6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never
/*
* Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
#include "incls/_precompiled.incl"
#include "incls/_interpreterRuntime.cpp.incl"
class UnlockFlagSaver {
private:
JavaThread* _thread;
bool _do_not_unlock;
public:
UnlockFlagSaver(JavaThread* t) {
_thread = t;
_do_not_unlock = t->do_not_unlock_if_synchronized();
t->set_do_not_unlock_if_synchronized(false);
}
~UnlockFlagSaver() {
_thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
}
};
//------------------------------------------------------------------------------------------------------------------------
// State accessors
void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
last_frame(thread).interpreter_frame_set_bcp(bcp);
if (ProfileInterpreter) {
// ProfileTraps uses MDOs independently of ProfileInterpreter.
// That is why we must check both ProfileInterpreter and mdo != NULL.
methodDataOop mdo = last_frame(thread).interpreter_frame_method()->method_data();
if (mdo != NULL) {
NEEDS_CLEANUP;
last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci()));
}
}
}
//------------------------------------------------------------------------------------------------------------------------
// Constants
IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
// access constant pool
constantPoolOop pool = method(thread)->constants();
int index = wide ? two_byte_index(thread) : one_byte_index(thread);
constantTag tag = pool->tag_at(index);
if (tag.is_unresolved_klass() || tag.is_klass()) {
klassOop klass = pool->klass_at(index, CHECK);
oop java_class = klass->klass_part()->java_mirror();
thread->set_vm_result(java_class);
} else {
#ifdef ASSERT
// If we entered this runtime routine, we believed the tag contained
// an unresolved string, an unresolved class or a resolved class.
// However, another thread could have resolved the unresolved string
// or class by the time we go there.
assert(tag.is_unresolved_string()|| tag.is_string(), "expected string");
#endif
oop s_oop = pool->string_at(index, CHECK);
thread->set_vm_result(s_oop);
}
IRT_END
//------------------------------------------------------------------------------------------------------------------------
// Allocation
IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, constantPoolOopDesc* pool, int index))
klassOop k_oop = pool->klass_at(index, CHECK);
instanceKlassHandle klass (THREAD, k_oop);
// Make sure we are not instantiating an abstract klass
klass->check_valid_for_instantiation(true, CHECK);
// Make sure klass is initialized
klass->initialize(CHECK);
// At this point the class may not be fully initialized
// because of recursive initialization. If it is fully
// initialized & has_finalized is not set, we rewrite
// it into its fast version (Note: no locking is needed
// here since this is an atomic byte write and can be
// done more than once).
//
// Note: In case of classes with has_finalized we don't
// rewrite since that saves us an extra check in
// the fast version which then would call the
// slow version anyway (and do a call back into
// Java).
// If we have a breakpoint, then we don't rewrite
// because the _breakpoint bytecode would be lost.
oop obj = klass->allocate_instance(CHECK);
thread->set_vm_result(obj);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
oop obj = oopFactory::new_typeArray(type, size, CHECK);
thread->set_vm_result(obj);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, constantPoolOopDesc* pool, int index, jint size))
// Note: no oopHandle for pool & klass needed since they are not used
// anymore after new_objArray() and no GC can happen before.
// (This may have to change if this code changes!)
klassOop klass = pool->klass_at(index, CHECK);
objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
thread->set_vm_result(obj);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
// We may want to pass in more arguments - could make this slightly faster
constantPoolOop constants = method(thread)->constants();
int i = two_byte_index(thread);
klassOop klass = constants->klass_at(i, CHECK);
int nof_dims = number_of_dimensions(thread);
assert(oop(klass)->is_klass(), "not a class");
assert(nof_dims >= 1, "multianewarray rank must be nonzero");
// We must create an array of jints to pass to multi_allocate.
ResourceMark rm(thread);
const int small_dims = 10;
jint dim_array[small_dims];
jint *dims = &dim_array[0];
if (nof_dims > small_dims) {
dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
}
for (int index = 0; index < nof_dims; index++) {
// offset from first_size_address is addressed as local[index]
int n = Interpreter::local_offset_in_bytes(index)/jintSize;
dims[index] = first_size_address[n];
}
oop obj = arrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
thread->set_vm_result(obj);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
assert(obj->is_oop(), "must be a valid oop");
assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
instanceKlass::register_finalizer(instanceOop(obj), CHECK);
IRT_END
// Quicken instance-of and check-cast bytecodes
IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
// Force resolving; quicken the bytecode
int which = two_byte_index(thread);
constantPoolOop cpool = method(thread)->constants();
// We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
// program we might have seen an unquick'd bytecode in the interpreter but have another
// thread quicken the bytecode before we get here.
// assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
klassOop klass = cpool->klass_at(which, CHECK);
thread->set_vm_result(klass);
IRT_END
//------------------------------------------------------------------------------------------------------------------------
// Exceptions
// Assume the compiler is (or will be) interested in this event.
// If necessary, create an MDO to hold the information, and record it.
void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
assert(ProfileTraps, "call me only if profiling");
methodHandle trap_method(thread, method(thread));
if (trap_method.not_null()) {
methodDataHandle trap_mdo(thread, trap_method->method_data());
if (trap_mdo.is_null()) {
methodOopDesc::build_interpreter_method_data(trap_method, THREAD);
if (HAS_PENDING_EXCEPTION) {
assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
CLEAR_PENDING_EXCEPTION;
}
trap_mdo = methodDataHandle(thread, trap_method->method_data());
// and fall through...
}
if (trap_mdo.not_null()) {
// Update per-method count of trap events. The interpreter
// is updating the MDO to simulate the effect of compiler traps.
int trap_bci = trap_method->bci_from(bcp(thread));
Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
}
}
}
static Handle get_preinitialized_exception(klassOop k, TRAPS) {
// get klass
instanceKlass* klass = instanceKlass::cast(k);
assert(klass->is_initialized(),
"this klass should have been initialized during VM initialization");
// create instance - do not call constructor since we may have no
// (java) stack space left (should assert constructor is empty)
Handle exception;
oop exception_oop = klass->allocate_instance(CHECK_(exception));
exception = Handle(THREAD, exception_oop);
if (StackTraceInThrowable) {
java_lang_Throwable::fill_in_stack_trace(exception);
}
return exception;
}
// Special handling for stack overflow: since we don't have any (java) stack
// space left we use the pre-allocated & pre-initialized StackOverflowError
// klass to create an stack overflow error instance. We do not call its
// constructor for the same reason (it is empty, anyway).
IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
Handle exception = get_preinitialized_exception(
SystemDictionary::StackOverflowError_klass(),
CHECK);
THROW_HANDLE(exception);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
// lookup exception klass
symbolHandle s = oopFactory::new_symbol_handle(name, CHECK);
if (ProfileTraps) {
if (s == vmSymbols::java_lang_ArithmeticException()) {
note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
} else if (s == vmSymbols::java_lang_NullPointerException()) {
note_trap(thread, Deoptimization::Reason_null_check, CHECK);
}
}
// create exception
Handle exception = Exceptions::new_exception(thread, s(), message);
thread->set_vm_result(exception());
IRT_END
IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
ResourceMark rm(thread);
const char* klass_name = Klass::cast(obj->klass())->external_name();
// lookup exception klass
symbolHandle s = oopFactory::new_symbol_handle(name, CHECK);
if (ProfileTraps) {
note_trap(thread, Deoptimization::Reason_class_check, CHECK);
}
// create exception, with klass name as detail message
Handle exception = Exceptions::new_exception(thread, s(), klass_name);
thread->set_vm_result(exception());
IRT_END
IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index))
char message[jintAsStringSize];
// lookup exception klass
symbolHandle s = oopFactory::new_symbol_handle(name, CHECK);
if (ProfileTraps) {
note_trap(thread, Deoptimization::Reason_range_check, CHECK);
}
// create exception
sprintf(message, "%d", index);
THROW_MSG(s(), message);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
JavaThread* thread, oopDesc* obj))
ResourceMark rm(thread);
char* message = SharedRuntime::generate_class_cast_message(
thread, Klass::cast(obj->klass())->external_name());
if (ProfileTraps) {
note_trap(thread, Deoptimization::Reason_class_check, CHECK);
}
// create exception
THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
IRT_END
// exception_handler_for_exception(...) returns the continuation address,
// the exception oop (via TLS) and sets the bci/bcp for the continuation.
// The exception oop is returned to make sure it is preserved over GC (it
// is only on the stack if the exception was thrown explicitly via athrow).
// During this operation, the expression stack contains the values for the
// bci where the exception happened. If the exception was propagated back
// from a call, the expression stack contains the values for the bci at the
// invoke w/o arguments (i.e., as if one were inside the call).
IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
Handle h_exception(thread, exception);
methodHandle h_method (thread, method(thread));
constantPoolHandle h_constants(thread, h_method->constants());
typeArrayHandle h_extable (thread, h_method->exception_table());
bool should_repeat;
int handler_bci;
int current_bci = bcp(thread) - h_method->code_base();
// Need to do this check first since when _do_not_unlock_if_synchronized
// is set, we don't want to trigger any classloading which may make calls
// into java, or surprisingly find a matching exception handler for bci 0
// since at this moment the method hasn't been "officially" entered yet.
if (thread->do_not_unlock_if_synchronized()) {
ResourceMark rm;
assert(current_bci == 0, "bci isn't zero for do_not_unlock_if_synchronized");
thread->set_vm_result(exception);
#ifdef CC_INTERP
return (address) -1;
#else
return Interpreter::remove_activation_entry();
#endif
}
do {
should_repeat = false;
// assertions
#ifdef ASSERT
assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
assert(h_exception->is_oop(), "just checking");
// Check that exception is a subclass of Throwable, otherwise we have a VerifyError
if (!(h_exception->is_a(SystemDictionary::throwable_klass()))) {
if (ExitVMOnVerifyError) vm_exit(-1);
ShouldNotReachHere();
}
#endif
// tracing
if (TraceExceptions) {
ttyLocker ttyl;
ResourceMark rm(thread);
tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", h_exception->print_value_string(), (address)h_exception());
tty->print_cr(" thrown in interpreter method <%s>", h_method->print_value_string());
tty->print_cr(" at bci %d for thread " INTPTR_FORMAT, current_bci, thread);
}
// Don't go paging in something which won't be used.
// else if (h_extable->length() == 0) {
// // disabled for now - interpreter is not using shortcut yet
// // (shortcut is not to call runtime if we have no exception handlers)
// // warning("performance bug: should not call runtime if method has no exception handlers");
// }
// for AbortVMOnException flag
NOT_PRODUCT(Exceptions::debug_check_abort(h_exception));
// exception handler lookup
KlassHandle h_klass(THREAD, h_exception->klass());
handler_bci = h_method->fast_exception_handler_bci_for(h_klass, current_bci, THREAD);
if (HAS_PENDING_EXCEPTION) {
// We threw an exception while trying to find the exception handler.
// Transfer the new exception to the exception handle which will
// be set into thread local storage, and do another lookup for an
// exception handler for this exception, this time starting at the
// BCI of the exception handler which caused the exception to be
// thrown (bug 4307310).
h_exception = Handle(THREAD, PENDING_EXCEPTION);
CLEAR_PENDING_EXCEPTION;
if (handler_bci >= 0) {
current_bci = handler_bci;
should_repeat = true;
}
}
} while (should_repeat == true);
// notify JVMTI of an exception throw; JVMTI will detect if this is a first
// time throw or a stack unwinding throw and accordingly notify the debugger
if (JvmtiExport::can_post_exceptions()) {
JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception());
}
#ifdef CC_INTERP
address continuation = (address)(intptr_t) handler_bci;
#else
address continuation = NULL;
#endif
address handler_pc = NULL;
if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
// Forward exception to callee (leaving bci/bcp untouched) because (a) no
// handler in this method, or (b) after a stack overflow there is not yet
// enough stack space available to reprotect the stack.
#ifndef CC_INTERP
continuation = Interpreter::remove_activation_entry();
#endif
// Count this for compilation purposes
h_method->interpreter_throwout_increment();
} else {
// handler in this method => change bci/bcp to handler bci/bcp and continue there
handler_pc = h_method->code_base() + handler_bci;
#ifndef CC_INTERP
set_bcp_and_mdp(handler_pc, thread);
continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
#endif
}
// notify debugger of an exception catch
// (this is good for exceptions caught in native methods as well)
if (JvmtiExport::can_post_exceptions()) {
JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
}
thread->set_vm_result(h_exception());
return continuation;
IRT_END
IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
// nothing to do - eventually we should remove this code entirely (see comments @ call sites)
IRT_END
IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
THROW(vmSymbols::java_lang_AbstractMethodError());
IRT_END
IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
IRT_END
//------------------------------------------------------------------------------------------------------------------------
// Fields
//
IRT_ENTRY(void, InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode))
// resolve field
FieldAccessInfo info;
constantPoolHandle pool(thread, method(thread)->constants());
bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
{
JvmtiHideSingleStepping jhss(thread);
LinkResolver::resolve_field(info, pool, two_byte_index(thread),
bytecode, false, CHECK);
} // end JvmtiHideSingleStepping
// check if link resolution caused cpCache to be updated
if (already_resolved(thread)) return;
// compute auxiliary field attributes
TosState state = as_TosState(info.field_type());
// We need to delay resolving put instructions on final fields
// until we actually invoke one. This is required so we throw
// exceptions at the correct place. If we do not resolve completely
// in the current pass, leaving the put_code set to zero will
// cause the next put instruction to reresolve.
