8227127: Era designator not displayed correctly using the COMPAT provider
Reviewed-by: rriggs
/*
* Copyright (c) 2008, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "c1/c1_Compilation.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "c1/c1_ValueStack.hpp"
#include "ci/ciArrayKlass.hpp"
#include "ci/ciInstance.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "memory/universe.hpp"
#include "nativeInst_arm.hpp"
#include "oops/objArrayKlass.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "vmreg_arm.inline.hpp"
#define __ _masm->
// Note: Rtemp usage is this file should not impact C2 and should be
// correct as long as it is not implicitly used in lower layers (the
// arm [macro]assembler) and used with care in the other C1 specific
// files.
bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
ShouldNotCallThis(); // Not used on ARM
return false;
}
LIR_Opr LIR_Assembler::receiverOpr() {
// The first register in Java calling conventions
return FrameMap::R0_oop_opr;
}
LIR_Opr LIR_Assembler::osrBufferPointer() {
return FrameMap::as_pointer_opr(R0);
}
#ifndef PRODUCT
void LIR_Assembler::verify_reserved_argument_area_size(int args_count) {
assert(args_count * wordSize <= frame_map()->reserved_argument_area_size(), "not enough space for arguments");
}
#endif // !PRODUCT
void LIR_Assembler::store_parameter(jint c, int offset_from_sp_in_words) {
assert(offset_from_sp_in_words >= 0, "invalid offset from sp");
int offset_from_sp_in_bytes = offset_from_sp_in_words * BytesPerWord;
assert(offset_from_sp_in_bytes < frame_map()->reserved_argument_area_size(), "not enough space");
__ mov_slow(Rtemp, c);
__ str(Rtemp, Address(SP, offset_from_sp_in_bytes));
}
void LIR_Assembler::store_parameter(Metadata* m, int offset_from_sp_in_words) {
assert(offset_from_sp_in_words >= 0, "invalid offset from sp");
int offset_from_sp_in_bytes = offset_from_sp_in_words * BytesPerWord;
assert(offset_from_sp_in_bytes < frame_map()->reserved_argument_area_size(), "not enough space");
__ mov_metadata(Rtemp, m);
__ str(Rtemp, Address(SP, offset_from_sp_in_bytes));
}
//--------------fpu register translations-----------------------
void LIR_Assembler::set_24bit_FPU() {
ShouldNotReachHere();
}
void LIR_Assembler::reset_FPU() {
ShouldNotReachHere();
}
void LIR_Assembler::fpop() {
Unimplemented();
}
void LIR_Assembler::fxch(int i) {
Unimplemented();
}
void LIR_Assembler::fld(int i) {
Unimplemented();
}
void LIR_Assembler::ffree(int i) {
Unimplemented();
}
void LIR_Assembler::breakpoint() {
__ breakpoint();
}
void LIR_Assembler::push(LIR_Opr opr) {
Unimplemented();
}
void LIR_Assembler::pop(LIR_Opr opr) {
Unimplemented();
}
//-------------------------------------------
Address LIR_Assembler::as_Address(LIR_Address* addr) {
Register base = addr->base()->as_pointer_register();
if (addr->index()->is_illegal() || addr->index()->is_constant()) {
int offset = addr->disp();
if (addr->index()->is_constant()) {
offset += addr->index()->as_constant_ptr()->as_jint() << addr->scale();
}
if ((offset <= -4096) || (offset >= 4096)) {
BAILOUT_("offset not in range", Address(base));
}
return Address(base, offset);
} else {
assert(addr->disp() == 0, "can't have both");
int scale = addr->scale();
assert(addr->index()->is_single_cpu(), "should be");
return scale >= 0 ? Address(base, addr->index()->as_register(), lsl, scale) :
Address(base, addr->index()->as_register(), lsr, -scale);
}
}
Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
Address base = as_Address(addr);
assert(base.index() == noreg, "must be");
if (base.disp() + BytesPerWord >= 4096) { BAILOUT_("offset not in range", Address(base.base(),0)); }
return Address(base.base(), base.disp() + BytesPerWord);
}
Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
return as_Address(addr);
}
void LIR_Assembler::osr_entry() {
offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
BlockBegin* osr_entry = compilation()->hir()->osr_entry();
ValueStack* entry_state = osr_entry->end()->state();
int number_of_locks = entry_state->locks_size();
__ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
Register OSR_buf = osrBufferPointer()->as_pointer_register();
assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
int monitor_offset = (method()->max_locals() + 2 * (number_of_locks - 1)) * BytesPerWord;
for (int i = 0; i < number_of_locks; i++) {
int slot_offset = monitor_offset - (i * 2 * BytesPerWord);
__ ldr(R1, Address(OSR_buf, slot_offset + 0*BytesPerWord));
__ ldr(R2, Address(OSR_buf, slot_offset + 1*BytesPerWord));
__ str(R1, frame_map()->address_for_monitor_lock(i));
__ str(R2, frame_map()->address_for_monitor_object(i));
}
}
int LIR_Assembler::check_icache() {
Register receiver = LIR_Assembler::receiverOpr()->as_register();
int offset = __ offset();
__ inline_cache_check(receiver, Ricklass);
return offset;
}
void LIR_Assembler::clinit_barrier(ciMethod* method) {
ShouldNotReachHere(); // not implemented
}
void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
jobject o = (jobject)Universe::non_oop_word();
int index = __ oop_recorder()->allocate_oop_index(o);
PatchingStub* patch = new PatchingStub(_masm, patching_id(info), index);
__ patchable_mov_oop(reg, o, index);
patching_epilog(patch, lir_patch_normal, reg, info);
}
void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
Metadata* o = (Metadata*)Universe::non_oop_word();
int index = __ oop_recorder()->allocate_metadata_index(o);
PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
__ patchable_mov_metadata(reg, o, index);
patching_epilog(patch, lir_patch_normal, reg, info);
}
int LIR_Assembler::initial_frame_size_in_bytes() const {
// Subtracts two words to account for return address and link
return frame_map()->framesize()*VMRegImpl::stack_slot_size - 2*wordSize;
}
int LIR_Assembler::emit_exception_handler() {
// TODO: ARM
__ nop(); // See comments in other ports
address handler_base = __ start_a_stub(exception_handler_size());
if (handler_base == NULL) {
bailout("exception handler overflow");
return -1;
}
int offset = code_offset();
// check that there is really an exception
__ verify_not_null_oop(Rexception_obj);
__ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
__ should_not_reach_here();
assert(code_offset() - offset <= exception_handler_size(), "overflow");
__ end_a_stub();
return offset;
}
// Emit the code to remove the frame from the stack in the exception
// unwind path.
int LIR_Assembler::emit_unwind_handler() {
#ifndef PRODUCT
if (CommentedAssembly) {
_masm->block_comment("Unwind handler");
}
#endif
int offset = code_offset();
// Fetch the exception from TLS and clear out exception related thread state
Register zero = __ zero_register(Rtemp);
__ ldr(Rexception_obj, Address(Rthread, JavaThread::exception_oop_offset()));
__ str(zero, Address(Rthread, JavaThread::exception_oop_offset()));
__ str(zero, Address(Rthread, JavaThread::exception_pc_offset()));
__ bind(_unwind_handler_entry);
__ verify_not_null_oop(Rexception_obj);
// Preform needed unlocking
MonitorExitStub* stub = NULL;
if (method()->is_synchronized()) {
monitor_address(0, FrameMap::R0_opr);
stub = new MonitorExitStub(FrameMap::R0_opr, true, 0);
__ unlock_object(R2, R1, R0, Rtemp, *stub->entry());
__ bind(*stub->continuation());
}
// remove the activation and dispatch to the unwind handler
__ remove_frame(initial_frame_size_in_bytes()); // restores FP and LR
__ jump(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type, Rtemp);
// Emit the slow path assembly
if (stub != NULL) {
stub->emit_code(this);
}
return offset;
}
int LIR_Assembler::emit_deopt_handler() {
address handler_base = __ start_a_stub(deopt_handler_size());
if (handler_base == NULL) {
bailout("deopt handler overflow");
return -1;
}
int offset = code_offset();
__ mov_relative_address(LR, __ pc());
__ push(LR); // stub expects LR to be saved
__ jump(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type, noreg);
assert(code_offset() - offset <= deopt_handler_size(), "overflow");
__ end_a_stub();
return offset;
}
void LIR_Assembler::return_op(LIR_Opr result) {
// Pop the frame before safepoint polling
__ remove_frame(initial_frame_size_in_bytes());
// mov_slow here is usually one or two instruction
__ mov_address(Rtemp, os::get_polling_page());
__ relocate(relocInfo::poll_return_type);
__ ldr(Rtemp, Address(Rtemp));
__ ret();
}
int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
__ mov_address(Rtemp, os::get_polling_page());
if (info != NULL) {
add_debug_info_for_branch(info);
}
int offset = __ offset();
__ relocate(relocInfo::poll_type);
__ ldr(Rtemp, Address(Rtemp));
return offset;
}
void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
if (from_reg != to_reg) {
__ mov(to_reg, from_reg);
}
}
void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
assert(src->is_constant() && dest->is_register(), "must be");
LIR_Const* c = src->as_constant_ptr();
switch (c->type()) {
case T_ADDRESS:
case T_INT:
assert(patch_code == lir_patch_none, "no patching handled here");
__ mov_slow(dest->as_register(), c->as_jint());
break;
case T_LONG:
assert(patch_code == lir_patch_none, "no patching handled here");
__ mov_slow(dest->as_register_lo(), c->as_jint_lo());
__ mov_slow(dest->as_register_hi(), c->as_jint_hi());
break;
case T_OBJECT:
if (patch_code == lir_patch_none) {
__ mov_oop(dest->as_register(), c->as_jobject());
} else {
jobject2reg_with_patching(dest->as_register(), info);
}
break;
case T_METADATA:
if (patch_code == lir_patch_none) {
__ mov_metadata(dest->as_register(), c->as_metadata());
} else {
klass2reg_with_patching(dest->as_register(), info);
}
break;
case T_FLOAT:
if (dest->is_single_fpu()) {
__ mov_float(dest->as_float_reg(), c->as_jfloat());
} else {
// Simple getters can return float constant directly into r0
__ mov_slow(dest->as_register(), c->as_jint_bits());
}
break;
case T_DOUBLE:
if (dest->is_double_fpu()) {
__ mov_double(dest->as_double_reg(), c->as_jdouble());
} else {
// Simple getters can return double constant directly into r1r0
__ mov_slow(dest->as_register_lo(), c->as_jint_lo_bits());
__ mov_slow(dest->as_register_hi(), c->as_jint_hi_bits());
}
break;
default:
ShouldNotReachHere();
}
}
void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
assert(src->is_constant(), "must be");
assert(dest->is_stack(), "must be");
LIR_Const* c = src->as_constant_ptr();
switch (c->type()) {
case T_INT: // fall through
case T_FLOAT:
__ mov_slow(Rtemp, c->as_jint_bits());
__ str_32(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
break;
case T_ADDRESS:
__ mov_slow(Rtemp, c->as_jint());
__ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
break;
case T_OBJECT:
__ mov_oop(Rtemp, c->as_jobject());
__ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
break;
case T_LONG: // fall through
case T_DOUBLE:
__ mov_slow(Rtemp, c->as_jint_lo_bits());
__ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes));
if (c->as_jint_hi_bits() != c->as_jint_lo_bits()) {
__ mov_slow(Rtemp, c->as_jint_hi_bits());
}
__ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes));
break;
default:
ShouldNotReachHere();
}
}
void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type,
CodeEmitInfo* info, bool wide) {
assert((src->as_constant_ptr()->type() == T_OBJECT && src->as_constant_ptr()->as_jobject() == NULL),"cannot handle otherwise");
__ mov(Rtemp, 0);
int null_check_offset = code_offset();
__ str(Rtemp, as_Address(dest->as_address_ptr()));
if (info != NULL) {
assert(false, "arm32 didn't support this before, investigate if bug");
add_debug_info_for_null_check(null_check_offset, info);
}
}
void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
assert(src->is_register() && dest->is_register(), "must be");
if (src->is_single_cpu()) {
if (dest->is_single_cpu()) {
move_regs(src->as_register(), dest->as_register());
} else if (dest->is_single_fpu()) {
__ fmsr(dest->as_float_reg(), src->as_register());
} else {
ShouldNotReachHere();
}
} else if (src->is_double_cpu()) {
if (dest->is_double_cpu()) {
__ long_move(dest->as_register_lo(), dest->as_register_hi(), src->as_register_lo(), src->as_register_hi());
} else {
__ fmdrr(dest->as_double_reg(), src->as_register_lo(), src->as_register_hi());
}
} else if (src->is_single_fpu()) {
if (dest->is_single_fpu()) {
__ mov_float(dest->as_float_reg(), src->as_float_reg());
} else if (dest->is_single_cpu()) {
__ mov_fpr2gpr_float(dest->as_register(), src->as_float_reg());
} else {
ShouldNotReachHere();
}
} else if (src->is_double_fpu()) {
if (dest->is_double_fpu()) {
__ mov_double(dest->as_double_reg(), src->as_double_reg());
} else if (dest->is_double_cpu()) {
__ fmrrd(dest->as_register_lo(), dest->as_register_hi(), src->as_double_reg());
} else {
ShouldNotReachHere();
}
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
assert(src->is_register(), "should not call otherwise");
assert(dest->is_stack(), "should not call otherwise");
Address addr = dest->is_single_word() ?
