src/hotspot/share/gc/shared/generation.cpp
author tschatzl
Thu, 03 May 2018 14:09:00 +0200
changeset 49964 99e698e94cc7
parent 49594 898ef81cbc0e
child 49982 9042ffe5b7fe
permissions -rw-r--r--
8201492: Properly implement non-contiguous generations for Reference discovery Summary: Collectors like G1 implementing non-contiguous generations previously used an inexact but conservative area for discovery. Concurrent and STW reference processing could discover the same reference multiple times, potentially missing referents during evacuation. So these collectors had to take extra measures while concurrent marking/reference discovery has been running. This change makes discovery exact for G1 (and any collector using non-contiguous generations) so that concurrent discovery and STW discovery discover on strictly disjoint memory areas. This means that the mentioned situation can not occur any more, and extra work is not required any more too. Reviewed-by: kbarrett, sjohanss

/*
 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "gc/serial/genMarkSweep.hpp"
#include "gc/shared/blockOffsetTable.inline.hpp"
#include "gc/shared/cardTableRS.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "gc/shared/gcLocker.hpp"
#include "gc/shared/gcTimer.hpp"
#include "gc/shared/gcTrace.hpp"
#include "gc/shared/genCollectedHeap.hpp"
#include "gc/shared/genOopClosures.hpp"
#include "gc/shared/genOopClosures.inline.hpp"
#include "gc/shared/generation.hpp"
#include "gc/shared/space.inline.hpp"
#include "gc/shared/spaceDecorator.hpp"
#include "logging/log.hpp"
#include "memory/allocation.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/java.hpp"
#include "utilities/copy.hpp"
#include "utilities/events.hpp"

Generation::Generation(ReservedSpace rs, size_t initial_size) :
  _ref_processor(NULL),
  _gc_manager(NULL) {
  if (!_virtual_space.initialize(rs, initial_size)) {
    vm_exit_during_initialization("Could not reserve enough space for "
                    "object heap");
  }
  // Mangle all of the the initial generation.
  if (ZapUnusedHeapArea) {
    MemRegion mangle_region((HeapWord*)_virtual_space.low(),
      (HeapWord*)_virtual_space.high());
    SpaceMangler::mangle_region(mangle_region);
  }
  _reserved = MemRegion((HeapWord*)_virtual_space.low_boundary(),
          (HeapWord*)_virtual_space.high_boundary());
}

size_t Generation::initial_size() {
  GenCollectedHeap* gch = GenCollectedHeap::heap();
  if (gch->is_young_gen(this)) {
    return gch->young_gen_spec()->init_size();
  }
  return gch->old_gen_spec()->init_size();
}

size_t Generation::max_capacity() const {
  return reserved().byte_size();
}

// By default we get a single threaded default reference processor;
// generations needing multi-threaded refs processing or discovery override this method.
void Generation::ref_processor_init() {
  assert(_ref_processor == NULL, "a reference processor already exists");
  assert(!_reserved.is_empty(), "empty generation?");
  _span_based_discoverer.set_span(_reserved);
  _ref_processor = new ReferenceProcessor(&_span_based_discoverer);    // a vanilla reference processor
  if (_ref_processor == NULL) {
    vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
  }
}

void Generation::print() const { print_on(tty); }

void Generation::print_on(outputStream* st)  const {
  st->print(" %-20s", name());
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
             capacity()/K, used()/K);
  st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
              p2i(_virtual_space.low_boundary()),
              p2i(_virtual_space.high()),
              p2i(_virtual_space.high_boundary()));
}

void Generation::print_summary_info_on(outputStream* st) {
  StatRecord* sr = stat_record();
  double time = sr->accumulated_time.seconds();
  st->print_cr("Accumulated %s generation GC time %3.7f secs, "
               "%u GC's, avg GC time %3.7f",
               GenCollectedHeap::heap()->is_young_gen(this) ? "young" : "old" ,
               time,
               sr->invocations,
               sr->invocations > 0 ? time / sr->invocations : 0.0);
}

// Utility iterator classes

class GenerationIsInReservedClosure : public SpaceClosure {
 public:
  const void* _p;
  Space* sp;
  virtual void do_space(Space* s) {
    if (sp == NULL) {
      if (s->is_in_reserved(_p)) sp = s;
    }
  }
  GenerationIsInReservedClosure(const void* p) : _p(p), sp(NULL) {}
};

class GenerationIsInClosure : public SpaceClosure {
 public:
  const void* _p;
  Space* sp;
  virtual void do_space(Space* s) {
    if (sp == NULL) {
      if (s->is_in(_p)) sp = s;
    }
  }
  GenerationIsInClosure(const void* p) : _p(p), sp(NULL) {}
};

bool Generation::is_in(const void* p) const {
  GenerationIsInClosure blk(p);
  ((Generation*)this)->space_iterate(&blk);
  return blk.sp != NULL;
}

size_t Generation::max_contiguous_available() const {
  // The largest number of contiguous free words in this or any higher generation.
  size_t avail = contiguous_available();
  size_t old_avail = 0;
  if (GenCollectedHeap::heap()->is_young_gen(this)) {
    old_avail = GenCollectedHeap::heap()->old_gen()->contiguous_available();
  }
  return MAX2(avail, old_avail);
}

bool Generation::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
  size_t available = max_contiguous_available();
  bool   res = (available >= max_promotion_in_bytes);
  log_trace(gc)("Generation: promo attempt is%s safe: available(" SIZE_FORMAT ") %s max_promo(" SIZE_FORMAT ")",
                res? "":" not", available, res? ">=":"<", max_promotion_in_bytes);
  return res;
}