bool is_put = (bytecode == Bytecodes::_putfield ||
bytecode == Bytecodes::_putstatic);
Bytecodes::Code put_code = (Bytecodes::Code)0;
// We also need to delay resolving getstatic instructions until the
// class is intitialized. This is required so that access to the static
// field will call the initialization function every time until the class
// is completely initialized ala. in 2.17.5 in JVM Specification.
instanceKlass *klass = instanceKlass::cast(info.klass()->as_klassOop());
bool uninitialized_static = ((bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic) &&
!klass->is_initialized());
Bytecodes::Code get_code = (Bytecodes::Code)0;
if (!uninitialized_static) {
get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
if (is_put || !info.access_flags().is_final()) {
put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
}
}
cache_entry(thread)->set_field(
get_code,
put_code,
info.klass(),
info.field_index(),
info.field_offset(),
state,
info.access_flags().is_final(),
info.access_flags().is_volatile()
);
IRT_END
//------------------------------------------------------------------------------------------------------------------------
// Synchronization
//
// The interpreter's synchronization code is factored out so that it can
// be shared by method invocation and synchronized blocks.
//%note synchronization_3
static void trace_locking(Handle& h_locking_obj, bool is_locking) {
ObjectSynchronizer::trace_locking(h_locking_obj, false, true, is_locking);
}
//%note monitor_1
IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
#ifdef ASSERT
thread->last_frame().interpreter_frame_verify_monitor(elem);
#endif
if (PrintBiasedLockingStatistics) {
Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
}
Handle h_obj(thread, elem->obj());
assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
"must be NULL or an object");
if (UseBiasedLocking) {
// Retry fast entry if bias is revoked to avoid unnecessary inflation
ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
} else {
ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
}
assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
"must be NULL or an object");
#ifdef ASSERT
thread->last_frame().interpreter_frame_verify_monitor(elem);
#endif
IRT_END
//%note monitor_1
IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
#ifdef ASSERT
thread->last_frame().interpreter_frame_verify_monitor(elem);
#endif
Handle h_obj(thread, elem->obj());
assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
"must be NULL or an object");
if (elem == NULL || h_obj()->is_unlocked()) {
THROW(vmSymbols::java_lang_IllegalMonitorStateException());
}
ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
// Free entry. This must be done here, since a pending exception might be installed on
// exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
elem->set_obj(NULL);
#ifdef ASSERT
thread->last_frame().interpreter_frame_verify_monitor(elem);
#endif
IRT_END
IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
THROW(vmSymbols::java_lang_IllegalMonitorStateException());
IRT_END
IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
// Returns an illegal exception to install into the current thread. The
// pending_exception flag is cleared so normal exception handling does not
// trigger. Any current installed exception will be overwritten. This
// method will be called during an exception unwind.
assert(!HAS_PENDING_EXCEPTION, "no pending exception");
Handle exception(thread, thread->vm_result());
assert(exception() != NULL, "vm result should be set");
thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
if (!exception->is_a(SystemDictionary::threaddeath_klass())) {
exception = get_preinitialized_exception(
SystemDictionary::IllegalMonitorStateException_klass(),
CATCH);
}
thread->set_vm_result(exception());
IRT_END
//------------------------------------------------------------------------------------------------------------------------
// Invokes
IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, methodOopDesc* method, address bcp))
return method->orig_bytecode_at(method->bci_from(bcp));
IRT_END
IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, methodOopDesc* method, address bcp, Bytecodes::Code new_code))
method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, methodOopDesc* method, address bcp))
JvmtiExport::post_raw_breakpoint(thread, method, bcp);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode))
// extract receiver from the outgoing argument list if necessary
Handle receiver(thread, NULL);
if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface) {
ResourceMark rm(thread);
methodHandle m (thread, method(thread));
int bci = m->bci_from(bcp(thread));
Bytecode_invoke* call = Bytecode_invoke_at(m, bci);
symbolHandle signature (thread, call->signature());
receiver = Handle(thread,
thread->last_frame().interpreter_callee_receiver(signature));
assert(Universe::heap()->is_in_reserved_or_null(receiver()),
"sanity check");
assert(receiver.is_null() ||
Universe::heap()->is_in_reserved(receiver->klass()),
"sanity check");
}
// resolve method
CallInfo info;
constantPoolHandle pool(thread, method(thread)->constants());
{
JvmtiHideSingleStepping jhss(thread);
LinkResolver::resolve_invoke(info, receiver, pool,
two_byte_index(thread), bytecode, CHECK);
if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
int retry_count = 0;
while (info.resolved_method()->is_old()) {
// It is very unlikely that method is redefined more than 100 times
// in the middle of resolve. If it is looping here more than 100 times
// means then there could be a bug here.
guarantee((retry_count++ < 100),
"Could not resolve to latest version of redefined method");
// method is redefined in the middle of resolve so re-try.