frame_map()->address_for_slot(dest->single_stack_ix()) :
frame_map()->address_for_slot(dest->double_stack_ix());
assert(lo_word_offset_in_bytes == 0 && hi_word_offset_in_bytes == 4, "little ending");
if (src->is_single_fpu() || src->is_double_fpu()) {
if (addr.disp() >= 1024) { BAILOUT("Too exotic case to handle here"); }
}
if (src->is_single_cpu()) {
switch (type) {
case T_OBJECT:
case T_ARRAY: __ verify_oop(src->as_register()); // fall through
case T_ADDRESS:
case T_METADATA: __ str(src->as_register(), addr); break;
case T_FLOAT: // used in intBitsToFloat intrinsic implementation, fall through
case T_INT: __ str_32(src->as_register(), addr); break;
default:
ShouldNotReachHere();
}
} else if (src->is_double_cpu()) {
__ str(src->as_register_lo(), addr);
__ str(src->as_register_hi(), frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes));
} else if (src->is_single_fpu()) {
__ str_float(src->as_float_reg(), addr);
} else if (src->is_double_fpu()) {
__ str_double(src->as_double_reg(), addr);
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type,
LIR_PatchCode patch_code, CodeEmitInfo* info,
bool pop_fpu_stack, bool wide,
bool unaligned) {
LIR_Address* to_addr = dest->as_address_ptr();
Register base_reg = to_addr->base()->as_pointer_register();
const bool needs_patching = (patch_code != lir_patch_none);
PatchingStub* patch = NULL;
if (needs_patching) {
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
}
int null_check_offset = code_offset();
switch (type) {
case T_ARRAY:
case T_OBJECT:
if (UseCompressedOops && !wide) {
ShouldNotReachHere();
} else {
__ str(src->as_register(), as_Address(to_addr));
}
break;
case T_ADDRESS:
__ str(src->as_pointer_register(), as_Address(to_addr));
break;
case T_BYTE:
case T_BOOLEAN:
__ strb(src->as_register(), as_Address(to_addr));
break;
case T_CHAR:
case T_SHORT:
__ strh(src->as_register(), as_Address(to_addr));
break;
case T_INT:
#ifdef __SOFTFP__
case T_FLOAT:
#endif // __SOFTFP__
__ str_32(src->as_register(), as_Address(to_addr));
break;
#ifdef __SOFTFP__
case T_DOUBLE:
#endif // __SOFTFP__
case T_LONG: {
Register from_lo = src->as_register_lo();
Register from_hi = src->as_register_hi();
if (to_addr->index()->is_register()) {
assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
assert(to_addr->disp() == 0, "Not yet supporting both");
__ add(Rtemp, base_reg, to_addr->index()->as_register());
base_reg = Rtemp;
__ str(from_lo, Address(Rtemp));
if (patch != NULL) {
patching_epilog(patch, lir_patch_low, base_reg, info);
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
patch_code = lir_patch_high;
}
__ str(from_hi, Address(Rtemp, BytesPerWord));
} else if (base_reg == from_lo) {
__ str(from_hi, as_Address_hi(to_addr));
if (patch != NULL) {
patching_epilog(patch, lir_patch_high, base_reg, info);
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
patch_code = lir_patch_low;
}
__ str(from_lo, as_Address_lo(to_addr));
} else {
__ str(from_lo, as_Address_lo(to_addr));
if (patch != NULL) {
patching_epilog(patch, lir_patch_low, base_reg, info);
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
patch_code = lir_patch_high;
}
__ str(from_hi, as_Address_hi(to_addr));
}
break;
}
#ifndef __SOFTFP__
case T_FLOAT:
if (to_addr->index()->is_register()) {
assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
__ add(Rtemp, base_reg, to_addr->index()->as_register());
if ((to_addr->disp() <= -4096) || (to_addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
__ fsts(src->as_float_reg(), Address(Rtemp, to_addr->disp()));
} else {
__ fsts(src->as_float_reg(), as_Address(to_addr));
}
break;
case T_DOUBLE:
if (to_addr->index()->is_register()) {
assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
__ add(Rtemp, base_reg, to_addr->index()->as_register());
if ((to_addr->disp() <= -4096) || (to_addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
__ fstd(src->as_double_reg(), Address(Rtemp, to_addr->disp()));
} else {
__ fstd(src->as_double_reg(), as_Address(to_addr));
}
break;
#endif // __SOFTFP__
default:
ShouldNotReachHere();
}
if (info != NULL) {
add_debug_info_for_null_check(null_check_offset, info);
}
if (patch != NULL) {
// Offset embeedded into LDR/STR instruction may appear not enough
// to address a field. So, provide a space for one more instruction
// that will deal with larger offsets.
__ nop();
patching_epilog(patch, patch_code, base_reg, info);
}
}
void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
assert(src->is_stack(), "should not call otherwise");
assert(dest->is_register(), "should not call otherwise");
Address addr = src->is_single_word() ?
frame_map()->address_for_slot(src->single_stack_ix()) :
frame_map()->address_for_slot(src->double_stack_ix());
assert(lo_word_offset_in_bytes == 0 && hi_word_offset_in_bytes == 4, "little ending");
if (dest->is_single_fpu() || dest->is_double_fpu()) {
if (addr.disp() >= 1024) { BAILOUT("Too exotic case to handle here"); }
}
if (dest->is_single_cpu()) {
switch (type) {
case T_OBJECT:
case T_ARRAY:
case T_ADDRESS:
case T_METADATA: __ ldr(dest->as_register(), addr); break;
case T_FLOAT: // used in floatToRawIntBits intrinsic implemenation
case T_INT: __ ldr_u32(dest->as_register(), addr); break;
default:
ShouldNotReachHere();
}
if ((type == T_OBJECT) || (type == T_ARRAY)) {
__ verify_oop(dest->as_register());
}
} else if (dest->is_double_cpu()) {
__ ldr(dest->as_register_lo(), addr);
__ ldr(dest->as_register_hi(), frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes));
} else if (dest->is_single_fpu()) {
__ ldr_float(dest->as_float_reg(), addr);
} else if (dest->is_double_fpu()) {
__ ldr_double(dest->as_double_reg(), addr);
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
if (src->is_single_stack()) {
switch (src->type()) {
case T_OBJECT:
case T_ARRAY:
case T_ADDRESS:
case T_METADATA:
__ ldr(Rtemp, frame_map()->address_for_slot(src->single_stack_ix()));
__ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
break;
case T_INT:
case T_FLOAT:
__ ldr_u32(Rtemp, frame_map()->address_for_slot(src->single_stack_ix()));
__ str_32(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
break;
default:
ShouldNotReachHere();
}
} else {
assert(src->is_double_stack(), "must be");
__ ldr(Rtemp, frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes));
__ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes));
__ ldr(Rtemp, frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes));
__ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes));
}
}
void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type,
LIR_PatchCode patch_code, CodeEmitInfo* info,
bool wide, bool unaligned) {
assert(src->is_address(), "should not call otherwise");
assert(dest->is_register(), "should not call otherwise");
LIR_Address* addr = src->as_address_ptr();
Register base_reg = addr->base()->as_pointer_register();
PatchingStub* patch = NULL;
if (patch_code != lir_patch_none) {
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
}
if (info != NULL) {
add_debug_info_for_null_check_here(info);
}
switch (type) {
case T_OBJECT: // fall through
case T_ARRAY:
if (UseCompressedOops && !wide) {
__ ldr_u32(dest->as_register(), as_Address(addr));
} else {
__ ldr(dest->as_register(), as_Address(addr));
}
break;
case T_ADDRESS:
if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
__ ldr_u32(dest->as_pointer_register(), as_Address(addr));
} else {
__ ldr(dest->as_pointer_register(), as_Address(addr));
}
break;
case T_INT:
#ifdef __SOFTFP__
case T_FLOAT:
#endif // __SOFTFP__
__ ldr(dest->as_pointer_register(), as_Address(addr));
break;
case T_BOOLEAN:
__ ldrb(dest->as_register(), as_Address(addr));
break;
case T_BYTE:
__ ldrsb(dest->as_register(), as_Address(addr));
break;
case T_CHAR:
__ ldrh(dest->as_register(), as_Address(addr));
break;
case T_SHORT:
__ ldrsh(dest->as_register(), as_Address(addr));
break;
#ifdef __SOFTFP__
case T_DOUBLE:
#endif // __SOFTFP__
case T_LONG: {
Register to_lo = dest->as_register_lo();
Register to_hi = dest->as_register_hi();
if (addr->index()->is_register()) {
assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
assert(addr->disp() == 0, "Not yet supporting both");
__ add(Rtemp, base_reg, addr->index()->as_register());
base_reg = Rtemp;
__ ldr(to_lo, Address(Rtemp));
if (patch != NULL) {
patching_epilog(patch, lir_patch_low, base_reg, info);
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
patch_code = lir_patch_high;
}
__ ldr(to_hi, Address(Rtemp, BytesPerWord));
} else if (base_reg == to_lo) {
__ ldr(to_hi, as_Address_hi(addr));
if (patch != NULL) {
patching_epilog(patch, lir_patch_high, base_reg, info);
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
patch_code = lir_patch_low;
}
__ ldr(to_lo, as_Address_lo(addr));
} else {
__ ldr(to_lo, as_Address_lo(addr));
if (patch != NULL) {
patching_epilog(patch, lir_patch_low, base_reg, info);
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
patch_code = lir_patch_high;
}
__ ldr(to_hi, as_Address_hi(addr));
}
break;
}
#ifndef __SOFTFP__
case T_FLOAT:
if (addr->index()->is_register()) {
assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
__ add(Rtemp, base_reg, addr->index()->as_register());
if ((addr->disp() <= -4096) || (addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
__ flds(dest->as_float_reg(), Address(Rtemp, addr->disp()));
} else {
__ flds(dest->as_float_reg(), as_Address(addr));
}
break;
case T_DOUBLE:
if (addr->index()->is_register()) {
assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
__ add(Rtemp, base_reg, addr->index()->as_register());
if ((addr->disp() <= -4096) || (addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
__ fldd(dest->as_double_reg(), Address(Rtemp, addr->disp()));
} else {
__ fldd(dest->as_double_reg(), as_Address(addr));
}
break;
#endif // __SOFTFP__
default:
ShouldNotReachHere();
}
if (patch != NULL) {
// Offset embeedded into LDR/STR instruction may appear not enough
// to address a field. So, provide a space for one more instruction
// that will deal with larger offsets.
