8216167: Update include guards to reflect correct directories
Summary: Use script and some manual fixup to fix directores names in include guards.
Reviewed-by: lfoltan, eosterlund, kbarrett
/*
* Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "c1/c1_Compilation.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "c1/c1_ValueStack.hpp"
#include "ci/ciArrayKlass.hpp"
#include "ci/ciInstance.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "nativeInst_sparc.hpp"
#include "oops/objArrayKlass.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/jniHandles.inline.hpp"
#include "runtime/safepointMechanism.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#define __ _masm->
//------------------------------------------------------------
bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
if (opr->is_constant()) {
LIR_Const* constant = opr->as_constant_ptr();
switch (constant->type()) {
case T_INT: {
jint value = constant->as_jint();
return Assembler::is_simm13(value);
}
default:
return false;
}
}
return false;
}
bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
switch (op->code()) {
case lir_null_check:
return true;
case lir_add:
case lir_ushr:
case lir_shr:
case lir_shl:
// integer shifts and adds are always one instruction
return op->result_opr()->is_single_cpu();
case lir_move: {
LIR_Op1* op1 = op->as_Op1();
LIR_Opr src = op1->in_opr();
LIR_Opr dst = op1->result_opr();
if (src == dst) {
NEEDS_CLEANUP;
// this works around a problem where moves with the same src and dst
// end up in the delay slot and then the assembler swallows the mov
// since it has no effect and then it complains because the delay slot
// is empty. returning false stops the optimizer from putting this in
// the delay slot
return false;
}
// don't put moves involving oops into the delay slot since the VerifyOops code
// will make it much larger than a single instruction.
if (VerifyOops) {
return false;
}
if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
return false;
}
if (UseCompressedOops) {
if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
}
if (UseCompressedClassPointers) {
if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
}
if (dst->is_register()) {
if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
return !PatchALot;
} else if (src->is_single_stack()) {
return true;
}
}
if (src->is_register()) {
if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
return !PatchALot;
} else if (dst->is_single_stack()) {
return true;
}
}
if (dst->is_register() &&
((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
(src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
return true;
}
return false;
}
default:
return false;
}
ShouldNotReachHere();
}
LIR_Opr LIR_Assembler::receiverOpr() {
return FrameMap::O0_oop_opr;
}
LIR_Opr LIR_Assembler::osrBufferPointer() {
return FrameMap::I0_opr;
}
int LIR_Assembler::initial_frame_size_in_bytes() const {
return in_bytes(frame_map()->framesize_in_bytes());
}
// inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
// we fetch the class of the receiver (O0) and compare it with the cached class.
// If they do not match we jump to slow case.
int LIR_Assembler::check_icache() {
int offset = __ offset();
__ inline_cache_check(O0, G5_inline_cache_reg);
return offset;
}
void LIR_Assembler::osr_entry() {
// On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
//
// 1. Create a new compiled activation.
// 2. Initialize local variables in the compiled activation. The expression stack must be empty
// at the osr_bci; it is not initialized.
// 3. Jump to the continuation address in compiled code to resume execution.
// OSR entry point
offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
BlockBegin* osr_entry = compilation()->hir()->osr_entry();
ValueStack* entry_state = osr_entry->end()->state();
int number_of_locks = entry_state->locks_size();
// Create a frame for the compiled activation.
__ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
// OSR buffer is
//
// locals[nlocals-1..0]
// monitors[number_of_locks-1..0]
//
// locals is a direct copy of the interpreter frame so in the osr buffer
// so first slot in the local array is the last local from the interpreter
// and last slot is local[0] (receiver) from the interpreter
//
// Similarly with locks. The first lock slot in the osr buffer is the nth lock
// from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
// in the interpreter frame (the method lock if a sync method)
// Initialize monitors in the compiled activation.
// I0: pointer to osr buffer
//
// All other registers are dead at this point and the locals will be
// copied into place by code emitted in the IR.
Register OSR_buf = osrBufferPointer()->as_register();
{ assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
int monitor_offset = BytesPerWord * method()->max_locals() +
(2 * BytesPerWord) * (number_of_locks - 1);
// SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
// the OSR buffer using 2 word entries: first the lock and then
// the oop.
for (int i = 0; i < number_of_locks; i++) {
int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
#ifdef ASSERT
// verify the interpreter's monitor has a non-null object
{
Label L;
__ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
__ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
__ stop("locked object is NULL");
__ bind(L);
}
#endif // ASSERT
// Copy the lock field into the compiled activation.
__ ld_ptr(OSR_buf, slot_offset + 0, O7);
__ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
__ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
__ st_ptr(O7, frame_map()->address_for_monitor_object(i));
}
}
}
// --------------------------------------------------------------------------------------------
void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
if (!GenerateSynchronizationCode) return;
Register obj_reg = obj_opr->as_register();
Register lock_reg = lock_opr->as_register();
Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
Register reg = mon_addr.base();
int offset = mon_addr.disp();
// compute pointer to BasicLock
if (mon_addr.is_simm13()) {
__ add(reg, offset, lock_reg);
}
else {
__ set(offset, lock_reg);
__ add(reg, lock_reg, lock_reg);
}
// unlock object
MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
// _slow_case_stubs->append(slow_case);
// temporary fix: must be created after exceptionhandler, therefore as call stub
_slow_case_stubs->append(slow_case);
if (UseFastLocking) {
// try inlined fast unlocking first, revert to slow locking if it fails
// note: lock_reg points to the displaced header since the displaced header offset is 0!
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
__ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
} else {
// always do slow unlocking
// note: the slow unlocking code could be inlined here, however if we use
// slow unlocking, speed doesn't matter anyway and this solution is
// simpler and requires less duplicated code - additionally, the
// slow unlocking code is the same in either case which simplifies
// debugging
__ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
__ delayed()->nop();
}
// done
__ bind(*slow_case->continuation());
}
int LIR_Assembler::emit_exception_handler() {
// if the last instruction is a call (typically to do a throw which
// is coming at the end after block reordering) the return address
// must still point into the code area in order to avoid assertion
// failures when searching for the corresponding bci => add a nop
// (was bug 5/14/1999 - gri)
__ nop();
// generate code for exception handler
ciMethod* method = compilation()->method();
address handler_base = __ start_a_stub(exception_handler_size());
if (handler_base == NULL) {
// not enough space left for the handler
bailout("exception handler overflow");
return -1;
}
int offset = code_offset();
__ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
__ delayed()->nop();
__ should_not_reach_here();
guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
__ end_a_stub();
return offset;
}
// Emit the code to remove the frame from the stack in the exception
// unwind path.