LinkResolver::resolve_invoke(info, receiver, pool,
two_byte_index(thread), bytecode, CHECK);
}
}
} // end JvmtiHideSingleStepping
// check if link resolution caused cpCache to be updated
if (already_resolved(thread)) return;
if (bytecode == Bytecodes::_invokeinterface) {
if (TraceItables && Verbose) {
ResourceMark rm(thread);
tty->print_cr("Resolving: klass: %s to method: %s", info.resolved_klass()->name()->as_C_string(), info.resolved_method()->name()->as_C_string());
}
if (info.resolved_method()->method_holder() ==
SystemDictionary::object_klass()) {
// NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
// (see also cpCacheOop.cpp for details)
methodHandle rm = info.resolved_method();
assert(rm->is_final() || info.has_vtable_index(),
"should have been set already");
cache_entry(thread)->set_method(bytecode, rm, info.vtable_index());
} else {
// Setup itable entry
int index = klassItable::compute_itable_index(info.resolved_method()());
cache_entry(thread)->set_interface_call(info.resolved_method(), index);
}
} else {
cache_entry(thread)->set_method(
bytecode,
info.resolved_method(),
info.vtable_index());
}
IRT_END
//------------------------------------------------------------------------------------------------------------------------
// Miscellaneous
#ifndef PRODUCT
static void trace_frequency_counter_overflow(methodHandle m, int branch_bci, int bci, address branch_bcp) {
if (TraceInvocationCounterOverflow) {
InvocationCounter* ic = m->invocation_counter();
InvocationCounter* bc = m->backedge_counter();
ResourceMark rm;
const char* msg =
branch_bcp == NULL
? "comp-policy cntr ovfl @ %d in entry of "
: "comp-policy cntr ovfl @ %d in loop of ";
tty->print(msg, bci);
m->print_value();
tty->cr();
ic->print();
bc->print();
if (ProfileInterpreter) {
if (branch_bcp != NULL) {
methodDataOop mdo = m->method_data();
if (mdo != NULL) {
int count = mdo->bci_to_data(branch_bci)->as_JumpData()->taken();
tty->print_cr("back branch count = %d", count);
}
}
}
}
}
static void trace_osr_request(methodHandle method, nmethod* osr, int bci) {
if (TraceOnStackReplacement) {
ResourceMark rm;
tty->print(osr != NULL ? "Reused OSR entry for " : "Requesting OSR entry for ");
method->print_short_name(tty);
tty->print_cr(" at bci %d", bci);
}
}
#endif // !PRODUCT
IRT_ENTRY(nmethod*,
InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp))
// use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
// flag, in case this method triggers classloading which will call into Java.
UnlockFlagSaver fs(thread);
frame fr = thread->last_frame();
assert(fr.is_interpreted_frame(), "must come from interpreter");
methodHandle method(thread, fr.interpreter_frame_method());
const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : 0;
const int bci = method->bci_from(fr.interpreter_frame_bcp());
NOT_PRODUCT(trace_frequency_counter_overflow(method, branch_bci, bci, branch_bcp);)
if (JvmtiExport::can_post_interpreter_events()) {
if (thread->is_interp_only_mode()) {
// If certain JVMTI events (e.g. frame pop event) are requested then the
// thread is forced to remain in interpreted code. This is
// implemented partly by a check in the run_compiled_code
// section of the interpreter whether we should skip running
// compiled code, and partly by skipping OSR compiles for
// interpreted-only threads.
if (branch_bcp != NULL) {
CompilationPolicy::policy()->reset_counter_for_back_branch_event(method);
return NULL;
}
}
}
if (branch_bcp == NULL) {
// when code cache is full, compilation gets switched off, UseCompiler
// is set to false
if (!method->has_compiled_code() && UseCompiler) {
CompilationPolicy::policy()->method_invocation_event(method, CHECK_NULL);
} else {
// Force counter overflow on method entry, even if no compilation
// happened. (The method_invocation_event call does this also.)