__ nop();
patching_epilog(patch, patch_code, base_reg, info);
}
}
void LIR_Assembler::emit_op3(LIR_Op3* op) {
bool is_32 = op->result_opr()->is_single_cpu();
if (op->code() == lir_idiv && op->in_opr2()->is_constant() && is_32) {
int c = op->in_opr2()->as_constant_ptr()->as_jint();
assert(is_power_of_2(c), "non power-of-2 constant should be put in a register");
Register left = op->in_opr1()->as_register();
Register dest = op->result_opr()->as_register();
if (c == 1) {
__ mov(dest, left);
} else if (c == 2) {
__ add_32(dest, left, AsmOperand(left, lsr, 31));
__ asr_32(dest, dest, 1);
} else if (c != (int) 0x80000000) {
int power = log2_intptr(c);
__ asr_32(Rtemp, left, 31);
__ add_32(dest, left, AsmOperand(Rtemp, lsr, 32-power)); // dest = left + (left < 0 ? 2^power - 1 : 0);
__ asr_32(dest, dest, power); // dest = dest >>> power;
} else {
// x/0x80000000 is a special case, since dividend is a power of two, but is negative.
// The only possible result values are 0 and 1, with 1 only for dividend == divisor == 0x80000000.
__ cmp_32(left, c);
__ mov(dest, 0, ne);
__ mov(dest, 1, eq);
}
} else {
assert(op->code() == lir_idiv || op->code() == lir_irem, "unexpected op3");
__ call(StubRoutines::Arm::idiv_irem_entry(), relocInfo::runtime_call_type);
add_debug_info_for_div0_here(op->info());
}
}
void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
#ifdef ASSERT
assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
if (op->block() != NULL) _branch_target_blocks.append(op->block());
if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
assert(op->info() == NULL, "CodeEmitInfo?");
#endif // ASSERT
#ifdef __SOFTFP__
assert (op->code() != lir_cond_float_branch, "this should be impossible");
#else
if (op->code() == lir_cond_float_branch) {
__ fmstat();
__ b(*(op->ublock()->label()), vs);
}
#endif // __SOFTFP__
AsmCondition acond = al;
switch (op->cond()) {
case lir_cond_equal: acond = eq; break;
case lir_cond_notEqual: acond = ne; break;
case lir_cond_less: acond = lt; break;
case lir_cond_lessEqual: acond = le; break;
case lir_cond_greaterEqual: acond = ge; break;
case lir_cond_greater: acond = gt; break;
case lir_cond_aboveEqual: acond = hs; break;
case lir_cond_belowEqual: acond = ls; break;
default: assert(op->cond() == lir_cond_always, "must be");
}
__ b(*(op->label()), acond);
}
void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
LIR_Opr src = op->in_opr();
LIR_Opr dest = op->result_opr();
switch (op->bytecode()) {
case Bytecodes::_i2l:
move_regs(src->as_register(), dest->as_register_lo());
__ mov(dest->as_register_hi(), AsmOperand(src->as_register(), asr, 31));
break;
case Bytecodes::_l2i:
move_regs(src->as_register_lo(), dest->as_register());
break;
case Bytecodes::_i2b:
__ sign_extend(dest->as_register(), src->as_register(), 8);
break;
case Bytecodes::_i2s:
__ sign_extend(dest->as_register(), src->as_register(), 16);
break;
case Bytecodes::_i2c:
__ zero_extend(dest->as_register(), src->as_register(), 16);
break;
case Bytecodes::_f2d:
__ convert_f2d(dest->as_double_reg(), src->as_float_reg());
break;
case Bytecodes::_d2f:
__ convert_d2f(dest->as_float_reg(), src->as_double_reg());
break;
case Bytecodes::_i2f:
__ fmsr(Stemp, src->as_register());
__ fsitos(dest->as_float_reg(), Stemp);
break;
case Bytecodes::_i2d:
__ fmsr(Stemp, src->as_register());
__ fsitod(dest->as_double_reg(), Stemp);
break;
case Bytecodes::_f2i:
__ ftosizs(Stemp, src->as_float_reg());
__ fmrs(dest->as_register(), Stemp);
break;
case Bytecodes::_d2i:
__ ftosizd(Stemp, src->as_double_reg());
__ fmrs(dest->as_register(), Stemp);
break;
default:
ShouldNotReachHere();
}
}
void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
if (op->init_check()) {
Register tmp = op->tmp1()->as_register();
__ ldrb(tmp, Address(op->klass()->as_register(), InstanceKlass::init_state_offset()));
add_debug_info_for_null_check_here(op->stub()->info());
__ cmp(tmp, InstanceKlass::fully_initialized);
__ b(*op->stub()->entry(), ne);
}
__ allocate_object(op->obj()->as_register(),
op->tmp1()->as_register(),
op->tmp2()->as_register(),
op->tmp3()->as_register(),
op->header_size(),
op->object_size(),
op->klass()->as_register(),
*op->stub()->entry());
__ bind(*op->stub()->continuation());
}
void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
if (UseSlowPath ||
(!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
(!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
__ b(*op->stub()->entry());
} else {
__ allocate_array(op->obj()->as_register(),
op->len()->as_register(),
op->tmp1()->as_register(),
op->tmp2()->as_register(),
op->tmp3()->as_register(),
arrayOopDesc::header_size(op->type()),
type2aelembytes(op->type()),
op->klass()->as_register(),
*op->stub()->entry());
}
__ bind(*op->stub()->continuation());
}
void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
ciMethodData *md, ciProfileData *data,
Register recv, Register tmp1, Label* update_done) {
assert_different_registers(mdo, recv, tmp1);
uint i;
for (i = 0; i < VirtualCallData::row_limit(); i++) {
Label next_test;
// See if the receiver is receiver[n].
Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
mdo_offset_bias);
__ ldr(tmp1, receiver_addr);
__ verify_klass_ptr(tmp1);
__ cmp(recv, tmp1);
__ b(next_test, ne);
Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
mdo_offset_bias);
__ ldr(tmp1, data_addr);
__ add(tmp1, tmp1, DataLayout::counter_increment);
__ str(tmp1, data_addr);
__ b(*update_done);
__ bind(next_test);
}
// Didn't find receiver; find next empty slot and fill it in
for (i = 0; i < VirtualCallData::row_limit(); i++) {
Label next_test;
Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
mdo_offset_bias);
__ ldr(tmp1, recv_addr);
__ cbnz(tmp1, next_test);
__ str(recv, recv_addr);
__ mov(tmp1, DataLayout::counter_increment);
__ str(tmp1, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
mdo_offset_bias));
__ b(*update_done);
__ bind(next_test);
}
}
void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
md = method->method_data_or_null();
assert(md != NULL, "Sanity");
data = md->bci_to_data(bci);
assert(data != NULL, "need data for checkcast");
assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
if (md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes() >= 4096) {
// The offset is large so bias the mdo by the base of the slot so
// that the ldr can use an immediate offset to reference the slots of the data
mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
}
}
// On 32-bit ARM, code before this helper should test obj for null (ZF should be set if obj is null).
void LIR_Assembler::typecheck_profile_helper1(ciMethod* method, int bci,
ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias,
Register obj, Register mdo, Register data_val, Label* obj_is_null) {
assert(method != NULL, "Should have method");
assert_different_registers(obj, mdo, data_val);
setup_md_access(method, bci, md, data, mdo_offset_bias);
Label not_null;
__ b(not_null, ne);
__ mov_metadata(mdo, md->constant_encoding());
if (mdo_offset_bias > 0) {
__ mov_slow(data_val, mdo_offset_bias);
__ add(mdo, mdo, data_val);
}
Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
__ ldrb(data_val, flags_addr);
__ orr(data_val, data_val, (uint)BitData::null_seen_byte_constant());
__ strb(data_val, flags_addr);
__ b(*obj_is_null);
__ bind(not_null);
}
void LIR_Assembler::typecheck_profile_helper2(ciMethodData* md, ciProfileData* data, int mdo_offset_bias,
Register mdo, Register recv, Register value, Register tmp1,
Label* profile_cast_success, Label* profile_cast_failure,
Label* success, Label* failure) {
assert_different_registers(mdo, value, tmp1);
__ bind(*profile_cast_success);
__ mov_metadata(mdo, md->constant_encoding());
if (mdo_offset_bias > 0) {
__ mov_slow(tmp1, mdo_offset_bias);
__ add(mdo, mdo, tmp1);
}
__ load_klass(recv, value);
type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
__ b(*success);
// Cast failure case
__ bind(*profile_cast_failure);
__ mov_metadata(mdo, md->constant_encoding());
if (mdo_offset_bias > 0) {
__ mov_slow(tmp1, mdo_offset_bias);
__ add(mdo, mdo, tmp1);
}
Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
__ ldr(tmp1, data_addr);
__ sub(tmp1, tmp1, DataLayout::counter_increment);
__ str(tmp1, data_addr);
__ b(*failure);
}
// Sets `res` to true, if `cond` holds.