int LIR_Assembler::emit_unwind_handler() {
#ifndef PRODUCT
if (CommentedAssembly) {
_masm->block_comment("Unwind handler");
}
#endif
int offset = code_offset();
// Fetch the exception from TLS and clear out exception related thread state
__ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
__ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
__ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
__ bind(_unwind_handler_entry);
__ verify_not_null_oop(O0);
if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
__ mov(O0, I0); // Preserve the exception
}
// Preform needed unlocking
MonitorExitStub* stub = NULL;
if (method()->is_synchronized()) {
monitor_address(0, FrameMap::I1_opr);
stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
__ unlock_object(I3, I2, I1, *stub->entry());
__ bind(*stub->continuation());
}
if (compilation()->env()->dtrace_method_probes()) {
__ mov(G2_thread, O0);
__ save_thread(I1); // need to preserve thread in G2 across
// runtime call
metadata2reg(method()->constant_encoding(), O1);
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
__ delayed()->nop();
__ restore_thread(I1);
}
if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
__ mov(I0, O0); // Restore the exception
}
// dispatch to the unwind logic
__ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
__ delayed()->nop();
// Emit the slow path assembly
if (stub != NULL) {
stub->emit_code(this);
}
return offset;
}
int LIR_Assembler::emit_deopt_handler() {
// if the last instruction is a call (typically to do a throw which
// is coming at the end after block reordering) the return address
// must still point into the code area in order to avoid assertion
// failures when searching for the corresponding bci => add a nop
// (was bug 5/14/1999 - gri)
__ nop();
// generate code for deopt handler
ciMethod* method = compilation()->method();
address handler_base = __ start_a_stub(deopt_handler_size());
if (handler_base == NULL) {
// not enough space left for the handler
bailout("deopt handler overflow");
return -1;
}
int offset = code_offset();
AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
__ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
__ delayed()->nop();
guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
__ end_a_stub();
return offset;
}
void LIR_Assembler::jobject2reg(jobject o, Register reg) {
if (o == NULL) {
__ set(NULL_WORD, reg);
} else {
#ifdef ASSERT
{
ThreadInVMfromNative tiv(JavaThread::current());
assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
}
#endif
int oop_index = __ oop_recorder()->find_index(o);
RelocationHolder rspec = oop_Relocation::spec(oop_index);
__ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
}
}
void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
// Allocate a new index in table to hold the object once it's been patched
int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
// It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
// NULL will be dynamically patched later and the patched value may be large. We must
// therefore generate the sethi/add as a placeholders
__ patchable_set(addrlit, reg);
patching_epilog(patch, lir_patch_normal, reg, info);
}
void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
__ set_metadata_constant(o, reg);
}
void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
// Allocate a new index in table to hold the klass once it's been patched
int index = __ oop_recorder()->allocate_metadata_index(NULL);
PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
// It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
// NULL will be dynamically patched later and the patched value may be large. We must
// therefore generate the sethi/add as a placeholders
__ patchable_set(addrlit, reg);
patching_epilog(patch, lir_patch_normal, reg, info);
}
void LIR_Assembler::emit_op3(LIR_Op3* op) {
switch (op->code()) {
case lir_idiv:
case lir_irem: // Both idiv & irem are handled after the switch (below).
break;
case lir_fmaf:
__ fmadd(FloatRegisterImpl::S,
op->in_opr1()->as_float_reg(),
op->in_opr2()->as_float_reg(),
op->in_opr3()->as_float_reg(),
op->result_opr()->as_float_reg());
return;
case lir_fmad:
__ fmadd(FloatRegisterImpl::D,
op->in_opr1()->as_double_reg(),
op->in_opr2()->as_double_reg(),
op->in_opr3()->as_double_reg(),
op->result_opr()->as_double_reg());
return;
default:
ShouldNotReachHere();
break;
}
// Handle idiv & irem:
Register Rdividend = op->in_opr1()->as_register();
Register Rdivisor = noreg;
Register Rscratch = op->in_opr3()->as_register();
Register Rresult = op->result_opr()->as_register();
int divisor = -1;
if (op->in_opr2()->is_register()) {
Rdivisor = op->in_opr2()->as_register();
} else {
divisor = op->in_opr2()->as_constant_ptr()->as_jint();
assert(Assembler::is_simm13(divisor), "can only handle simm13");
}
assert(Rdividend != Rscratch, "");
assert(Rdivisor != Rscratch, "");
assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
if (Rdivisor == noreg && is_power_of_2(divisor)) {
// convert division by a power of two into some shifts and logical operations
if (op->code() == lir_idiv) {
if (divisor == 2) {
__ srl(Rdividend, 31, Rscratch);
} else {
__ sra(Rdividend, 31, Rscratch);
__ and3(Rscratch, divisor - 1, Rscratch);
}
__ add(Rdividend, Rscratch, Rscratch);
__ sra(Rscratch, log2_int(divisor), Rresult);
return;
} else {
if (divisor == 2) {
__ srl(Rdividend, 31, Rscratch);
} else {
__ sra(Rdividend, 31, Rscratch);
__ and3(Rscratch, divisor - 1,Rscratch);
}
__ add(Rdividend, Rscratch, Rscratch);
__ andn(Rscratch, divisor - 1,Rscratch);
__ sub(Rdividend, Rscratch, Rresult);
return;
}
}
__ sra(Rdividend, 31, Rscratch);
__ wry(Rscratch);
add_debug_info_for_div0_here(op->info());
if (Rdivisor != noreg) {
__ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
} else {
assert(Assembler::is_simm13(divisor), "can only handle simm13");
__ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
}
Label skip;
__ br(Assembler::overflowSet, true, Assembler::pn, skip);
__ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
__ bind(skip);
if (op->code() == lir_irem) {
if (Rdivisor != noreg) {
__ smul(Rscratch, Rdivisor, Rscratch);
} else {
__ smul(Rscratch, divisor, Rscratch);
}
__ sub(Rdividend, Rscratch, Rresult);
}
}
void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
#ifdef ASSERT
assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
if (op->block() != NULL) _branch_target_blocks.append(op->block());
if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
#endif
assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
if (op->cond() == lir_cond_always) {
__ br(Assembler::always, false, Assembler::pt, *(op->label()));
} else if (op->code() == lir_cond_float_branch) {
assert(op->ublock() != NULL, "must have unordered successor");
bool is_unordered = (op->ublock() == op->block());
Assembler::Condition acond;
switch (op->cond()) {
case lir_cond_equal: acond = Assembler::f_equal; break;
case lir_cond_notEqual: acond = Assembler::f_notEqual; break;
case lir_cond_less: acond = (is_unordered ? Assembler::f_unorderedOrLess : Assembler::f_less); break;
case lir_cond_greater: acond = (is_unordered ? Assembler::f_unorderedOrGreater : Assembler::f_greater); break;
case lir_cond_lessEqual: acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual : Assembler::f_lessOrEqual); break;
case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
default : ShouldNotReachHere();
}
__ fb( acond, false, Assembler::pn, *(op->label()));
} else {
assert (op->code() == lir_branch, "just checking");
Assembler::Condition acond;
switch (op->cond()) {
case lir_cond_equal: acond = Assembler::equal; break;
case lir_cond_notEqual: acond = Assembler::notEqual; break;
case lir_cond_less: acond = Assembler::less; break;
case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
case lir_cond_greater: acond = Assembler::greater; break;
case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
default: ShouldNotReachHere();
};
// sparc has different condition codes for testing 32-bit
// vs. 64-bit values. We could always test xcc is we could
// guarantee that 32-bit loads always sign extended but that isn't
// true and since sign extension isn't free, it would impose a
// slight cost.