CompilationPolicy::policy()->reset_counter_for_invocation_event(method);
}
// compilation at an invocation overflow no longer goes and retries test for
// compiled method. We always run the loser of the race as interpreted.
// so return NULL
return NULL;
} else {
// counter overflow in a loop => try to do on-stack-replacement
nmethod* osr_nm = method->lookup_osr_nmethod_for(bci);
NOT_PRODUCT(trace_osr_request(method, osr_nm, bci);)
// when code cache is full, we should not compile any more...
if (osr_nm == NULL && UseCompiler) {
const int branch_bci = method->bci_from(branch_bcp);
CompilationPolicy::policy()->method_back_branch_event(method, branch_bci, bci, CHECK_NULL);
osr_nm = method->lookup_osr_nmethod_for(bci);
}
if (osr_nm == NULL) {
CompilationPolicy::policy()->reset_counter_for_back_branch_event(method);
return NULL;
} else {
// We may need to do on-stack replacement which requires that no
// monitors in the activation are biased because their
// BasicObjectLocks will need to migrate during OSR. Force
// unbiasing of all monitors in the activation now (even though
// the OSR nmethod might be invalidated) because we don't have a
// safepoint opportunity later once the migration begins.
if (UseBiasedLocking) {
ResourceMark rm;
GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
kptr < fr.interpreter_frame_monitor_begin();
kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
if( kptr->obj() != NULL ) {
objects_to_revoke->append(Handle(THREAD, kptr->obj()));
}
}
BiasedLocking::revoke(objects_to_revoke);
}
return osr_nm;
}
}
IRT_END
IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(methodOopDesc* method, address cur_bcp))
assert(ProfileInterpreter, "must be profiling interpreter");
int bci = method->bci_from(cur_bcp);
methodDataOop mdo = method->method_data();
if (mdo == NULL) return 0;
return mdo->bci_to_di(bci);
IRT_END
IRT_ENTRY(jint, InterpreterRuntime::profile_method(JavaThread* thread, address cur_bcp))
// use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
// flag, in case this method triggers classloading which will call into Java.
UnlockFlagSaver fs(thread);
assert(ProfileInterpreter, "must be profiling interpreter");
frame fr = thread->last_frame();
assert(fr.is_interpreted_frame(), "must come from interpreter");
methodHandle method(thread, fr.interpreter_frame_method());
int bci = method->bci_from(cur_bcp);
methodOopDesc::build_interpreter_method_data(method, THREAD);
if (HAS_PENDING_EXCEPTION) {
assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
CLEAR_PENDING_EXCEPTION;
// and fall through...
}
methodDataOop mdo = method->method_data();
if (mdo == NULL) return 0;
return mdo->bci_to_di(bci);
IRT_END
#ifdef ASSERT
IRT_LEAF(void, InterpreterRuntime::verify_mdp(methodOopDesc* method, address bcp, address mdp))
assert(ProfileInterpreter, "must be profiling interpreter");
methodDataOop mdo = method->method_data();
assert(mdo != NULL, "must not be null");
int bci = method->bci_from(bcp);
address mdp2 = mdo->bci_to_dp(bci);
if (mdp != mdp2) {
ResourceMark rm;
ResetNoHandleMark rnm; // In a LEAF entry.
HandleMark hm;
tty->print_cr("FAILED verify : actual mdp %p expected mdp %p @ bci %d", mdp, mdp2, bci);
int current_di = mdo->dp_to_di(mdp);
int expected_di = mdo->dp_to_di(mdp2);
tty->print_cr(" actual di %d expected di %d", current_di, expected_di);
int expected_approx_bci = mdo->data_at(expected_di)->bci();
int approx_bci = -1;
if (current_di >= 0) {
approx_bci = mdo->data_at(current_di)->bci();
}
tty->print_cr(" actual bci is %d expected bci %d", approx_bci, expected_approx_bci);
mdo->print_on(tty);
method->print_codes();
}
assert(mdp == mdp2, "wrong mdp");
IRT_END
#endif // ASSERT
IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
assert(ProfileInterpreter, "must be profiling interpreter");
ResourceMark rm(thread);
HandleMark hm(thread);
frame fr = thread->last_frame();
assert(fr.is_interpreted_frame(), "must come from interpreter");
methodDataHandle h_mdo(thread, fr.interpreter_frame_method()->method_data());
// Grab a lock to ensure atomic access to setting the return bci and
// the displacement. This can block and GC, invalidating all naked oops.