static void set_instanceof_result(MacroAssembler* _masm, Register res, AsmCondition cond) {
__ mov(res, 1, cond);
}
void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
// TODO: ARM - can be more effective with one more register
switch (op->code()) {
case lir_store_check: {
CodeStub* stub = op->stub();
Register value = op->object()->as_register();
Register array = op->array()->as_register();
Register klass_RInfo = op->tmp1()->as_register();
Register k_RInfo = op->tmp2()->as_register();
assert_different_registers(klass_RInfo, k_RInfo, Rtemp);
if (op->should_profile()) {
assert_different_registers(value, klass_RInfo, k_RInfo, Rtemp);
}
// check if it needs to be profiled
ciMethodData* md;
ciProfileData* data;
int mdo_offset_bias = 0;
Label profile_cast_success, profile_cast_failure, done;
Label *success_target = op->should_profile() ? &profile_cast_success : &done;
Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
if (op->should_profile()) {
__ cmp(value, 0);
typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, value, k_RInfo, Rtemp, &done);
} else {
__ cbz(value, done);
}
assert_different_registers(k_RInfo, value);
add_debug_info_for_null_check_here(op->info_for_exception());
__ load_klass(k_RInfo, array);
__ load_klass(klass_RInfo, value);
__ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
__ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
// check for immediate positive hit
__ ldr(Rtemp, Address(klass_RInfo, Rtemp));
__ cmp(klass_RInfo, k_RInfo);
__ cond_cmp(Rtemp, k_RInfo, ne);
__ b(*success_target, eq);
// check for immediate negative hit
__ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
__ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset()));
__ b(*failure_target, ne);
// slow case
assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
__ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
__ cbz(R0, *failure_target);
if (op->should_profile()) {
Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp;
if (mdo == value) {
mdo = k_RInfo;
recv = klass_RInfo;
}
typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, value, tmp1,
&profile_cast_success, &profile_cast_failure,
&done, stub->entry());
}
__ bind(done);
break;
}
case lir_checkcast: {
CodeStub* stub = op->stub();
Register obj = op->object()->as_register();
Register res = op->result_opr()->as_register();
Register klass_RInfo = op->tmp1()->as_register();
Register k_RInfo = op->tmp2()->as_register();
ciKlass* k = op->klass();
assert_different_registers(res, k_RInfo, klass_RInfo, Rtemp);
if (stub->is_simple_exception_stub()) {
// TODO: ARM - Late binding is used to prevent confusion of register allocator
assert(stub->is_exception_throw_stub(), "must be");
((SimpleExceptionStub*)stub)->set_obj(op->result_opr());
}
ciMethodData* md;
ciProfileData* data;
int mdo_offset_bias = 0;
Label done;
Label profile_cast_failure, profile_cast_success;
Label *failure_target = op->should_profile() ? &profile_cast_failure : op->stub()->entry();
Label *success_target = op->should_profile() ? &profile_cast_success : &done;
__ movs(res, obj);
if (op->should_profile()) {
typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, res, klass_RInfo, Rtemp, &done);
} else {
__ b(done, eq);
}
if (k->is_loaded()) {
__ mov_metadata(k_RInfo, k->constant_encoding());
} else if (k_RInfo != obj) {
klass2reg_with_patching(k_RInfo, op->info_for_patch());
__ movs(res, obj);
} else {
// Patching doesn't update "res" register after GC, so do patching first
klass2reg_with_patching(Rtemp, op->info_for_patch());
__ movs(res, obj);
__ mov(k_RInfo, Rtemp);
}
__ load_klass(klass_RInfo, res, ne);
if (op->fast_check()) {
__ cmp(klass_RInfo, k_RInfo, ne);
__ b(*failure_target, ne);
} else if (k->is_loaded()) {
__ b(*success_target, eq);
__ ldr(Rtemp, Address(klass_RInfo, k->super_check_offset()));
if (in_bytes(Klass::secondary_super_cache_offset()) != (int) k->super_check_offset()) {
__ cmp(Rtemp, k_RInfo);
__ b(*failure_target, ne);
} else {
__ cmp(klass_RInfo, k_RInfo);
__ cmp(Rtemp, k_RInfo, ne);
__ b(*success_target, eq);
assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
__ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
__ cbz(R0, *failure_target);
}
} else {
__ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
__ b(*success_target, eq);
// check for immediate positive hit
__ ldr(Rtemp, Address(klass_RInfo, Rtemp));
__ cmp(klass_RInfo, k_RInfo);
__ cmp(Rtemp, k_RInfo, ne);
__ b(*success_target, eq);
// check for immediate negative hit
__ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
__ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset()));
__ b(*failure_target, ne);
// slow case
assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
__ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
__ cbz(R0, *failure_target);
}
if (op->should_profile()) {
Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp;
typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, res, tmp1,
&profile_cast_success, &profile_cast_failure,
&done, stub->entry());
}
__ bind(done);
break;
}
case lir_instanceof: {
Register obj = op->object()->as_register();
Register res = op->result_opr()->as_register();
Register klass_RInfo = op->tmp1()->as_register();
Register k_RInfo = op->tmp2()->as_register();
ciKlass* k = op->klass();
assert_different_registers(res, klass_RInfo, k_RInfo, Rtemp);
ciMethodData* md;
ciProfileData* data;
int mdo_offset_bias = 0;
Label done;
Label profile_cast_failure, profile_cast_success;
Label *failure_target = op->should_profile() ? &profile_cast_failure : &done;
Label *success_target = op->should_profile() ? &profile_cast_success : &done;
__ movs(res, obj);
if (op->should_profile()) {
typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, res, klass_RInfo, Rtemp, &done);
} else {
__ b(done, eq);
}
if (k->is_loaded()) {
__ mov_metadata(k_RInfo, k->constant_encoding());
} else {
op->info_for_patch()->add_register_oop(FrameMap::as_oop_opr(res));
klass2reg_with_patching(k_RInfo, op->info_for_patch());
}
__ load_klass(klass_RInfo, res);
if (!op->should_profile()) {
__ mov(res, 0);
}
if (op->fast_check()) {
__ cmp(klass_RInfo, k_RInfo);
if (!op->should_profile()) {
set_instanceof_result(_masm, res, eq);
} else {
__ b(profile_cast_failure, ne);
}
} else if (k->is_loaded()) {
__ ldr(Rtemp, Address(klass_RInfo, k->super_check_offset()));
if (in_bytes(Klass::secondary_super_cache_offset()) != (int) k->super_check_offset()) {
__ cmp(Rtemp, k_RInfo);
if (!op->should_profile()) {
set_instanceof_result(_masm, res, eq);
} else {
__ b(profile_cast_failure, ne);
}
} else {
__ cmp(klass_RInfo, k_RInfo);
__ cond_cmp(Rtemp, k_RInfo, ne);
if (!op->should_profile()) {
set_instanceof_result(_masm, res, eq);
}
__ b(*success_target, eq);
assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
__ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
if (!op->should_profile()) {
move_regs(R0, res);
} else {
__ cbz(R0, *failure_target);
}
}
} else {
__ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
// check for immediate positive hit
__ cmp(klass_RInfo, k_RInfo);
if (!op->should_profile()) {
__ ldr(res, Address(klass_RInfo, Rtemp), ne);
__ cond_cmp(res, k_RInfo, ne);
set_instanceof_result(_masm, res, eq);
} else {
__ ldr(Rtemp, Address(klass_RInfo, Rtemp), ne);
__ cond_cmp(Rtemp, k_RInfo, ne);
}
__ b(*success_target, eq);
// check for immediate negative hit
if (op->should_profile()) {
__ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
}
__ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset()));
if (!op->should_profile()) {
__ mov(res, 0, ne);
}
__ b(*failure_target, ne);
// slow case
assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
__ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
if (!op->should_profile()) {
move_regs(R0, res);
}
if (op->should_profile()) {
__ cbz(R0, *failure_target);
}
}
if (op->should_profile()) {
Label done_ok, done_failure;
Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp;
typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, res, tmp1,
&profile_cast_success, &profile_cast_failure,
&done_ok, &done_failure);
__ bind(done_failure);
__ mov(res, 0);
__ b(done);
__ bind(done_ok);
__ mov(res, 1);
}
__ bind(done);
break;
}
default:
ShouldNotReachHere();
}
}
void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
// if (*addr == cmpval) {
// *addr = newval;
// dest = 1;
// } else {
// dest = 0;
// }
// FIXME: membar_release
__ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
Register addr = op->addr()->is_register() ?
op->addr()->as_pointer_register() :
op->addr()->as_address_ptr()->base()->as_pointer_register();
assert(op->addr()->is_register() || op->addr()->as_address_ptr()->disp() == 0, "unexpected disp");
assert(op->addr()->is_register() || op->addr()->as_address_ptr()->index() == LIR_OprDesc::illegalOpr(), "unexpected index");
if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
Register cmpval = op->cmp_value()->as_register();
Register newval = op->new_value()->as_register();
Register dest = op->result_opr()->as_register();
assert_different_registers(dest, addr, cmpval, newval, Rtemp);
__ atomic_cas_bool(cmpval, newval, addr, 0, Rtemp); // Rtemp free by default at C1 LIR layer
__ mov(dest, 1, eq);
__ mov(dest, 0, ne);
} else if (op->code() == lir_cas_long) {
assert(VM_Version::supports_cx8(), "wrong machine");
Register cmp_value_lo = op->cmp_value()->as_register_lo();
Register cmp_value_hi = op->cmp_value()->as_register_hi();
Register new_value_lo = op->new_value()->as_register_lo();
Register new_value_hi = op->new_value()->as_register_hi();
Register dest = op->result_opr()->as_register();
Register tmp_lo = op->tmp1()->as_register_lo();
Register tmp_hi = op->tmp1()->as_register_hi();
assert_different_registers(tmp_lo, tmp_hi, cmp_value_lo, cmp_value_hi, dest, new_value_lo, new_value_hi, addr);
assert(tmp_hi->encoding() == tmp_lo->encoding() + 1, "non aligned register pair");
assert(new_value_hi->encoding() == new_value_lo->encoding() + 1, "non aligned register pair");
assert((tmp_lo->encoding() & 0x1) == 0, "misaligned register pair");
assert((new_value_lo->encoding() & 0x1) == 0, "misaligned register pair");
__ atomic_cas64(tmp_lo, tmp_hi, dest, cmp_value_lo, cmp_value_hi,
new_value_lo, new_value_hi, addr, 0);
} else {
Unimplemented();
}
// FIXME: is full membar really needed instead of just membar_acquire?
__ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad | MacroAssembler::StoreStore), Rtemp);
}
void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
AsmCondition acond = al;
AsmCondition ncond = nv;
if (opr1 != opr2) {
switch (condition) {
case lir_cond_equal: acond = eq; ncond = ne; break;
case lir_cond_notEqual: acond = ne; ncond = eq; break;
case lir_cond_less: acond = lt; ncond = ge; break;
case lir_cond_lessEqual: acond = le; ncond = gt; break;
case lir_cond_greaterEqual: acond = ge; ncond = lt; break;
case lir_cond_greater: acond = gt; ncond = le; break;
case lir_cond_aboveEqual: acond = hs; ncond = lo; break;
case lir_cond_belowEqual: acond = ls; ncond = hi; break;
default: ShouldNotReachHere();
}
}
for (;;) { // two iterations only
if (opr1 == result) {
// do nothing
} else if (opr1->is_single_cpu()) {
__ mov(result->as_register(), opr1->as_register(), acond);
} else if (opr1->is_double_cpu()) {
__ long_move(result->as_register_lo(), result->as_register_hi(),
opr1->as_register_lo(), opr1->as_register_hi(), acond);
} else if (opr1->is_single_stack()) {
__ ldr(result->as_register(), frame_map()->address_for_slot(opr1->single_stack_ix()), acond);
} else if (opr1->is_double_stack()) {
__ ldr(result->as_register_lo(),
frame_map()->address_for_slot(opr1->double_stack_ix(), lo_word_offset_in_bytes), acond);
__ ldr(result->as_register_hi(),
frame_map()->address_for_slot(opr1->double_stack_ix(), hi_word_offset_in_bytes), acond);
} else if (opr1->is_illegal()) {
// do nothing: this part of the cmove has been optimized away in the peephole optimizer
} else {
assert(opr1->is_constant(), "must be");
LIR_Const* c = opr1->as_constant_ptr();
switch (c->type()) {
case T_INT:
__ mov_slow(result->as_register(), c->as_jint(), acond);
break;
case T_LONG:
__ mov_slow(result->as_register_lo(), c->as_jint_lo(), acond);
__ mov_slow(result->as_register_hi(), c->as_jint_hi(), acond);
break;
case T_OBJECT:
__ mov_oop(result->as_register(), c->as_jobject(), 0, acond);
break;
case T_FLOAT:
#ifdef __SOFTFP__
// not generated now.