if (op->type() == T_INT) {
__ br(acond, false, Assembler::pn, *(op->label()));
} else
__ brx(acond, false, Assembler::pn, *(op->label()));
}
// The peephole pass fills the delay slot
}
void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
Bytecodes::Code code = op->bytecode();
LIR_Opr dst = op->result_opr();
switch(code) {
case Bytecodes::_i2l: {
Register rlo = dst->as_register_lo();
Register rhi = dst->as_register_hi();
Register rval = op->in_opr()->as_register();
__ sra(rval, 0, rlo);
break;
}
case Bytecodes::_i2d:
case Bytecodes::_i2f: {
bool is_double = (code == Bytecodes::_i2d);
FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
FloatRegister rsrc = op->in_opr()->as_float_reg();
if (rsrc != rdst) {
__ fmov(FloatRegisterImpl::S, rsrc, rdst);
}
__ fitof(w, rdst, rdst);
break;
}
case Bytecodes::_f2i:{
FloatRegister rsrc = op->in_opr()->as_float_reg();
Address addr = frame_map()->address_for_slot(dst->single_stack_ix());
Label L;
// result must be 0 if value is NaN; test by comparing value to itself
__ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
__ fb(Assembler::f_unordered, true, Assembler::pn, L);
__ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
__ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
// move integer result from float register to int register
__ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
__ bind (L);
break;
}
case Bytecodes::_l2i: {
Register rlo = op->in_opr()->as_register_lo();
Register rhi = op->in_opr()->as_register_hi();
Register rdst = dst->as_register();
__ sra(rlo, 0, rdst);
break;
}
case Bytecodes::_d2f:
case Bytecodes::_f2d: {
bool is_double = (code == Bytecodes::_f2d);
assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
LIR_Opr val = op->in_opr();
FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
__ ftof(vw, dw, rval, rdst);
break;
}
case Bytecodes::_i2s:
case Bytecodes::_i2b: {
Register rval = op->in_opr()->as_register();
Register rdst = dst->as_register();
int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
__ sll (rval, shift, rdst);
__ sra (rdst, shift, rdst);
break;
}
case Bytecodes::_i2c: {
Register rval = op->in_opr()->as_register();
Register rdst = dst->as_register();
int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
__ sll (rval, shift, rdst);
__ srl (rdst, shift, rdst);
break;
}
default: ShouldNotReachHere();
}
}
void LIR_Assembler::align_call(LIR_Code) {
// do nothing since all instructions are word aligned on sparc
}
void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
__ call(op->addr(), rtype);
// The peephole pass fills the delay slot, add_call_info is done in
// LIR_Assembler::emit_delay.
}
void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
__ ic_call(op->addr(), false);
// The peephole pass fills the delay slot, add_call_info is done in
// LIR_Assembler::emit_delay.
}
void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
add_debug_info_for_null_check_here(op->info());
__ load_klass(O0, G3_scratch);
if (Assembler::is_simm13(op->vtable_offset())) {
__ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
} else {
// This will generate 2 instructions
__ set(op->vtable_offset(), G5_method);
// ld_ptr, set_hi, set
__ ld_ptr(G3_scratch, G5_method, G5_method);
}
__ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
__ callr(G3_scratch, G0);
// the peephole pass fills the delay slot
}
int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
int store_offset;
if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
assert(base != O7, "destroying register");
assert(!unaligned, "can't handle this");
// for offsets larger than a simm13 we setup the offset in O7
__ set(offset, O7);
store_offset = store(from_reg, base, O7, type, wide);
} else {
if (type == T_ARRAY || type == T_OBJECT) {
__ verify_oop(from_reg->as_register());
}
store_offset = code_offset();
switch (type) {
case T_BOOLEAN: // fall through
case T_BYTE : __ stb(from_reg->as_register(), base, offset); break;
case T_CHAR : __ sth(from_reg->as_register(), base, offset); break;
case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
case T_INT : __ stw(from_reg->as_register(), base, offset); break;
case T_LONG :
if (unaligned || PatchALot) {
// Don't use O7 here because it may be equal to 'base' (see LIR_Assembler::reg2mem)
assert(G3_scratch != base, "can't handle this");
assert(G3_scratch != from_reg->as_register_lo(), "can't handle this");
__ srax(from_reg->as_register_lo(), 32, G3_scratch);
__ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
__ stw(G3_scratch, base, offset + hi_word_offset_in_bytes);
} else {
__ stx(from_reg->as_register_lo(), base, offset);
}
break;
case T_ADDRESS:
case T_METADATA:
__ st_ptr(from_reg->as_register(), base, offset);
break;
case T_ARRAY : // fall through
case T_OBJECT:
{
if (UseCompressedOops && !wide) {
__ encode_heap_oop(from_reg->as_register(), G3_scratch);
store_offset = code_offset();
__ stw(G3_scratch, base, offset);
} else {
__ st_ptr(from_reg->as_register(), base, offset);
}
break;
}
case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
case T_DOUBLE:
{
FloatRegister reg = from_reg->as_double_reg();
// split unaligned stores
if (unaligned || PatchALot) {
assert(Assembler::is_simm13(offset + 4), "must be");
__ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
__ stf(FloatRegisterImpl::S, reg, base, offset);
} else {
__ stf(FloatRegisterImpl::D, reg, base, offset);
}
break;
}
default : ShouldNotReachHere();
}
}
return store_offset;
}
int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
if (type == T_ARRAY || type == T_OBJECT) {
__ verify_oop(from_reg->as_register());
}
int store_offset = code_offset();
switch (type) {
case T_BOOLEAN: // fall through
case T_BYTE : __ stb(from_reg->as_register(), base, disp); break;
case T_CHAR : __ sth(from_reg->as_register(), base, disp); break;
case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
case T_INT : __ stw(from_reg->as_register(), base, disp); break;
case T_LONG :
__ stx(from_reg->as_register_lo(), base, disp);
break;
case T_ADDRESS:
__ st_ptr(from_reg->as_register(), base, disp);
break;
case T_ARRAY : // fall through
case T_OBJECT:
{
if (UseCompressedOops && !wide) {
__ encode_heap_oop(from_reg->as_register(), G3_scratch);
store_offset = code_offset();
__ stw(G3_scratch, base, disp);
} else {
__ st_ptr(from_reg->as_register(), base, disp);
}
break;
}
case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
default : ShouldNotReachHere();
}
return store_offset;
}
int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
int load_offset;
if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
assert(base != O7, "destroying register");
assert(!unaligned, "can't handle this");
// for offsets larger than a simm13 we setup the offset in O7
__ set(offset, O7);
load_offset = load(base, O7, to_reg, type, wide);
} else {
load_offset = code_offset();
switch(type) {
case T_BOOLEAN: // fall through
case T_BYTE : __ ldsb(base, offset, to_reg->as_register()); break;
case T_CHAR : __ lduh(base, offset, to_reg->as_register()); break;
case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
case T_INT : __ ld(base, offset, to_reg->as_register()); break;