MutexLocker ml(RetData_lock);
// ProfileData is essentially a wrapper around a derived oop, so we
// need to take the lock before making any ProfileData structures.
ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp()));
RetData* rdata = data->as_RetData();
address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
fr.interpreter_frame_set_mdp(new_mdp);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
// We used to need an explict preserve_arguments here for invoke bytecodes. However,
// stack traversal automatically takes care of preserving arguments for invoke, so
// this is no longer needed.
// IRT_END does an implicit safepoint check, hence we are guaranteed to block
// if this is called during a safepoint
if (JvmtiExport::should_post_single_step()) {
// We are called during regular safepoints and when the VM is
// single stepping. If any thread is marked for single stepping,
// then we may have JVMTI work to do.
JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread));
}
IRT_END
IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
ConstantPoolCacheEntry *cp_entry))
// check the access_flags for the field in the klass
instanceKlass* ik = instanceKlass::cast((klassOop)cp_entry->f1());
typeArrayOop fields = ik->fields();
int index = cp_entry->field_index();
assert(index < fields->length(), "holders field index is out of range");
// bail out if field accesses are not watched
if ((fields->ushort_at(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
switch(cp_entry->flag_state()) {
case btos: // fall through
case ctos: // fall through
case stos: // fall through
case itos: // fall through
case ftos: // fall through
case ltos: // fall through
case dtos: // fall through
case atos: break;
default: ShouldNotReachHere(); return;
}
bool is_static = (obj == NULL);
HandleMark hm(thread);
Handle h_obj;
if (!is_static) {
// non-static field accessors have an object, but we need a handle
h_obj = Handle(thread, obj);
}
instanceKlassHandle h_cp_entry_f1(thread, (klassOop)cp_entry->f1());
jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_cp_entry_f1, cp_entry->f2(), is_static);
JvmtiExport::post_field_access(thread, method(thread), bcp(thread), h_cp_entry_f1, h_obj, fid);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
klassOop k = (klassOop)cp_entry->f1();
// check the access_flags for the field in the klass
instanceKlass* ik = instanceKlass::cast(k);
typeArrayOop fields = ik->fields();
int index = cp_entry->field_index();
assert(index < fields->length(), "holders field index is out of range");
// bail out if field modifications are not watched
if ((fields->ushort_at(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
char sig_type = '\0';
switch(cp_entry->flag_state()) {
case btos: sig_type = 'Z'; break;
case ctos: sig_type = 'C'; break;
case stos: sig_type = 'S'; break;
case itos: sig_type = 'I'; break;
case ftos: sig_type = 'F'; break;
case atos: sig_type = 'L'; break;
case ltos: sig_type = 'J'; break;
case dtos: sig_type = 'D'; break;
default: ShouldNotReachHere(); return;
}
bool is_static = (obj == NULL);
HandleMark hm(thread);
instanceKlassHandle h_klass(thread, k);
jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_klass, cp_entry->f2(), is_static);
jvalue fvalue;
#ifdef _LP64
fvalue = *value;
#else
// Long/double values are stored unaligned and also noncontiguously with
// tagged stacks. We can't just do a simple assignment even in the non-
// J/D cases because a C++ compiler is allowed to assume that a jvalue is
// 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
// We assume that the two halves of longs/doubles are stored in interpreter
// stack slots in platform-endian order.