__ mov_slow(result->as_register(), c->as_jint(), acond);
#else
__ mov_float(result->as_float_reg(), c->as_jfloat(), acond);
#endif // __SOFTFP__
break;
case T_DOUBLE:
#ifdef __SOFTFP__
// not generated now.
__ mov_slow(result->as_register_lo(), c->as_jint_lo(), acond);
__ mov_slow(result->as_register_hi(), c->as_jint_hi(), acond);
#else
__ mov_double(result->as_double_reg(), c->as_jdouble(), acond);
#endif // __SOFTFP__
break;
default:
ShouldNotReachHere();
}
}
// Negate the condition and repeat the algorithm with the second operand
if (opr1 == opr2) { break; }
opr1 = opr2;
acond = ncond;
}
}
#ifdef ASSERT
static int reg_size(LIR_Opr op) {
switch (op->type()) {
case T_FLOAT:
case T_INT: return BytesPerInt;
case T_LONG:
case T_DOUBLE: return BytesPerLong;
case T_OBJECT:
case T_ARRAY:
case T_METADATA: return BytesPerWord;
case T_ADDRESS:
case T_ILLEGAL: // fall through
default: ShouldNotReachHere(); return -1;
}
}
#endif
void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
assert(info == NULL, "unused on this code path");
assert(dest->is_register(), "wrong items state");
if (right->is_address()) {
// special case for adding shifted/extended register
const Register res = dest->as_pointer_register();
const Register lreg = left->as_pointer_register();
const LIR_Address* addr = right->as_address_ptr();
assert(addr->base()->as_pointer_register() == lreg && addr->index()->is_register() && addr->disp() == 0, "must be");
int scale = addr->scale();
AsmShift shift = lsl;
assert(reg_size(addr->base()) == reg_size(addr->index()), "should be");
assert(reg_size(addr->base()) == reg_size(dest), "should be");
assert(reg_size(dest) == wordSize, "should be");
AsmOperand operand(addr->index()->as_pointer_register(), shift, scale);
switch (code) {
case lir_add: __ add(res, lreg, operand); break;
case lir_sub: __ sub(res, lreg, operand); break;
default: ShouldNotReachHere();
}
} else if (left->is_address()) {
assert(code == lir_sub && right->is_single_cpu(), "special case used by strength_reduce_multiply()");
const LIR_Address* addr = left->as_address_ptr();
const Register res = dest->as_register();
const Register rreg = right->as_register();
assert(addr->base()->as_register() == rreg && addr->index()->is_register() && addr->disp() == 0, "must be");
__ rsb(res, rreg, AsmOperand(addr->index()->as_register(), lsl, addr->scale()));
} else if (dest->is_single_cpu()) {
assert(left->is_single_cpu(), "unexpected left operand");
const Register res = dest->as_register();
const Register lreg = left->as_register();
if (right->is_single_cpu()) {
const Register rreg = right->as_register();
switch (code) {
case lir_add: __ add_32(res, lreg, rreg); break;
case lir_sub: __ sub_32(res, lreg, rreg); break;
case lir_mul: __ mul_32(res, lreg, rreg); break;
default: ShouldNotReachHere();
}
} else {
assert(right->is_constant(), "must be");
const jint c = right->as_constant_ptr()->as_jint();
if (!Assembler::is_arith_imm_in_range(c)) {
BAILOUT("illegal arithmetic operand");
}
switch (code) {
case lir_add: __ add_32(res, lreg, c); break;
case lir_sub: __ sub_32(res, lreg, c); break;
default: ShouldNotReachHere();
}
}
} else if (dest->is_double_cpu()) {
Register res_lo = dest->as_register_lo();
Register res_hi = dest->as_register_hi();
Register lreg_lo = left->as_register_lo();
Register lreg_hi = left->as_register_hi();
if (right->is_double_cpu()) {
Register rreg_lo = right->as_register_lo();
Register rreg_hi = right->as_register_hi();
if (res_lo == lreg_hi || res_lo == rreg_hi) {
res_lo = Rtemp;
}
switch (code) {
case lir_add:
__ adds(res_lo, lreg_lo, rreg_lo);
__ adc(res_hi, lreg_hi, rreg_hi);
break;
case lir_sub:
__ subs(res_lo, lreg_lo, rreg_lo);
__ sbc(res_hi, lreg_hi, rreg_hi);
break;
default:
ShouldNotReachHere();
}
} else {
assert(right->is_constant(), "must be");
assert((right->as_constant_ptr()->as_jlong() >> 32) == 0, "out of range");
const jint c = (jint) right->as_constant_ptr()->as_jlong();
if (res_lo == lreg_hi) {
res_lo = Rtemp;
}
switch (code) {
case lir_add:
__ adds(res_lo, lreg_lo, c);
__ adc(res_hi, lreg_hi, 0);
break;
case lir_sub:
__ subs(res_lo, lreg_lo, c);
__ sbc(res_hi, lreg_hi, 0);
break;
default:
ShouldNotReachHere();
}
}
move_regs(res_lo, dest->as_register_lo());
} else if (dest->is_single_fpu()) {
assert(left->is_single_fpu(), "must be");
assert(right->is_single_fpu(), "must be");
const FloatRegister res = dest->as_float_reg();
const FloatRegister lreg = left->as_float_reg();
const FloatRegister rreg = right->as_float_reg();
switch (code) {
case lir_add: __ add_float(res, lreg, rreg); break;
case lir_sub: __ sub_float(res, lreg, rreg); break;
case lir_mul_strictfp: // fall through
case lir_mul: __ mul_float(res, lreg, rreg); break;
case lir_div_strictfp: // fall through
case lir_div: __ div_float(res, lreg, rreg); break;
default: ShouldNotReachHere();
}
} else if (dest->is_double_fpu()) {
assert(left->is_double_fpu(), "must be");
assert(right->is_double_fpu(), "must be");
const FloatRegister res = dest->as_double_reg();
const FloatRegister lreg = left->as_double_reg();
const FloatRegister rreg = right->as_double_reg();
switch (code) {
case lir_add: __ add_double(res, lreg, rreg); break;
case lir_sub: __ sub_double(res, lreg, rreg); break;
case lir_mul_strictfp: // fall through
case lir_mul: __ mul_double(res, lreg, rreg); break;
case lir_div_strictfp: // fall through
case lir_div: __ div_double(res, lreg, rreg); break;
default: ShouldNotReachHere();
}
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
switch (code) {
case lir_abs:
__ abs_double(dest->as_double_reg(), value->as_double_reg());
break;
case lir_sqrt:
__ sqrt_double(dest->as_double_reg(), value->as_double_reg());
break;
default:
ShouldNotReachHere();
}
}
void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
assert(dest->is_register(), "wrong items state");
assert(left->is_register(), "wrong items state");
if (dest->is_single_cpu()) {
const Register res = dest->as_register();
const Register lreg = left->as_register();
if (right->is_single_cpu()) {
const Register rreg = right->as_register();
switch (code) {
case lir_logic_and: __ and_32(res, lreg, rreg); break;
case lir_logic_or: __ orr_32(res, lreg, rreg); break;
case lir_logic_xor: __ eor_32(res, lreg, rreg); break;
default: ShouldNotReachHere();
}
} else {
assert(right->is_constant(), "must be");
const uint c = (uint)right->as_constant_ptr()->as_jint();
switch (code) {
case lir_logic_and: __ and_32(res, lreg, c); break;
case lir_logic_or: __ orr_32(res, lreg, c); break;
case lir_logic_xor: __ eor_32(res, lreg, c); break;
default: ShouldNotReachHere();
}
}
} else {
assert(dest->is_double_cpu(), "should be");
Register res_lo = dest->as_register_lo();
assert (dest->type() == T_LONG, "unexpected result type");
assert (left->type() == T_LONG, "unexpected left type");
assert (right->type() == T_LONG, "unexpected right type");
const Register res_hi = dest->as_register_hi();
const Register lreg_lo = left->as_register_lo();
const Register lreg_hi = left->as_register_hi();
if (right->is_register()) {
const Register rreg_lo = right->as_register_lo();
const Register rreg_hi = right->as_register_hi();
if (res_lo == lreg_hi || res_lo == rreg_hi) {
res_lo = Rtemp; // Temp register helps to avoid overlap between result and input
}
switch (code) {
case lir_logic_and:
__ andr(res_lo, lreg_lo, rreg_lo);
__ andr(res_hi, lreg_hi, rreg_hi);
break;
case lir_logic_or:
__ orr(res_lo, lreg_lo, rreg_lo);
__ orr(res_hi, lreg_hi, rreg_hi);
break;
case lir_logic_xor:
__ eor(res_lo, lreg_lo, rreg_lo);
__ eor(res_hi, lreg_hi, rreg_hi);
break;
default:
ShouldNotReachHere();
}
move_regs(res_lo, dest->as_register_lo());
} else {
assert(right->is_constant(), "must be");
const jint c_lo = (jint) right->as_constant_ptr()->as_jlong();
const jint c_hi = (jint) (right->as_constant_ptr()->as_jlong() >> 32);
// Case for logic_or from do_ClassIDIntrinsic()
if (c_hi == 0 && AsmOperand::is_rotated_imm(c_lo)) {
switch (code) {
case lir_logic_and:
__ andr(res_lo, lreg_lo, c_lo);
__ mov(res_hi, 0);
break;
case lir_logic_or:
__ orr(res_lo, lreg_lo, c_lo);
break;
case lir_logic_xor:
__ eor(res_lo, lreg_lo, c_lo);
break;
default:
ShouldNotReachHere();
}
} else if (code == lir_logic_and &&
c_hi == -1 &&
(AsmOperand::is_rotated_imm(c_lo) ||
AsmOperand::is_rotated_imm(~c_lo))) {
// Another case which handles logic_and from do_ClassIDIntrinsic()
if (AsmOperand::is_rotated_imm(c_lo)) {
__ andr(res_lo, lreg_lo, c_lo);
} else {
__ bic(res_lo, lreg_lo, ~c_lo);
}
if (res_hi != lreg_hi) {
__ mov(res_hi, lreg_hi);
}
} else {
BAILOUT("64 bit constant cannot be inlined");
}
}
}
}
void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
if (opr1->is_single_cpu()) {
if (opr2->is_constant()) {
switch (opr2->as_constant_ptr()->type()) {
case T_INT: {
const jint c = opr2->as_constant_ptr()->as_jint();
if (Assembler::is_arith_imm_in_range(c)) {
__ cmp_32(opr1->as_register(), c);
} else if (Assembler::is_arith_imm_in_range(-c)) {
__ cmn_32(opr1->as_register(), -c);
} else {
// This can happen when compiling lookupswitch
__ mov_slow(Rtemp, c);
__ cmp_32(opr1->as_register(), Rtemp);
}
break;
}
case T_OBJECT:
assert(opr2->as_constant_ptr()->as_jobject() == NULL, "cannot handle otherwise");
__ cmp(opr1->as_register(), 0);
break;
default:
ShouldNotReachHere();
}
} else if (opr2->is_single_cpu()) {
if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
assert(opr2->type() == T_OBJECT || opr2->type() == T_ARRAY, "incompatibe type");
__ cmpoop(opr1->as_register(), opr2->as_register());
} else if (opr1->type() == T_METADATA || opr1->type() == T_ADDRESS) {
assert(opr2->type() == T_METADATA || opr2->type() == T_ADDRESS, "incompatibe type");
__ cmp(opr1->as_register(), opr2->as_register());
} else {
assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY && opr2->type() != T_METADATA && opr2->type() != T_ADDRESS, "incompatibe type");
__ cmp_32(opr1->as_register(), opr2->as_register());
}
} else {
ShouldNotReachHere();
}
} else if (opr1->is_double_cpu()) {
Register xlo = opr1->as_register_lo();
Register xhi = opr1->as_register_hi();
if (opr2->is_constant() && opr2->as_jlong() == 0) {
assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "cannot handle otherwise");
__ orrs(Rtemp, xlo, xhi);
} else if (opr2->is_register()) {
Register ylo = opr2->as_register_lo();
Register yhi = opr2->as_register_hi();
if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
__ teq(xhi, yhi);
__ teq(xlo, ylo, eq);
} else {
__ subs(xlo, xlo, ylo);
__ sbcs(xhi, xhi, yhi);
}
} else {
ShouldNotReachHere();
}
} else if (opr1->is_single_fpu()) {
if (opr2->is_constant()) {
assert(opr2->as_jfloat() == 0.0f, "cannot handle otherwise");
__ cmp_zero_float(opr1->as_float_reg());
} else {
__ cmp_float(opr1->as_float_reg(), opr2->as_float_reg());
}
} else if (opr1->is_double_fpu()) {
if (opr2->is_constant()) {
assert(opr2->as_jdouble() == 0.0, "cannot handle otherwise");
__ cmp_zero_double(opr1->as_double_reg());
} else {
__ cmp_double(opr1->as_double_reg(), opr2->as_double_reg());
}
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
const Register res = dst->as_register();
if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
comp_op(lir_cond_unknown, left, right, op);
__ fmstat();
if (code == lir_ucmp_fd2i) { // unordered is less
__ mvn(res, 0, lt);
__ mov(res, 1, ge);
} else { // unordered is greater
__ mov(res, 1, cs);
__ mvn(res, 0, cc);
}
__ mov(res, 0, eq);
} else {
assert(code == lir_cmp_l2i, "must be");
Label done;
const Register xlo = left->as_register_lo();
const Register xhi = left->as_register_hi();
const Register ylo = right->as_register_lo();
const Register yhi = right->as_register_hi();
__ cmp(xhi, yhi);
__ mov(res, 1, gt);
__ mvn(res, 0, lt);
__ b(done, ne);
__ subs(res, xlo, ylo);
__ mov(res, 1, hi);
__ mvn(res, 0, lo);
__ bind(done);
}
}
void LIR_Assembler::align_call(LIR_Code code) {
// Not needed
}
void LIR_Assembler::call(LIR_OpJavaCall *op, relocInfo::relocType rtype) {
int ret_addr_offset = __ patchable_call(op->addr(), rtype);
assert(ret_addr_offset == __ offset(), "embedded return address not allowed");
add_call_info_here(op->info());
}
void LIR_Assembler::ic_call(LIR_OpJavaCall *op) {
bool near_range = __ cache_fully_reachable();
address oop_address = pc();
bool use_movw = VM_Version::supports_movw();
// Ricklass may contain something that is not a metadata pointer so
// mov_metadata can't be used
InlinedAddress value((address)Universe::non_oop_word());
InlinedAddress addr(op->addr());
if (use_movw) {
__ movw(Ricklass, ((unsigned int)Universe::non_oop_word()) & 0xffff);
__ movt(Ricklass, ((unsigned int)Universe::non_oop_word()) >> 16);
} else {
// No movw/movt, must be load a pc relative value but no
// relocation so no metadata table to load from.