case T_LONG :
if (!unaligned && !PatchALot) {
__ ldx(base, offset, to_reg->as_register_lo());
} else {
assert(base != to_reg->as_register_lo(), "can't handle this");
assert(O7 != to_reg->as_register_lo(), "can't handle this");
__ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
__ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
__ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
__ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
}
break;
case T_METADATA: __ ld_ptr(base, offset, to_reg->as_register()); break;
case T_ADDRESS:
if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
__ lduw(base, offset, to_reg->as_register());
__ decode_klass_not_null(to_reg->as_register());
} else
{
__ ld_ptr(base, offset, to_reg->as_register());
}
break;
case T_ARRAY : // fall through
case T_OBJECT:
{
if (UseCompressedOops && !wide) {
__ lduw(base, offset, to_reg->as_register());
__ decode_heap_oop(to_reg->as_register());
} else {
__ ld_ptr(base, offset, to_reg->as_register());
}
break;
}
case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
case T_DOUBLE:
{
FloatRegister reg = to_reg->as_double_reg();
// split unaligned loads
if (unaligned || PatchALot) {
__ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
__ ldf(FloatRegisterImpl::S, base, offset, reg);
} else {
__ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
}
break;
}
default : ShouldNotReachHere();
}
if (type == T_ARRAY || type == T_OBJECT) {
__ verify_oop(to_reg->as_register());
}
}
return load_offset;
}
int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
int load_offset = code_offset();
switch(type) {
case T_BOOLEAN: // fall through
case T_BYTE : __ ldsb(base, disp, to_reg->as_register()); break;
case T_CHAR : __ lduh(base, disp, to_reg->as_register()); break;
case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
case T_INT : __ ld(base, disp, to_reg->as_register()); break;
case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
case T_ARRAY : // fall through
case T_OBJECT:
{
if (UseCompressedOops && !wide) {
__ lduw(base, disp, to_reg->as_register());
__ decode_heap_oop(to_reg->as_register());
} else {
__ ld_ptr(base, disp, to_reg->as_register());
}
break;
}
case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
case T_LONG :
__ ldx(base, disp, to_reg->as_register_lo());
break;
default : ShouldNotReachHere();
}
if (type == T_ARRAY || type == T_OBJECT) {
__ verify_oop(to_reg->as_register());
}
return load_offset;
}
void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
LIR_Const* c = src->as_constant_ptr();
switch (c->type()) {
case T_INT:
case T_FLOAT: {
Register src_reg = O7;
int value = c->as_jint_bits();
if (value == 0) {
src_reg = G0;
} else {
__ set(value, O7);
}
Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
__ stw(src_reg, addr.base(), addr.disp());
break;
}
case T_ADDRESS: {
Register src_reg = O7;
int value = c->as_jint_bits();
if (value == 0) {
src_reg = G0;
} else {
__ set(value, O7);
}
Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
__ st_ptr(src_reg, addr.base(), addr.disp());
break;
}
case T_OBJECT: {
Register src_reg = O7;
jobject2reg(c->as_jobject(), src_reg);
Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
__ st_ptr(src_reg, addr.base(), addr.disp());
break;
}
case T_LONG:
case T_DOUBLE: {
Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
Register tmp = O7;
int value_lo = c->as_jint_lo_bits();
if (value_lo == 0) {
tmp = G0;
} else {
__ set(value_lo, O7);
}
__ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
int value_hi = c->as_jint_hi_bits();
if (value_hi == 0) {
tmp = G0;
} else {
__ set(value_hi, O7);
}
__ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
break;
}
default:
Unimplemented();
}
}
void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
LIR_Const* c = src->as_constant_ptr();
LIR_Address* addr = dest->as_address_ptr();
Register base = addr->base()->as_pointer_register();
int offset = -1;
switch (c->type()) {
case T_FLOAT: type = T_INT; // Float constants are stored by int store instructions.
case T_INT:
case T_ADDRESS: {
LIR_Opr tmp = FrameMap::O7_opr;
int value = c->as_jint_bits();
if (value == 0) {
tmp = FrameMap::G0_opr;
} else if (Assembler::is_simm13(value)) {
__ set(value, O7);
}
if (addr->index()->is_valid()) {
assert(addr->disp() == 0, "must be zero");
offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
} else {
assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
offset = store(tmp, base, addr->disp(), type, wide, false);
}
break;
}
case T_LONG:
case T_DOUBLE: {
assert(!addr->index()->is_valid(), "can't handle reg reg address here");
assert(Assembler::is_simm13(addr->disp()) &&
Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
LIR_Opr tmp = FrameMap::O7_opr;
int value_lo = c->as_jint_lo_bits();
if (value_lo == 0) {
tmp = FrameMap::G0_opr;
} else {
__ set(value_lo, O7);
}
offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
int value_hi = c->as_jint_hi_bits();
if (value_hi == 0) {
tmp = FrameMap::G0_opr;
} else {
__ set(value_hi, O7);
}
store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
break;
}
case T_OBJECT: {
jobject obj = c->as_jobject();
LIR_Opr tmp;
if (obj == NULL) {
tmp = FrameMap::G0_opr;
} else {
tmp = FrameMap::O7_opr;
jobject2reg(c->as_jobject(), O7);
}
// handle either reg+reg or reg+disp address
if (addr->index()->is_valid()) {
assert(addr->disp() == 0, "must be zero");
offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
} else {
assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
offset = store(tmp, base, addr->disp(), type, wide, false);
}
break;
}
default:
Unimplemented();
}
if (info != NULL) {
assert(offset != -1, "offset should've been set");
add_debug_info_for_null_check(offset, info);
}
}
void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
LIR_Const* c = src->as_constant_ptr();
LIR_Opr to_reg = dest;
switch (c->type()) {
case T_INT:
case T_ADDRESS:
{
jint con = c->as_jint();
if (to_reg->is_single_cpu()) {
assert(patch_code == lir_patch_none, "no patching handled here");
__ set(con, to_reg->as_register());
} else {
ShouldNotReachHere();
assert(to_reg->is_single_fpu(), "wrong register kind");
__ set(con, O7);
Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
__ st(O7, temp_slot);
__ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
}
}
break;
case T_LONG:
{
jlong con = c->as_jlong();
if (to_reg->is_double_cpu()) {
__ set(con, to_reg->as_register_lo());
} else if (to_reg->is_single_cpu()) {
__ set(con, to_reg->as_register());
} else {
ShouldNotReachHere();
assert(to_reg->is_double_fpu(), "wrong register kind");
Address temp_slot_lo(SP, ((frame::register_save_words ) * wordSize) + STACK_BIAS);
Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
__ set(low(con), O7);
__ st(O7, temp_slot_lo);
__ set(high(con), O7);
__ st(O7, temp_slot_hi);
__ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
}
}
break;
case T_OBJECT:
{
if (patch_code == lir_patch_none) {
jobject2reg(c->as_jobject(), to_reg->as_register());
} else {
jobject2reg_with_patching(to_reg->as_register(), info);
}
}
break;
case T_METADATA:
{
if (patch_code == lir_patch_none) {
metadata2reg(c->as_metadata(), to_reg->as_register());