jlong_accessor u;
jint* newval = (jint*)value;
u.words[0] = newval[0];
u.words[1] = newval[Interpreter::stackElementWords()]; // skip if tag
fvalue.j = u.long_value;
#endif // _LP64
Handle h_obj;
if (!is_static) {
// non-static field accessors have an object, but we need a handle
h_obj = Handle(thread, obj);
}
JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), h_klass, h_obj,
fid, sig_type, &fvalue);
IRT_END
IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
IRT_END
IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
IRT_END
IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
{
return (Interpreter::contains(pc) ? 1 : 0);
}
IRT_END
// Implementation of SignatureHandlerLibrary
address SignatureHandlerLibrary::set_handler_blob() {
BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
if (handler_blob == NULL) {
return NULL;
}
address handler = handler_blob->instructions_begin();
_handler_blob = handler_blob;
_handler = handler;
return handler;
}
void SignatureHandlerLibrary::initialize() {
if (_fingerprints != NULL) {
return;
}
if (set_handler_blob() == NULL) {
vm_exit_out_of_memory(blob_size, "native signature handlers");
}
BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
SignatureHandlerLibrary::buffer_size);
_buffer = bb->instructions_begin();
_fingerprints = new(ResourceObj::C_HEAP)GrowableArray<uint64_t>(32, true);
_handlers = new(ResourceObj::C_HEAP)GrowableArray<address>(32, true);
}
address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
address handler = _handler;
int code_size = buffer->pure_code_size();
if (handler + code_size > _handler_blob->instructions_end()) {
// get a new handler blob
handler = set_handler_blob();
}
if (handler != NULL) {
memcpy(handler, buffer->code_begin(), code_size);
pd_set_handler(handler);
ICache::invalidate_range(handler, code_size);
_handler = handler + code_size;
}
return handler;
}
void SignatureHandlerLibrary::add(methodHandle method) {
if (method->signature_handler() == NULL) {
// use slow signature handler if we can't do better
int handler_index = -1;
// check if we can use customized (fast) signature handler
if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
// use customized signature handler
MutexLocker mu(SignatureHandlerLibrary_lock);
// make sure data structure is initialized
initialize();
// lookup method signature's fingerprint
uint64_t fingerprint = Fingerprinter(method).fingerprint();
handler_index = _fingerprints->find(fingerprint);
// create handler if necessary
if (handler_index < 0) {
ResourceMark rm;
ptrdiff_t align_offset = (address)
round_to((intptr_t)_buffer, CodeEntryAlignment) - (address)_buffer;
CodeBuffer buffer((address)(_buffer + align_offset),
SignatureHandlerLibrary::buffer_size - align_offset);
InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
// copy into code heap
address handler = set_handler(&buffer);
if (handler == NULL) {
// use slow signature handler
} else {
// debugging suppport
if (PrintSignatureHandlers) {
tty->cr();
tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
_handlers->length(),
(method->is_static() ? "static" : "receiver"),
method->name_and_sig_as_C_string(),
fingerprint,
buffer.code_size());
Disassembler::decode(handler, handler + buffer.code_size());
#ifndef PRODUCT
tty->print_cr(" --- associated result handler ---");
address rh_begin = Interpreter::result_handler(method()->result_type());
address rh_end = rh_begin;
while (*(int*)rh_end != 0) {
rh_end += sizeof(int);
}
Disassembler::decode(rh_begin, rh_end);
#endif
}
// add handler to library
_fingerprints->append(fingerprint);
_handlers->append(handler);
// set handler index
assert(_fingerprints->length() == _handlers->length(), "sanity check");
handler_index = _fingerprints->length() - 1;
}
}
} else {
CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
}
if (handler_index < 0) {
// use generic signature handler
method->set_signature_handler(Interpreter::slow_signature_handler());
} else {
// set handler
method->set_signature_handler(_handlers->at(handler_index));
}
}
assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
_handlers->find(method->signature_handler()) == _fingerprints->find(Fingerprinter(method).fingerprint()),
"sanity check");
}
BufferBlob* SignatureHandlerLibrary::_handler_blob = NULL;
address SignatureHandlerLibrary::_handler = NULL;
GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
GrowableArray<address>* SignatureHandlerLibrary::_handlers = NULL;
address SignatureHandlerLibrary::_buffer = NULL;
IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, methodOopDesc* method))
methodHandle m(thread, method);
assert(m->is_native(), "sanity check");
// lookup native function entry point if it doesn't exist
bool in_base_library;
if (!m->has_native_function()) {
NativeLookup::lookup(m, in_base_library, CHECK);
}
// make sure signature handler is installed
SignatureHandlerLibrary::add(m);
// The interpreter entry point checks the signature handler first,
// before trying to fetch the native entry point and klass mirror.
// We must set the signature handler last, so that multiple processors
// preparing the same method will be sure to see non-null entry & mirror.
IRT_END
#if defined(IA32) || defined(AMD64)
IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
if (src_address == dest_address) {
return;
}
ResetNoHandleMark rnm; // In a LEAF entry.
HandleMark hm;
ResourceMark rm;
frame fr = thread->last_frame();
assert(fr.is_interpreted_frame(), "");
jint bci = fr.interpreter_frame_bci();
methodHandle mh(thread, fr.interpreter_frame_method());
Bytecode_invoke* invoke = Bytecode_invoke_at(mh, bci);
ArgumentSizeComputer asc(invoke->signature());
int size_of_arguments = (asc.size() + (invoke->is_invokestatic() ? 0 : 1)); // receiver
Copy::conjoint_bytes(src_address, dest_address,
size_of_arguments * Interpreter::stackElementSize());
IRT_END
#endif