// Use a b instruction rather than a bl, inline constant after the
// branch, use a PC relative ldr to load the constant, arrange for
// the call to return after the constant(s).
__ ldr_literal(Ricklass, value);
}
__ relocate(virtual_call_Relocation::spec(oop_address));
if (near_range && use_movw) {
__ bl(op->addr());
} else {
Label call_return;
__ adr(LR, call_return);
if (near_range) {
__ b(op->addr());
} else {
__ indirect_jump(addr, Rtemp);
__ bind_literal(addr);
}
if (!use_movw) {
__ bind_literal(value);
}
__ bind(call_return);
}
add_call_info(code_offset(), op->info());
}
/* Currently, vtable-dispatch is only enabled for sparc platforms */
void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
ShouldNotReachHere();
}
void LIR_Assembler::emit_static_call_stub() {
address call_pc = __ pc();
address stub = __ start_a_stub(call_stub_size());
if (stub == NULL) {
BAILOUT("static call stub overflow");
}
DEBUG_ONLY(int offset = code_offset();)
InlinedMetadata metadata_literal(NULL);
__ relocate(static_stub_Relocation::spec(call_pc));
// If not a single instruction, NativeMovConstReg::next_instruction_address()
// must jump over the whole following ldr_literal.
// (See CompiledStaticCall::set_to_interpreted())
#ifdef ASSERT
address ldr_site = __ pc();
#endif
__ ldr_literal(Rmethod, metadata_literal);
assert(nativeMovConstReg_at(ldr_site)->next_instruction_address() == __ pc(), "Fix ldr_literal or its parsing");
bool near_range = __ cache_fully_reachable();
InlinedAddress dest((address)-1);
if (near_range) {
address branch_site = __ pc();
__ b(branch_site); // b to self maps to special NativeJump -1 destination
} else {
__ indirect_jump(dest, Rtemp);
}
__ bind_literal(metadata_literal); // includes spec_for_immediate reloc
if (!near_range) {
__ bind_literal(dest); // special NativeJump -1 destination
}
assert(code_offset() - offset <= call_stub_size(), "overflow");
__ end_a_stub();
}
void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
assert(exceptionOop->as_register() == Rexception_obj, "must match");
assert(exceptionPC->as_register() == Rexception_pc, "must match");
info->add_register_oop(exceptionOop);
Runtime1::StubID handle_id = compilation()->has_fpu_code() ?
Runtime1::handle_exception_id :
Runtime1::handle_exception_nofpu_id;
Label return_address;
__ adr(Rexception_pc, return_address);
__ call(Runtime1::entry_for(handle_id), relocInfo::runtime_call_type);
__ bind(return_address);
add_call_info_here(info); // for exception handler
}
void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
assert(exceptionOop->as_register() == Rexception_obj, "must match");
__ b(_unwind_handler_entry);
}
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
AsmShift shift = lsl;
switch (code) {
case lir_shl: shift = lsl; break;
case lir_shr: shift = asr; break;
case lir_ushr: shift = lsr; break;
default: ShouldNotReachHere();
}
if (dest->is_single_cpu()) {
__ andr(Rtemp, count->as_register(), 31);
__ mov(dest->as_register(), AsmOperand(left->as_register(), shift, Rtemp));
} else if (dest->is_double_cpu()) {
Register dest_lo = dest->as_register_lo();
Register dest_hi = dest->as_register_hi();
Register src_lo = left->as_register_lo();
Register src_hi = left->as_register_hi();
Register Rcount = count->as_register();
// Resolve possible register conflicts
if (shift == lsl && dest_hi == src_lo) {
dest_hi = Rtemp;
} else if (shift != lsl && dest_lo == src_hi) {
dest_lo = Rtemp;
} else if (dest_lo == src_lo && dest_hi == src_hi) {
dest_lo = Rtemp;
} else if (dest_lo == Rcount || dest_hi == Rcount) {
Rcount = Rtemp;
}
__ andr(Rcount, count->as_register(), 63);
__ long_shift(dest_lo, dest_hi, src_lo, src_hi, shift, Rcount);
move_regs(dest_lo, dest->as_register_lo());
move_regs(dest_hi, dest->as_register_hi());
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
AsmShift shift = lsl;
switch (code) {
case lir_shl: shift = lsl; break;
case lir_shr: shift = asr; break;
case lir_ushr: shift = lsr; break;
default: ShouldNotReachHere();
}
if (dest->is_single_cpu()) {
count &= 31;
if (count != 0) {
__ mov(dest->as_register(), AsmOperand(left->as_register(), shift, count));
} else {
move_regs(left->as_register(), dest->as_register());
}
} else if (dest->is_double_cpu()) {
count &= 63;
if (count != 0) {
Register dest_lo = dest->as_register_lo();
Register dest_hi = dest->as_register_hi();
Register src_lo = left->as_register_lo();
Register src_hi = left->as_register_hi();
// Resolve possible register conflicts
if (shift == lsl && dest_hi == src_lo) {
dest_hi = Rtemp;
} else if (shift != lsl && dest_lo == src_hi) {
dest_lo = Rtemp;
}
__ long_shift(dest_lo, dest_hi, src_lo, src_hi, shift, count);
move_regs(dest_lo, dest->as_register_lo());
move_regs(dest_hi, dest->as_register_hi());
} else {
__ long_move(dest->as_register_lo(), dest->as_register_hi(),
left->as_register_lo(), left->as_register_hi());
}
} else {
ShouldNotReachHere();
}
}
// Saves 4 given registers in reserved argument area.
void LIR_Assembler::save_in_reserved_area(Register r1, Register r2, Register r3, Register r4) {
verify_reserved_argument_area_size(4);
__ stmia(SP, RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3) | RegisterSet(r4));
}
// Restores 4 given registers from reserved argument area.
void LIR_Assembler::restore_from_reserved_area(Register r1, Register r2, Register r3, Register r4) {
__ ldmia(SP, RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3) | RegisterSet(r4), no_writeback);
}
void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
ciArrayKlass* default_type = op->expected_type();
Register src = op->src()->as_register();
Register src_pos = op->src_pos()->as_register();
Register dst = op->dst()->as_register();
Register dst_pos = op->dst_pos()->as_register();
Register length = op->length()->as_register();
Register tmp = op->tmp()->as_register();
Register tmp2 = Rtemp;
assert(src == R0 && src_pos == R1 && dst == R2 && dst_pos == R3, "code assumption");
__ resolve(ACCESS_READ, src);
__ resolve(ACCESS_WRITE, dst);
CodeStub* stub = op->stub();
int flags = op->flags();
BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
if (basic_type == T_ARRAY) basic_type = T_OBJECT;
// If we don't know anything or it's an object array, just go through the generic arraycopy
if (default_type == NULL) {
// save arguments, because they will be killed by a runtime call
save_in_reserved_area(R0, R1, R2, R3);
// pass length argument on SP[0]
__ str(length, Address(SP, -2*wordSize, pre_indexed)); // 2 words for a proper stack alignment
address copyfunc_addr = StubRoutines::generic_arraycopy();
assert(copyfunc_addr != NULL, "generic arraycopy stub required");
#ifndef PRODUCT
if (PrintC1Statistics) {
__ inc_counter((address)&Runtime1::_generic_arraycopystub_cnt, tmp, tmp2);
}
#endif // !PRODUCT
// the stub is in the code cache so close enough
__ call(copyfunc_addr, relocInfo::runtime_call_type);
__ add(SP, SP, 2*wordSize);
__ cbz_32(R0, *stub->continuation());
__ mvn_32(tmp, R0);
restore_from_reserved_area(R0, R1, R2, R3); // load saved arguments in slow case only
__ sub_32(length, length, tmp);
__ add_32(src_pos, src_pos, tmp);
__ add_32(dst_pos, dst_pos, tmp);
__ b(*stub->entry());
__ bind(*stub->continuation());
return;
}
assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(),
"must be true at this point");
int elem_size = type2aelembytes(basic_type);
int shift = exact_log2(elem_size);
// Check for NULL
if (flags & LIR_OpArrayCopy::src_null_check) {
if (flags & LIR_OpArrayCopy::dst_null_check) {
__ cmp(src, 0);
__ cond_cmp(dst, 0, ne); // make one instruction shorter if both checks are needed
__ b(*stub->entry(), eq);
} else {
__ cbz(src, *stub->entry());
}
} else if (flags & LIR_OpArrayCopy::dst_null_check) {
__ cbz(dst, *stub->entry());
}
// If the compiler was not able to prove that exact type of the source or the destination
// of the arraycopy is an array type, check at runtime if the source or the destination is
// an instance type.