} else {
klass2reg_with_patching(to_reg->as_register(), info);
}
}
break;
case T_FLOAT:
{
address const_addr = __ float_constant(c->as_jfloat());
if (const_addr == NULL) {
bailout("const section overflow");
break;
}
RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
AddressLiteral const_addrlit(const_addr, rspec);
if (to_reg->is_single_fpu()) {
__ patchable_sethi(const_addrlit, O7);
__ relocate(rspec);
__ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
} else {
assert(to_reg->is_single_cpu(), "Must be a cpu register.");
__ set(const_addrlit, O7);
__ ld(O7, 0, to_reg->as_register());
}
}
break;
case T_DOUBLE:
{
address const_addr = __ double_constant(c->as_jdouble());
if (const_addr == NULL) {
bailout("const section overflow");
break;
}
RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
if (to_reg->is_double_fpu()) {
AddressLiteral const_addrlit(const_addr, rspec);
__ patchable_sethi(const_addrlit, O7);
__ relocate(rspec);
__ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
} else {
assert(to_reg->is_double_cpu(), "Must be a long register.");
__ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
}
}
break;
default:
ShouldNotReachHere();
}
}
Address LIR_Assembler::as_Address(LIR_Address* addr) {
Register reg = addr->base()->as_pointer_register();
LIR_Opr index = addr->index();
if (index->is_illegal()) {
return Address(reg, addr->disp());
} else {
assert (addr->disp() == 0, "unsupported address mode");
return Address(reg, index->as_pointer_register());
}
}
void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
switch (type) {
case T_INT:
case T_FLOAT: {
Register tmp = O7;
Address from = frame_map()->address_for_slot(src->single_stack_ix());
Address to = frame_map()->address_for_slot(dest->single_stack_ix());
__ lduw(from.base(), from.disp(), tmp);
__ stw(tmp, to.base(), to.disp());
break;
}
case T_ADDRESS:
case T_OBJECT: {
Register tmp = O7;
Address from = frame_map()->address_for_slot(src->single_stack_ix());
Address to = frame_map()->address_for_slot(dest->single_stack_ix());
__ ld_ptr(from.base(), from.disp(), tmp);
__ st_ptr(tmp, to.base(), to.disp());
break;
}
case T_LONG:
case T_DOUBLE: {
Register tmp = O7;
Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
__ lduw(from.base(), from.disp(), tmp);
__ stw(tmp, to.base(), to.disp());
__ lduw(from.base(), from.disp() + 4, tmp);
__ stw(tmp, to.base(), to.disp() + 4);
break;
}
default:
ShouldNotReachHere();
}
}
Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
Address base = as_Address(addr);
return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
}
Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
Address base = as_Address(addr);
return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
}
void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
assert(type != T_METADATA, "load of metadata ptr not supported");
LIR_Address* addr = src_opr->as_address_ptr();
LIR_Opr to_reg = dest;
Register src = addr->base()->as_pointer_register();
Register disp_reg = noreg;
int disp_value = addr->disp();
bool needs_patching = (patch_code != lir_patch_none);
if (addr->base()->type() == T_OBJECT) {
__ verify_oop(src);
}
PatchingStub* patch = NULL;
if (needs_patching) {
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
assert(!to_reg->is_double_cpu() ||
patch_code == lir_patch_none ||
patch_code == lir_patch_normal, "patching doesn't match register");
}
if (addr->index()->is_illegal()) {
if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
if (needs_patching) {
__ patchable_set(0, O7);
} else {
__ set(disp_value, O7);
}
disp_reg = O7;
}
} else if (unaligned || PatchALot) {
__ add(src, addr->index()->as_pointer_register(), O7);
src = O7;
} else {
disp_reg = addr->index()->as_pointer_register();
assert(disp_value == 0, "can't handle 3 operand addresses");
}
// remember the offset of the load. The patching_epilog must be done
// before the call to add_debug_info, otherwise the PcDescs don't get
// entered in increasing order.
int offset = code_offset();
assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
if (disp_reg == noreg) {
offset = load(src, disp_value, to_reg, type, wide, unaligned);
} else {
assert(!unaligned, "can't handle this");
offset = load(src, disp_reg, to_reg, type, wide);
}
if (patch != NULL) {
patching_epilog(patch, patch_code, src, info);
}
if (info != NULL) add_debug_info_for_null_check(offset, info);
}
void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
Address addr;
if (src->is_single_word()) {
addr = frame_map()->address_for_slot(src->single_stack_ix());
} else if (src->is_double_word()) {
addr = frame_map()->address_for_double_slot(src->double_stack_ix());
}
bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
}
void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
Address addr;
if (dest->is_single_word()) {
addr = frame_map()->address_for_slot(dest->single_stack_ix());
} else if (dest->is_double_word()) {
addr = frame_map()->address_for_slot(dest->double_stack_ix());
}
bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
}
void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
if (from_reg->is_double_fpu()) {
// double to double moves
assert(to_reg->is_double_fpu(), "should match");
__ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
} else {
// float to float moves
assert(to_reg->is_single_fpu(), "should match");
__ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
}
} else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
if (from_reg->is_double_cpu()) {
__ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
} else if (to_reg->is_double_cpu()) {
// int to int moves
__ mov(from_reg->as_register(), to_reg->as_register_lo());
} else {
// int to int moves
__ mov(from_reg->as_register(), to_reg->as_register());
}
} else {
ShouldNotReachHere();
}
if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
__ verify_oop(to_reg->as_register());
}
}
void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
bool wide, bool unaligned) {
assert(type != T_METADATA, "store of metadata ptr not supported");
LIR_Address* addr = dest->as_address_ptr();
Register src = addr->base()->as_pointer_register();
Register disp_reg = noreg;
int disp_value = addr->disp();
bool needs_patching = (patch_code != lir_patch_none);
if (addr->base()->is_oop_register()) {
__ verify_oop(src);
}
PatchingStub* patch = NULL;
if (needs_patching) {
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
assert(!from_reg->is_double_cpu() ||
patch_code == lir_patch_none ||
patch_code == lir_patch_normal, "patching doesn't match register");
}
if (addr->index()->is_illegal()) {
if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
if (needs_patching) {
__ patchable_set(0, O7);
} else {
__ set(disp_value, O7);
}
disp_reg = O7;
}
} else if (unaligned || PatchALot) {
__ add(src, addr->index()->as_pointer_register(), O7);
src = O7;
} else {
disp_reg = addr->index()->as_pointer_register();
assert(disp_value == 0, "can't handle 3 operand addresses");
}
// remember the offset of the store. The patching_epilog must be done
// before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
// entered in increasing order.
