return next;
}
// print annotations (instruction control bits)
void Disassembler::annotate(address here, outputStream* st) {
// Currently, annotation doesn't work when decoding error files.
// When decoding an instruction from a hs_err file, the given
// instruction address 'start' points to the instruction's virtual address
// which is not equal to the address where the instruction is located.
// Therefore, we will either crash or decode garbage.
if (is_decode_error_file()) {
return;
}
uint32_t instruction = *(uint32_t*)here;
// Align at next tab position.
const uint tabspacing = 8;
const uint pos = st->position();
const uint aligned_pos = ((pos+tabspacing-1)/tabspacing)*tabspacing;
if (MacroAssembler::is_bcxx(instruction)) {
st->print(",bo=0b");
print_instruction_bits(st, instruction, 6, 10);
print_decoded_bo_bits(st, instruction, 10);
} else if (MacroAssembler::is_bctr(instruction) ||
MacroAssembler::is_bctrl(instruction) ||
MacroAssembler::is_bclr(instruction)) {
st->fill_to(aligned_pos);
st->print("bo=0b");
print_instruction_bits(st, instruction, 6, 10);
print_decoded_bo_bits(st, instruction, 10);
st->print(",bh=0b");
print_instruction_bits(st, instruction, 19, 20);
print_decoded_bh_bits(st, instruction, 20,
!(MacroAssembler::is_bctr(instruction) ||
MacroAssembler::is_bctrl(instruction)));
} else if (MacroAssembler::is_trap_should_not_reach_here(instruction)) {
st->fill_to(aligned_pos + tabspacing);
st->print(";trap: should not reach here");
} else if (MacroAssembler::is_trap_null_check(instruction)) {
st->fill_to(aligned_pos + tabspacing);
st->print(";trap: null check");
} else if (MacroAssembler::is_trap_range_check(instruction)) {
st->fill_to(aligned_pos + tabspacing);
st->print(";trap: range check");
} else if (MacroAssembler::is_trap_ic_miss_check(instruction)) {
st->fill_to(aligned_pos + tabspacing);
st->print(";trap: ic miss check");
} else if (MacroAssembler::is_trap_zombie_not_entrant(instruction)) {
st->fill_to(aligned_pos + tabspacing);
st->print(";trap: zombie");
}
}