if (flags & LIR_OpArrayCopy::type_check) {
if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
__ load_klass(tmp, dst);
__ ldr_u32(tmp2, Address(tmp, in_bytes(Klass::layout_helper_offset())));
__ mov_slow(tmp, Klass::_lh_neutral_value);
__ cmp_32(tmp2, tmp);
__ b(*stub->entry(), ge);
}
if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
__ load_klass(tmp, src);
__ ldr_u32(tmp2, Address(tmp, in_bytes(Klass::layout_helper_offset())));
__ mov_slow(tmp, Klass::_lh_neutral_value);
__ cmp_32(tmp2, tmp);
__ b(*stub->entry(), ge);
}
}
// Check if negative
const int all_positive_checks = LIR_OpArrayCopy::src_pos_positive_check |
LIR_OpArrayCopy::dst_pos_positive_check |
LIR_OpArrayCopy::length_positive_check;
switch (flags & all_positive_checks) {
case LIR_OpArrayCopy::src_pos_positive_check:
__ branch_if_negative_32(src_pos, *stub->entry());
break;
case LIR_OpArrayCopy::dst_pos_positive_check:
__ branch_if_negative_32(dst_pos, *stub->entry());
break;
case LIR_OpArrayCopy::length_positive_check:
__ branch_if_negative_32(length, *stub->entry());
break;
case LIR_OpArrayCopy::src_pos_positive_check | LIR_OpArrayCopy::dst_pos_positive_check:
__ branch_if_any_negative_32(src_pos, dst_pos, tmp, *stub->entry());
break;
case LIR_OpArrayCopy::src_pos_positive_check | LIR_OpArrayCopy::length_positive_check:
__ branch_if_any_negative_32(src_pos, length, tmp, *stub->entry());
break;
case LIR_OpArrayCopy::dst_pos_positive_check | LIR_OpArrayCopy::length_positive_check:
__ branch_if_any_negative_32(dst_pos, length, tmp, *stub->entry());
break;
case all_positive_checks:
__ branch_if_any_negative_32(src_pos, dst_pos, length, tmp, *stub->entry());
break;
default:
assert((flags & all_positive_checks) == 0, "the last option");
}
// Range checks
if (flags & LIR_OpArrayCopy::src_range_check) {
__ ldr_s32(tmp2, Address(src, arrayOopDesc::length_offset_in_bytes()));
__ add_32(tmp, src_pos, length);
__ cmp_32(tmp, tmp2);
__ b(*stub->entry(), hi);
}
if (flags & LIR_OpArrayCopy::dst_range_check) {
__ ldr_s32(tmp2, Address(dst, arrayOopDesc::length_offset_in_bytes()));
__ add_32(tmp, dst_pos, length);
__ cmp_32(tmp, tmp2);
__ b(*stub->entry(), hi);
}
// Check if src and dst are of the same type
if (flags & LIR_OpArrayCopy::type_check) {
// We don't know the array types are compatible
if (basic_type != T_OBJECT) {
// Simple test for basic type arrays
if (UseCompressedClassPointers) {
// We don't need decode because we just need to compare
__ ldr_u32(tmp, Address(src, oopDesc::klass_offset_in_bytes()));
__ ldr_u32(tmp2, Address(dst, oopDesc::klass_offset_in_bytes()));
__ cmp_32(tmp, tmp2);
} else {
__ load_klass(tmp, src);
__ load_klass(tmp2, dst);
__ cmp(tmp, tmp2);
}
__ b(*stub->entry(), ne);
} else {
// For object arrays, if src is a sub class of dst then we can
// safely do the copy.
Label cont, slow;
address copyfunc_addr = StubRoutines::checkcast_arraycopy();
__ load_klass(tmp, src);
__ load_klass(tmp2, dst);
// We are at a call so all live registers are saved before we
// get here
assert_different_registers(tmp, tmp2, R6, altFP_7_11);
__ check_klass_subtype_fast_path(tmp, tmp2, R6, altFP_7_11, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
__ mov(R6, R0);
__ mov(altFP_7_11, R1);
__ mov(R0, tmp);
__ mov(R1, tmp2);
__ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); // does not blow any registers except R0, LR and Rtemp
__ cmp_32(R0, 0);
__ mov(R0, R6);
__ mov(R1, altFP_7_11);
if (copyfunc_addr != NULL) { // use stub if available
// src is not a sub class of dst so we have to do a
// per-element check.
__ b(cont, ne);
__ bind(slow);
int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
if ((flags & mask) != mask) {
// Check that at least both of them object arrays.
assert(flags & mask, "one of the two should be known to be an object array");
if (!(flags & LIR_OpArrayCopy::src_objarray)) {
__ load_klass(tmp, src);
} else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
__ load_klass(tmp, dst);
}
int lh_offset = in_bytes(Klass::layout_helper_offset());
__ ldr_u32(tmp2, Address(tmp, lh_offset));
jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
__ mov_slow(tmp, objArray_lh);
__ cmp_32(tmp, tmp2);
__ b(*stub->entry(), ne);
}
save_in_reserved_area(R0, R1, R2, R3);
Register src_ptr = R0;
Register dst_ptr = R1;
Register len = R2;
Register chk_off = R3;
Register super_k = tmp;
__ add(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
__ add_ptr_scaled_int32(src_ptr, src_ptr, src_pos, shift);
__ add(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
__ add_ptr_scaled_int32(dst_ptr, dst_ptr, dst_pos, shift);
__ load_klass(tmp, dst);
int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
int sco_offset = in_bytes(Klass::super_check_offset_offset());
__ ldr(super_k, Address(tmp, ek_offset));
__ mov(len, length);
__ ldr_u32(chk_off, Address(super_k, sco_offset));
__ push(super_k);
__ call(copyfunc_addr, relocInfo::runtime_call_type);
#ifndef PRODUCT
if (PrintC1Statistics) {
Label failed;
__ cbnz_32(R0, failed);
__ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, tmp, tmp2);
__ bind(failed);
}
#endif // PRODUCT
__ add(SP, SP, wordSize); // Drop super_k argument
__ cbz_32(R0, *stub->continuation());
__ mvn_32(tmp, R0);
// load saved arguments in slow case only
restore_from_reserved_area(R0, R1, R2, R3);
__ sub_32(length, length, tmp);
__ add_32(src_pos, src_pos, tmp);
__ add_32(dst_pos, dst_pos, tmp);
#ifndef PRODUCT
if (PrintC1Statistics) {
__ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, tmp, tmp2);
}
#endif
__ b(*stub->entry());
__ bind(cont);
} else {
__ b(*stub->entry(), eq);
__ bind(cont);
}
}
}
#ifndef PRODUCT
if (PrintC1Statistics) {
address counter = Runtime1::arraycopy_count_address(basic_type);
__ inc_counter(counter, tmp, tmp2);
}
#endif // !PRODUCT
bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
const char *name;
address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
Register src_ptr = R0;
Register dst_ptr = R1;
Register len = R2;
__ add(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
__ add_ptr_scaled_int32(src_ptr, src_ptr, src_pos, shift);
__ add(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
__ add_ptr_scaled_int32(dst_ptr, dst_ptr, dst_pos, shift);
__ mov(len, length);
__ call(entry, relocInfo::runtime_call_type);
__ bind(*stub->continuation());
}
#ifdef ASSERT
// emit run-time assertion
void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
assert(op->code() == lir_assert, "must be");
if (op->in_opr1()->is_valid()) {
assert(op->in_opr2()->is_valid(), "both operands must be valid");
comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
} else {
assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
assert(op->condition() == lir_cond_always, "no other conditions allowed");
}
Label ok;
if (op->condition() != lir_cond_always) {
AsmCondition acond = al;
switch (op->condition()) {
case lir_cond_equal: acond = eq; break;
case lir_cond_notEqual: acond = ne; break;
case lir_cond_less: acond = lt; break;
case lir_cond_lessEqual: acond = le; break;
case lir_cond_greaterEqual: acond = ge; break;
case lir_cond_greater: acond = gt; break;
case lir_cond_aboveEqual: acond = hs; break;
case lir_cond_belowEqual: acond = ls; break;
default: ShouldNotReachHere();
}
__ b(ok, acond);
}
if (op->halt()) {
const char* str = __ code_string(op->msg());
__ stop(str);
} else {
breakpoint();
}
__ bind(ok);
}
#endif // ASSERT
void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
fatal("CRC32 intrinsic is not implemented on this platform");
}
void LIR_Assembler::emit_lock(LIR_OpLock* op) {
Register obj = op->obj_opr()->as_pointer_register();
Register hdr = op->hdr_opr()->as_pointer_register();
Register lock = op->lock_opr()->as_pointer_register();
Register tmp = op->scratch_opr()->is_illegal() ? noreg :
op->scratch_opr()->as_pointer_register();
if (!UseFastLocking) {
__ b(*op->stub()->entry());
} else if (op->code() == lir_lock) {
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
__ resolve(ACCESS_READ | ACCESS_WRITE, obj);
int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry());
if (op->info() != NULL) {
add_debug_info_for_null_check(null_check_offset, op->info());
}
} else if (op->code() == lir_unlock) {
__ unlock_object(hdr, obj, lock, tmp, *op->stub()->entry());
} else {
ShouldNotReachHere();
}
__ bind(*op->stub()->continuation());
}
void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
ciMethod* method = op->profiled_method();
int bci = op->profiled_bci();
ciMethod* callee = op->profiled_callee();
// Update counter for all call types
ciMethodData* md = method->method_data_or_null();
assert(md != NULL, "Sanity");
ciProfileData* data = md->bci_to_data(bci);
assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
Register mdo = op->mdo()->as_register();
assert(op->tmp1()->is_register(), "tmp1 must be allocated");
Register tmp1 = op->tmp1()->as_pointer_register();
assert_different_registers(mdo, tmp1);
__ mov_metadata(mdo, md->constant_encoding());
int mdo_offset_bias = 0;
int max_offset = 4096;
if (md->byte_offset_of_slot(data, CounterData::count_offset()) + data->size_in_bytes() >= max_offset) {
// The offset is large so bias the mdo by the base of the slot so
// that the ldr can use an immediate offset to reference the slots of the data
mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
__ mov_slow(tmp1, mdo_offset_bias);
__ add(mdo, mdo, tmp1);
}
Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
// Perform additional virtual call profiling for invokevirtual and
// invokeinterface bytecodes
if (op->should_profile_receiver_type()) {
assert(op->recv()->is_single_cpu(), "recv must be allocated");
Register recv = op->recv()->as_register();
assert_different_registers(mdo, tmp1, recv);
assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
ciKlass* known_klass = op->known_holder();
if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
// We know the type that will be seen at this call site; we can
// statically update the MethodData* rather than needing to do
// dynamic tests on the receiver type
// NOTE: we should probably put a lock around this search to
// avoid collisions by concurrent compilations
ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
uint i;
for (i = 0; i < VirtualCallData::row_limit(); i++) {
ciKlass* receiver = vc_data->receiver(i);
if (known_klass->equals(receiver)) {
Address data_addr(mdo, md->byte_offset_of_slot(data,
VirtualCallData::receiver_count_offset(i)) -
mdo_offset_bias);
__ ldr(tmp1, data_addr);
__ add(tmp1, tmp1, DataLayout::counter_increment);
__ str(tmp1, data_addr);
return;
}
}
// Receiver type not found in profile data; select an empty slot
// Note that this is less efficient than it should be because it
// always does a write to the receiver part of the
// VirtualCallData rather than just the first time
for (i = 0; i < VirtualCallData::row_limit(); i++) {
ciKlass* receiver = vc_data->receiver(i);
if (receiver == NULL) {
Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
mdo_offset_bias);
__ mov_metadata(tmp1, known_klass->constant_encoding());
__ str(tmp1, recv_addr);
Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
mdo_offset_bias);
__ ldr(tmp1, data_addr);
__ add(tmp1, tmp1, DataLayout::counter_increment);
__ str(tmp1, data_addr);
return;
}
}
} else {
__ load_klass(recv, recv);
Label update_done;
type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
// Receiver did not match any saved receiver and there is no empty row for it.