int offset;
assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
if (disp_reg == noreg) {
offset = store(from_reg, src, disp_value, type, wide, unaligned);
} else {
assert(!unaligned, "can't handle this");
offset = store(from_reg, src, disp_reg, type, wide);
}
if (patch != NULL) {
patching_epilog(patch, patch_code, src, info);
}
if (info != NULL) add_debug_info_for_null_check(offset, info);
}
void LIR_Assembler::return_op(LIR_Opr result) {
if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
__ reserved_stack_check();
}
if (SafepointMechanism::uses_thread_local_poll()) {
__ ld_ptr(Address(G2_thread, Thread::polling_page_offset()), L0);
} else {
__ set((intptr_t)os::get_polling_page(), L0);
}
__ relocate(relocInfo::poll_return_type);
__ ld_ptr(L0, 0, G0);
__ ret();
__ delayed()->restore();
}
int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
if (SafepointMechanism::uses_thread_local_poll()) {
__ ld_ptr(Address(G2_thread, Thread::polling_page_offset()), tmp->as_register());
} else {
__ set((intptr_t)os::get_polling_page(), tmp->as_register());
}
if (info != NULL) {
add_debug_info_for_branch(info);
}
int offset = __ offset();
__ relocate(relocInfo::poll_type);
__ ld_ptr(tmp->as_register(), 0, G0);
return offset;
}
void LIR_Assembler::emit_static_call_stub() {
address call_pc = __ pc();
address stub = __ start_a_stub(call_stub_size());
if (stub == NULL) {
bailout("static call stub overflow");
return;
}
int start = __ offset();
__ relocate(static_stub_Relocation::spec(call_pc));
__ set_metadata(NULL, G5);
// must be set to -1 at code generation time
AddressLiteral addrlit(-1);
__ jump_to(addrlit, G3);
__ delayed()->nop();
assert(__ offset() - start <= call_stub_size(), "stub too big");
__ end_a_stub();
}
void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
if (opr1->is_single_fpu()) {
__ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
} else if (opr1->is_double_fpu()) {
__ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
} else if (opr1->is_single_cpu()) {
if (opr2->is_constant()) {
switch (opr2->as_constant_ptr()->type()) {
case T_INT:
{ jint con = opr2->as_constant_ptr()->as_jint();
if (Assembler::is_simm13(con)) {
__ cmp(opr1->as_register(), con);
} else {
__ set(con, O7);
__ cmp(opr1->as_register(), O7);
}
}
break;
case T_OBJECT:
// there are only equal/notequal comparisions on objects
{ jobject con = opr2->as_constant_ptr()->as_jobject();
if (con == NULL) {
__ cmp(opr1->as_register(), 0);
} else {
jobject2reg(con, O7);
__ cmp(opr1->as_register(), O7);
}
}
break;
default:
ShouldNotReachHere();
break;
}
} else {
if (opr2->is_address()) {
LIR_Address * addr = opr2->as_address_ptr();
BasicType type = addr->type();
if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
else __ ld(as_Address(addr), O7);
__ cmp(opr1->as_register(), O7);
} else {
__ cmp(opr1->as_register(), opr2->as_register());
}
}
} else if (opr1->is_double_cpu()) {
Register xlo = opr1->as_register_lo();
Register xhi = opr1->as_register_hi();
if (opr2->is_constant() && opr2->as_jlong() == 0) {
assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
__ orcc(xhi, G0, G0);
} else if (opr2->is_register()) {
Register ylo = opr2->as_register_lo();
Register yhi = opr2->as_register_hi();
__ cmp(xlo, ylo);
} else {
ShouldNotReachHere();
}
} else if (opr1->is_address()) {
LIR_Address * addr = opr1->as_address_ptr();
BasicType type = addr->type();
assert (opr2->is_constant(), "Checking");
if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
else __ ld(as_Address(addr), O7);
__ cmp(O7, opr2->as_constant_ptr()->as_jint());
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
bool is_unordered_less = (code == lir_ucmp_fd2i);
if (left->is_single_fpu()) {
__ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
} else if (left->is_double_fpu()) {
__ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
} else {
ShouldNotReachHere();
}
} else if (code == lir_cmp_l2i) {
__ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
Assembler::Condition acond;
switch (condition) {
case lir_cond_equal: acond = Assembler::equal; break;
case lir_cond_notEqual: acond = Assembler::notEqual; break;
case lir_cond_less: acond = Assembler::less; break;
case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
case lir_cond_greater: acond = Assembler::greater; break;
case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
default: ShouldNotReachHere();
};
if (opr1->is_constant() && opr1->type() == T_INT) {
Register dest = result->as_register();
// load up first part of constant before branch
// and do the rest in the delay slot.
if (!Assembler::is_simm13(opr1->as_jint())) {
__ sethi(opr1->as_jint(), dest);
}
} else if (opr1->is_constant()) {
const2reg(opr1, result, lir_patch_none, NULL);
} else if (opr1->is_register()) {
reg2reg(opr1, result);
} else if (opr1->is_stack()) {
stack2reg(opr1, result, result->type());
} else {
ShouldNotReachHere();
}
Label skip;
if (type == T_INT) {
__ br(acond, false, Assembler::pt, skip);
} else {
__ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
}
if (opr1->is_constant() && opr1->type() == T_INT) {
Register dest = result->as_register();
if (Assembler::is_simm13(opr1->as_jint())) {
__ delayed()->or3(G0, opr1->as_jint(), dest);
} else {
// the sethi has been done above, so just put in the low 10 bits
__ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
}
} else {
// can't do anything useful in the delay slot
__ delayed()->nop();
}
if (opr2->is_constant()) {
const2reg(opr2, result, lir_patch_none, NULL);
} else if (opr2->is_register()) {
reg2reg(opr2, result);
} else if (opr2->is_stack()) {
stack2reg(opr2, result, result->type());
} else {
ShouldNotReachHere();
}
__ bind(skip);
}
void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
assert(info == NULL, "unused on this code path");
assert(left->is_register(), "wrong items state");
assert(dest->is_register(), "wrong items state");
if (right->is_register()) {
if (dest->is_float_kind()) {
FloatRegister lreg, rreg, res;
FloatRegisterImpl::Width w;
if (right->is_single_fpu()) {
w = FloatRegisterImpl::S;
lreg = left->as_float_reg();
rreg = right->as_float_reg();
res = dest->as_float_reg();
} else {
w = FloatRegisterImpl::D;
lreg = left->as_double_reg();
rreg = right->as_double_reg();
res = dest->as_double_reg();
}
switch (code) {
case lir_add: __ fadd(w, lreg, rreg, res); break;
case lir_sub: __ fsub(w, lreg, rreg, res); break;
case lir_mul: // fall through
case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
case lir_div: // fall through
case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
default: ShouldNotReachHere();
}
} else if (dest->is_double_cpu()) {
Register dst_lo = dest->as_register_lo();
Register op1_lo = left->as_pointer_register();
Register op2_lo = right->as_pointer_register();
switch (code) {
case lir_add:
__ add(op1_lo, op2_lo, dst_lo);
break;
case lir_sub:
__ sub(op1_lo, op2_lo, dst_lo);
break;
default: ShouldNotReachHere();
}
} else {
assert (right->is_single_cpu(), "Just Checking");
Register lreg = left->as_register();
Register res = dest->as_register();
Register rreg = right->as_register();
switch (code) {
case lir_add: __ add (lreg, rreg, res); break;
case lir_sub: __ sub (lreg, rreg, res); break;
case lir_mul: __ mulx (lreg, rreg, res); break;
default: ShouldNotReachHere();
}
}
} else {
assert (right->is_constant(), "must be constant");
if (dest->is_single_cpu()) {
Register lreg = left->as_register();
Register res = dest->as_register();
int simm13 = right->as_constant_ptr()->as_jint();
switch (code) {
case lir_add: __ add (lreg, simm13, res); break;
case lir_sub: __ sub (lreg, simm13, res); break;
case lir_mul: __ mulx (lreg, simm13, res); break;
default: ShouldNotReachHere();
}
} else {
Register lreg = left->as_pointer_register();
Register res = dest->as_register_lo();
long con = right->as_constant_ptr()->as_jlong();
assert(Assembler::is_simm13(con), "must be simm13");
switch (code) {
case lir_add: __ add (lreg, (int)con, res); break;
case lir_sub: __ sub (lreg, (int)con, res); break;
case lir_mul: __ mulx (lreg, (int)con, res); break;
default: ShouldNotReachHere();
}
}
}
}
void LIR_Assembler::fpop() {
// do nothing
}
void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
switch (code) {
case lir_tan: {
assert(thread->is_valid(), "preserve the thread object for performance reasons");
assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
break;
}
case lir_sqrt: {
assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
FloatRegister src_reg = value->as_double_reg();
FloatRegister dst_reg = dest->as_double_reg();
__ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
break;
}
case lir_abs: {
assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
FloatRegister src_reg = value->as_double_reg();
FloatRegister dst_reg = dest->as_double_reg();
__ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
break;
}
default: {
ShouldNotReachHere();
break;
}
}
}
void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
if (right->is_constant()) {
if (dest->is_single_cpu()) {
int simm13 = right->as_constant_ptr()->as_jint();
switch (code) {
case lir_logic_and: __ and3 (left->as_register(), simm13, dest->as_register()); break;
case lir_logic_or: __ or3 (left->as_register(), simm13, dest->as_register()); break;
case lir_logic_xor: __ xor3 (left->as_register(), simm13, dest->as_register()); break;
default: ShouldNotReachHere();
}
} else {
long c = right->as_constant_ptr()->as_jlong();
assert(c == (int)c && Assembler::is_simm13(c), "out of range");
int simm13 = (int)c;
switch (code) {
case lir_logic_and:
__ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
break;
case lir_logic_or:
__ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
break;
case lir_logic_xor:
__ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
break;
default: ShouldNotReachHere();
}
}
} else {
assert(right->is_register(), "right should be in register");
if (dest->is_single_cpu()) {
switch (code) {
case lir_logic_and: __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
case lir_logic_or: __ or3 (left->as_register(), right->as_register(), dest->as_register()); break;
case lir_logic_xor: __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
default: ShouldNotReachHere();
}
} else {
Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
left->as_register_lo();
Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
right->as_register_lo();
switch (code) {
case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
case lir_logic_or: __ or3 (l, r, dest->as_register_lo()); break;
case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
default: ShouldNotReachHere();
}
}
}
}
int LIR_Assembler::shift_amount(BasicType t) {
int elem_size = type2aelembytes(t);
switch (elem_size) {
case 1 : return 0;
case 2 : return 1;
case 4 : return 2;
case 8 : return 3;
}
ShouldNotReachHere();
return -1;
}
void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
assert(exceptionOop->as_register() == Oexception, "should match");
assert(exceptionPC->as_register() == Oissuing_pc, "should match");
info->add_register_oop(exceptionOop);
// reuse the debug info from the safepoint poll for the throw op itself
address pc_for_athrow = __ pc();
int pc_for_athrow_offset = __ offset();
RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
__ set(pc_for_athrow, Oissuing_pc, rspec);
add_call_info(pc_for_athrow_offset, info); // for exception handler
__ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
__ delayed()->nop();
}
void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
assert(exceptionOop->as_register() == Oexception, "should match");
__ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
__ delayed()->nop();
}
void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
Register src = op->src()->as_register();
Register dst = op->dst()->as_register();
Register src_pos = op->src_pos()->as_register();
Register dst_pos = op->dst_pos()->as_register();
Register length = op->length()->as_register();
Register tmp = op->tmp()->as_register();
Register tmp2 = O7;
int flags = op->flags();
ciArrayKlass* default_type = op->expected_type();
BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
if (basic_type == T_ARRAY) basic_type = T_OBJECT;
// higher 32bits must be null
__ sra(dst_pos, 0, dst_pos);
__ sra(src_pos, 0, src_pos);
__ sra(length, 0, length);
// set up the arraycopy stub information
ArrayCopyStub* stub = op->stub();
// always do stub if no type information is available. it's ok if
// the known type isn't loaded since the code sanity checks
// in debug mode and the type isn't required when we know the exact type
// also check that the type is an array type.
if (op->expected_type() == NULL) {
__ mov(src, O0);
__ mov(src_pos, O1);
__ mov(dst, O2);
__ mov(dst_pos, O3);
__ mov(length, O4);
address copyfunc_addr = StubRoutines::generic_arraycopy();
assert(copyfunc_addr != NULL, "generic arraycopy stub required");
#ifndef PRODUCT
if (PrintC1Statistics) {
address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
__ inc_counter(counter, G1, G3);
}
#endif
__ call_VM_leaf(tmp, copyfunc_addr);
__ xor3(O0, -1, tmp);
__ sub(length, tmp, length);
__ add(src_pos, tmp, src_pos);
__ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
__ delayed()->add(dst_pos, tmp, dst_pos);
__ bind(*stub->continuation());
return;
}
assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
// make sure src and dst are non-null and load array length
if (flags & LIR_OpArrayCopy::src_null_check) {
__ tst(src);
__ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
__ delayed()->nop();
}
if (flags & LIR_OpArrayCopy::dst_null_check) {
__ tst(dst);
__ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
__ delayed()->nop();
}
// If the compiler was not able to prove that exact type of the source or the destination
// of the arraycopy is an array type, check at runtime if the source or the destination is
// an instance type.
if (flags & LIR_OpArrayCopy::type_check) {
if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
__ load_klass(dst, tmp);
__ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
__ cmp(tmp2, Klass::_lh_neutral_value);
__ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
__ delayed()->nop();
}
if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
__ load_klass(src, tmp);
__ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
__ cmp(tmp2, Klass::_lh_neutral_value);
__ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
__ delayed()->nop();
}
}
if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
// test src_pos register
__ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
__ delayed()->nop();
}
if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
// test dst_pos register
__ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
__ delayed()->nop();
}
if (flags & LIR_OpArrayCopy::length_positive_check) {
// make sure length isn't negative
__ cmp_zero_and_br(Assembler::less, length, *stub->entry());
__ delayed()->nop();
}
if (flags & LIR_OpArrayCopy::src_range_check) {
__ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
__ add(length, src_pos, tmp);
__ cmp(tmp2, tmp);
__ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
__ delayed()->nop();
}
if (flags & LIR_OpArrayCopy::dst_range_check) {
__ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
__ add(length, dst_pos, tmp);
__ cmp(tmp2, tmp);
__ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
__ delayed()->nop();
}
int shift = shift_amount(basic_type);
if (flags & LIR_OpArrayCopy::type_check) {
// We don't know the array types are compatible
if (basic_type != T_OBJECT) {
// Simple test for basic type arrays
if (UseCompressedClassPointers) {
// We don't need decode because we just need to compare
__ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
__ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
__ cmp(tmp, tmp2);
__ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
} else {
__ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
__ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
__ cmp(tmp, tmp2);
__ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
}
__ delayed()->nop();
} else {
// For object arrays, if src is a sub class of dst then we can
// safely do the copy.
address copyfunc_addr = StubRoutines::checkcast_arraycopy();
Label cont, slow;
assert_different_registers(tmp, tmp2, G3, G1);
__ load_klass(src, G3);
__ load_klass(dst, G1);
__ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
__ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
__ delayed()->nop();
__ cmp(G3, 0);
if (copyfunc_addr != NULL) { // use stub if available
// src is not a sub class of dst so we have to do a
// per-element check.