// Ignores "ref" and calls allocate().
oop Generation::promote(oop obj, size_t obj_size) {
  assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");

#ifndef PRODUCT
  if (GenCollectedHeap::heap()->promotion_should_fail()) {
    return NULL;
  }
#endif  // #ifndef PRODUCT

  HeapWord* result = allocate(obj_size, false);
  if (result != NULL) {
    Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
    return oop(result);
  } else {
    GenCollectedHeap* gch = GenCollectedHeap::heap();
    return gch->handle_failed_promotion(this, obj, obj_size);
  }
}

oop Generation::par_promote(int thread_num,
                            oop obj, markOop m, size_t word_sz) {
  // Could do a bad general impl here that gets a lock.  But no.
  ShouldNotCallThis();
  return NULL;
}

Space* Generation::space_containing(const void* p) const {
  GenerationIsInReservedClosure blk(p);
  // Cast away const
  ((Generation*)this)->space_iterate(&blk);
  return blk.sp;
}

// Some of these are mediocre general implementations.  Should be
// overridden to get better performance.

class GenerationBlockStartClosure : public SpaceClosure {
 public:
  const void* _p;
  HeapWord* _start;
  virtual void do_space(Space* s) {
    if (_start == NULL && s->is_in_reserved(_p)) {
      _start = s->block_start(_p);
    }
  }
  GenerationBlockStartClosure(const void* p) { _p = p; _start = NULL; }
};

HeapWord* Generation::block_start(const void* p) const {
  GenerationBlockStartClosure blk(p);
  // Cast away const
  ((Generation*)this)->space_iterate(&blk);
  return blk._start;
}

class GenerationBlockSizeClosure : public SpaceClosure {
 public:
  const HeapWord* _p;
  size_t size;
  virtual void do_space(Space* s) {
    if (size == 0 && s->is_in_reserved(_p)) {
      size = s->block_size(_p);
    }
  }
  GenerationBlockSizeClosure(const HeapWord* p) { _p = p; size = 0; }
};

size_t Generation::block_size(const HeapWord* p) const {
  GenerationBlockSizeClosure blk(p);
  // Cast away const
  ((Generation*)this)->space_iterate(&blk);
  assert(blk.size > 0, "seems reasonable");
  return blk.size;
}

class GenerationBlockIsObjClosure : public SpaceClosure {
 public:
  const HeapWord* _p;
  bool is_obj;
  virtual void do_space(Space* s) {
    if (!is_obj && s->is_in_reserved(_p)) {
      is_obj |= s->block_is_obj(_p);
    }
  }
  GenerationBlockIsObjClosure(const HeapWord* p) { _p = p; is_obj = false; }
};

bool Generation::block_is_obj(const HeapWord* p) const {
  GenerationBlockIsObjClosure blk(p);
  // Cast away const
  ((Generation*)this)->space_iterate(&blk);
  return blk.is_obj;
}

class GenerationOopIterateClosure : public SpaceClosure {
 public:
  ExtendedOopClosure* _cl;
  virtual void do_space(Space* s) {
    s->oop_iterate(_cl);
  }
  GenerationOopIterateClosure(ExtendedOopClosure* cl) :
    _cl(cl) {}
};

void Generation::oop_iterate(ExtendedOopClosure* cl) {
  GenerationOopIterateClosure blk(cl);
  space_iterate(&blk);
}

void Generation::younger_refs_in_space_iterate(Space* sp,
                                               OopsInGenClosure* cl,
                                               uint n_threads) {
  CardTableRS* rs = GenCollectedHeap::heap()->rem_set();
  rs->younger_refs_in_space_iterate(sp, cl, n_threads);
}

class GenerationObjIterateClosure : public SpaceClosure {
 private:
  ObjectClosure* _cl;
 public:
  virtual void do_space(Space* s) {
    s->object_iterate(_cl);
  }
  GenerationObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
};

void Generation::object_iterate(ObjectClosure* cl) {
  GenerationObjIterateClosure blk(cl);
  space_iterate(&blk);
}

class GenerationSafeObjIterateClosure : public SpaceClosure {
 private:
  ObjectClosure* _cl;
 public:
  virtual void do_space(Space* s) {
    s->safe_object_iterate(_cl);
  }
  GenerationSafeObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
};

void Generation::safe_object_iterate(ObjectClosure* cl) {
  GenerationSafeObjIterateClosure blk(cl);
  space_iterate(&blk);
}

void Generation::prepare_for_compaction(CompactPoint* cp) {
  // Generic implementation, can be specialized
  CompactibleSpace* space = first_compaction_space();
  while (space != NULL) {
    space->prepare_for_compaction(cp);
    space = space->next_compaction_space();
  }
}

class AdjustPointersClosure: public SpaceClosure {
 public:
  void do_space(Space* sp) {
    sp->adjust_pointers();
  }
};

void Generation::adjust_pointers() {
  // Note that this is done over all spaces, not just the compactible
  // ones.
  AdjustPointersClosure blk;
  space_iterate(&blk, true);
}

void Generation::compact() {
  CompactibleSpace* sp = first_compaction_space();
  while (sp != NULL) {
    sp->compact();
    sp = sp->next_compaction_space();
  }
}