// Increment total counter to indicate polymorphic case.
__ ldr(tmp1, counter_addr);
__ add(tmp1, tmp1, DataLayout::counter_increment);
__ str(tmp1, counter_addr);
__ bind(update_done);
}
} else {
// Static call
__ ldr(tmp1, counter_addr);
__ add(tmp1, tmp1, DataLayout::counter_increment);
__ str(tmp1, counter_addr);
}
}
void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
fatal("Type profiling not implemented on this platform");
}
void LIR_Assembler::emit_delay(LIR_OpDelay*) {
Unimplemented();
}
void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
__ add_slow(dst->as_pointer_register(), mon_addr.base(), mon_addr.disp());
}
void LIR_Assembler::align_backward_branch_target() {
// Some ARM processors do better with 8-byte branch target alignment
__ align(8);
}
void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
// tmp must be unused
assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
if (left->is_single_cpu()) {
assert (dest->type() == T_INT, "unexpected result type");
assert (left->type() == T_INT, "unexpected left type");
__ neg_32(dest->as_register(), left->as_register());
} else if (left->is_double_cpu()) {
Register dest_lo = dest->as_register_lo();
Register dest_hi = dest->as_register_hi();
Register src_lo = left->as_register_lo();
Register src_hi = left->as_register_hi();
if (dest_lo == src_hi) {
dest_lo = Rtemp;
}
__ rsbs(dest_lo, src_lo, 0);
__ rsc(dest_hi, src_hi, 0);
move_regs(dest_lo, dest->as_register_lo());
} else if (left->is_single_fpu()) {
__ neg_float(dest->as_float_reg(), left->as_float_reg());
} else if (left->is_double_fpu()) {
__ neg_double(dest->as_double_reg(), left->as_double_reg());
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
assert(patch_code == lir_patch_none, "Patch code not supported");
LIR_Address* addr = addr_opr->as_address_ptr();
if (addr->index()->is_illegal()) {
jint c = addr->disp();
if (!Assembler::is_arith_imm_in_range(c)) {
BAILOUT("illegal arithmetic operand");
}
__ add(dest->as_pointer_register(), addr->base()->as_pointer_register(), c);
} else {
assert(addr->disp() == 0, "cannot handle otherwise");
__ add(dest->as_pointer_register(), addr->base()->as_pointer_register(),
AsmOperand(addr->index()->as_pointer_register(), lsl, addr->scale()));
}
}
void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
assert(!tmp->is_valid(), "don't need temporary");
__ call(dest);
if (info != NULL) {
add_call_info_here(info);
}
}
void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
assert(src->is_double_cpu() && dest->is_address() ||
src->is_address() && dest->is_double_cpu(),
"Simple move_op is called for all other cases");
int null_check_offset;
if (dest->is_address()) {
// Store
const LIR_Address* addr = dest->as_address_ptr();
const Register src_lo = src->as_register_lo();
const Register src_hi = src->as_register_hi();
assert(addr->index()->is_illegal() && addr->disp() == 0, "The address is simple already");
if (src_lo < src_hi) {
null_check_offset = __ offset();
__ stmia(addr->base()->as_register(), RegisterSet(src_lo) | RegisterSet(src_hi));
} else {
assert(src_lo < Rtemp, "Rtemp is higher than any allocatable register");
__ mov(Rtemp, src_hi);
null_check_offset = __ offset();
__ stmia(addr->base()->as_register(), RegisterSet(src_lo) | RegisterSet(Rtemp));
}
} else {
// Load
const LIR_Address* addr = src->as_address_ptr();
const Register dest_lo = dest->as_register_lo();
const Register dest_hi = dest->as_register_hi();
assert(addr->index()->is_illegal() && addr->disp() == 0, "The address is simple already");
null_check_offset = __ offset();
if (dest_lo < dest_hi) {
__ ldmia(addr->base()->as_register(), RegisterSet(dest_lo) | RegisterSet(dest_hi));
} else {
assert(dest_lo < Rtemp, "Rtemp is higher than any allocatable register");
__ ldmia(addr->base()->as_register(), RegisterSet(dest_lo) | RegisterSet(Rtemp));
__ mov(dest_hi, Rtemp);
}
}
if (info != NULL) {
add_debug_info_for_null_check(null_check_offset, info);
}
}
void LIR_Assembler::membar() {
__ membar(MacroAssembler::StoreLoad, Rtemp);
}
void LIR_Assembler::membar_acquire() {
__ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::LoadLoad | MacroAssembler::LoadStore), Rtemp);
}
void LIR_Assembler::membar_release() {
__ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
}
void LIR_Assembler::membar_loadload() {
__ membar(MacroAssembler::LoadLoad, Rtemp);
}
void LIR_Assembler::membar_storestore() {
__ membar(MacroAssembler::StoreStore, Rtemp);
}
void LIR_Assembler::membar_loadstore() {
__ membar(MacroAssembler::LoadStore, Rtemp);
}
void LIR_Assembler::membar_storeload() {
__ membar(MacroAssembler::StoreLoad, Rtemp);
}
void LIR_Assembler::on_spin_wait() {
Unimplemented();
}
void LIR_Assembler::get_thread(LIR_Opr result_reg) {
// Not used on ARM
Unimplemented();
}
void LIR_Assembler::peephole(LIR_List* lir) {
LIR_OpList* inst = lir->instructions_list();
const int inst_length = inst->length();
for (int i = 0; i < inst_length; i++) {
LIR_Op* op = inst->at(i);
switch (op->code()) {
case lir_cmp: {
// Replace:
// cmp rX, y
// cmove [EQ] y, z, rX
// with
// cmp rX, y
// cmove [EQ] illegalOpr, z, rX
//
// or
// cmp rX, y
// cmove [NE] z, y, rX
// with
// cmp rX, y
// cmove [NE] z, illegalOpr, rX
//
// moves from illegalOpr should be removed when converting LIR to native assembly
LIR_Op2* cmp = op->as_Op2();
assert(cmp != NULL, "cmp LIR instruction is not an op2");
if (i + 1 < inst_length) {
LIR_Op2* cmove = inst->at(i + 1)->as_Op2();
if (cmove != NULL && cmove->code() == lir_cmove) {
LIR_Opr cmove_res = cmove->result_opr();
bool res_is_op1 = cmove_res == cmp->in_opr1();
bool res_is_op2 = cmove_res == cmp->in_opr2();
LIR_Opr cmp_res, cmp_arg;
if (res_is_op1) {
cmp_res = cmp->in_opr1();
cmp_arg = cmp->in_opr2();
} else if (res_is_op2) {
cmp_res = cmp->in_opr2();
cmp_arg = cmp->in_opr1();
} else {
cmp_res = LIR_OprFact::illegalOpr;
cmp_arg = LIR_OprFact::illegalOpr;
}
if (cmp_res != LIR_OprFact::illegalOpr) {
LIR_Condition cond = cmove->condition();
if (cond == lir_cond_equal && cmove->in_opr1() == cmp_arg) {
cmove->set_in_opr1(LIR_OprFact::illegalOpr);
} else if (cond == lir_cond_notEqual && cmove->in_opr2() == cmp_arg) {
cmove->set_in_opr2(LIR_OprFact::illegalOpr);
}
}
}
}
break;
}
default:
break;
}
}
}
void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
assert(src->is_address(), "sanity");
Address addr = as_Address(src->as_address_ptr());
if (code == lir_xchg) {
} else {
assert (!data->is_oop(), "xadd for oops");
}
__ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
Label retry;
__ bind(retry);
if (data->type() == T_INT || data->is_oop()) {
Register dst = dest->as_register();
Register new_val = noreg;
__ ldrex(dst, addr);
if (code == lir_xadd) {
Register tmp_reg = tmp->as_register();
if (data->is_constant()) {
assert_different_registers(dst, tmp_reg);
__ add_32(tmp_reg, dst, data->as_constant_ptr()->as_jint());
} else {
assert_different_registers(dst, tmp_reg, data->as_register());
__ add_32(tmp_reg, dst, data->as_register());
}
new_val = tmp_reg;
} else {
if (UseCompressedOops && data->is_oop()) {
new_val = tmp->as_pointer_register();
} else {
new_val = data->as_register();
}
assert_different_registers(dst, new_val);
}
__ strex(Rtemp, new_val, addr);
} else if (data->type() == T_LONG) {
Register dst_lo = dest->as_register_lo();
Register new_val_lo = noreg;
Register dst_hi = dest->as_register_hi();
assert(dst_hi->encoding() == dst_lo->encoding() + 1, "non aligned register pair");
assert((dst_lo->encoding() & 0x1) == 0, "misaligned register pair");
__ bind(retry);
__ ldrexd(dst_lo, addr);
if (code == lir_xadd) {
Register tmp_lo = tmp->as_register_lo();
Register tmp_hi = tmp->as_register_hi();
assert(tmp_hi->encoding() == tmp_lo->encoding() + 1, "non aligned register pair");
assert((tmp_lo->encoding() & 0x1) == 0, "misaligned register pair");
if (data->is_constant()) {
jlong c = data->as_constant_ptr()->as_jlong();
assert((jlong)((jint)c) == c, "overflow");
assert_different_registers(dst_lo, dst_hi, tmp_lo, tmp_hi);
__ adds(tmp_lo, dst_lo, (jint)c);
__ adc(tmp_hi, dst_hi, 0);
} else {
Register new_val_lo = data->as_register_lo();
Register new_val_hi = data->as_register_hi();
__ adds(tmp_lo, dst_lo, new_val_lo);
__ adc(tmp_hi, dst_hi, new_val_hi);
assert_different_registers(dst_lo, dst_hi, tmp_lo, tmp_hi, new_val_lo, new_val_hi);
}
new_val_lo = tmp_lo;
} else {
new_val_lo = data->as_register_lo();
Register new_val_hi = data->as_register_hi();
assert_different_registers(dst_lo, dst_hi, new_val_lo, new_val_hi);
assert(new_val_hi->encoding() == new_val_lo->encoding() + 1, "non aligned register pair");
assert((new_val_lo->encoding() & 0x1) == 0, "misaligned register pair");
}
__ strexd(Rtemp, new_val_lo, addr);
} else {
ShouldNotReachHere();
}
__ cbnz_32(Rtemp, retry);
__ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad | MacroAssembler::StoreStore), Rtemp);
}
#undef __