__ br(Assembler::notEqual, false, Assembler::pt, cont);
__ delayed()->nop();
__ bind(slow);
int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
if ((flags & mask) != mask) {
// Check that at least both of them object arrays.
assert(flags & mask, "one of the two should be known to be an object array");
if (!(flags & LIR_OpArrayCopy::src_objarray)) {
__ load_klass(src, tmp);
} else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
__ load_klass(dst, tmp);
}
int lh_offset = in_bytes(Klass::layout_helper_offset());
__ lduw(tmp, lh_offset, tmp2);
jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
__ set(objArray_lh, tmp);
__ cmp(tmp, tmp2);
__ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
__ delayed()->nop();
}
Register src_ptr = O0;
Register dst_ptr = O1;
Register len = O2;
Register chk_off = O3;
Register super_k = O4;
__ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
if (shift == 0) {
__ add(src_ptr, src_pos, src_ptr);
} else {
__ sll(src_pos, shift, tmp);
__ add(src_ptr, tmp, src_ptr);
}
__ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
if (shift == 0) {
__ add(dst_ptr, dst_pos, dst_ptr);
} else {
__ sll(dst_pos, shift, tmp);
__ add(dst_ptr, tmp, dst_ptr);
}
__ mov(length, len);
__ load_klass(dst, tmp);
int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
__ ld_ptr(tmp, ek_offset, super_k);
int sco_offset = in_bytes(Klass::super_check_offset_offset());
__ lduw(super_k, sco_offset, chk_off);
__ call_VM_leaf(tmp, copyfunc_addr);
#ifndef PRODUCT
if (PrintC1Statistics) {
Label failed;
__ br_notnull_short(O0, Assembler::pn, failed);
__ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
__ bind(failed);
}
#endif
__ br_null(O0, false, Assembler::pt, *stub->continuation());
__ delayed()->xor3(O0, -1, tmp);
#ifndef PRODUCT
if (PrintC1Statistics) {
__ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
}
#endif
__ sub(length, tmp, length);
__ add(src_pos, tmp, src_pos);
__ br(Assembler::always, false, Assembler::pt, *stub->entry());
__ delayed()->add(dst_pos, tmp, dst_pos);
__ bind(cont);
} else {
__ br(Assembler::equal, false, Assembler::pn, *stub->entry());
__ delayed()->nop();
__ bind(cont);
}
}
}
#ifdef ASSERT
if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
// Sanity check the known type with the incoming class. For the
// primitive case the types must match exactly with src.klass and
// dst.klass each exactly matching the default type. For the
// object array case, if no type check is needed then either the
// dst type is exactly the expected type and the src type is a
// subtype which we can't check or src is the same array as dst
// but not necessarily exactly of type default_type.
Label known_ok, halt;
metadata2reg(op->expected_type()->constant_encoding(), tmp);
if (UseCompressedClassPointers) {
// tmp holds the default type. It currently comes uncompressed after the
// load of a constant, so encode it.
__ encode_klass_not_null(tmp);
// load the raw value of the dst klass, since we will be comparing
// uncompressed values directly.
__ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
if (basic_type != T_OBJECT) {
__ cmp(tmp, tmp2);
__ br(Assembler::notEqual, false, Assembler::pn, halt);
// load the raw value of the src klass.
__ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
__ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
} else {
__ cmp(tmp, tmp2);
__ br(Assembler::equal, false, Assembler::pn, known_ok);
__ delayed()->cmp(src, dst);
__ brx(Assembler::equal, false, Assembler::pn, known_ok);
__ delayed()->nop();
}
} else {
__ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
if (basic_type != T_OBJECT) {
__ cmp(tmp, tmp2);
__ brx(Assembler::notEqual, false, Assembler::pn, halt);
__ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
__ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
} else {
__ cmp(tmp, tmp2);
__ brx(Assembler::equal, false, Assembler::pn, known_ok);
__ delayed()->cmp(src, dst);
__ brx(Assembler::equal, false, Assembler::pn, known_ok);
__ delayed()->nop();
}
}
__ bind(halt);
__ stop("incorrect type information in arraycopy");
__ bind(known_ok);
}
#endif
#ifndef PRODUCT
if (PrintC1Statistics) {
address counter = Runtime1::arraycopy_count_address(basic_type);
__ inc_counter(counter, G1, G3);
}
#endif
Register src_ptr = O0;
Register dst_ptr = O1;
Register len = O2;
__ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
if (shift == 0) {
__ add(src_ptr, src_pos, src_ptr);
} else {
__ sll(src_pos, shift, tmp);
__ add(src_ptr, tmp, src_ptr);
}
__ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
if (shift == 0) {
__ add(dst_ptr, dst_pos, dst_ptr);
} else {
__ sll(dst_pos, shift, tmp);
__ add(dst_ptr, tmp, dst_ptr);
}
bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
const char *name;
address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
// arraycopy stubs takes a length in number of elements, so don't scale it.
__ mov(length, len);
__ call_VM_leaf(tmp, entry);
__ bind(*stub->continuation());
}
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
if (dest->is_single_cpu()) {
if (left->type() == T_OBJECT) {
switch (code) {
case lir_shl: __ sllx (left->as_register(), count->as_register(), dest->as_register()); break;
case lir_shr: __ srax (left->as_register(), count->as_register(), dest->as_register()); break;
case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
default: ShouldNotReachHere();
}
} else
switch (code) {
case lir_shl: __ sll (left->as_register(), count->as_register(), dest->as_register()); break;
case lir_shr: __ sra (left->as_register(), count->as_register(), dest->as_register()); break;
case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
default: ShouldNotReachHere();
}
} else {
switch (code) {
case lir_shl: __ sllx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
case lir_shr: __ srax (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
case lir_ushr: __ srlx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
default: ShouldNotReachHere();
}
}
}
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
if (left->type() == T_OBJECT) {
count = count & 63; // shouldn't shift by more than sizeof(intptr_t)
Register l = left->as_register();
Register d = dest->as_register_lo();
switch (code) {
case lir_shl: __ sllx (l, count, d); break;
case lir_shr: __ srax (l, count, d); break;
case lir_ushr: __ srlx (l, count, d); break;
default: ShouldNotReachHere();
}
return;
}
if (dest->is_single_cpu()) {
count = count & 0x1F; // Java spec
switch (code) {
case lir_shl: __ sll (left->as_register(), count, dest->as_register()); break;
case lir_shr: __ sra (left->as_register(), count, dest->as_register()); break;
case lir_ushr: __ srl (left->as_register(), count, dest->as_register()); break;
default: ShouldNotReachHere();
}
} else if (dest->is_double_cpu()) {
count = count & 63; // Java spec
switch (code) {
case lir_shl: __ sllx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
case lir_shr: __ srax (left->as_pointer_register(), count, dest->as_pointer_register()); break;
case lir_ushr: __ srlx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
default: ShouldNotReachHere();
}
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
assert(op->tmp1()->as_register() == G1 &&
op->tmp2()->as_register() == G3 &&
op->tmp3()->as_register() == G4 &&
op->obj()->as_register() == O0 &&
op->klass()->as_register() == G5, "must be");
if (op->init_check()) {
add_debug_info_for_null_check_here(op->stub()->info());
__ ldub(op->klass()->as_register(),
in_bytes(InstanceKlass::init_state_offset()),
op->tmp1()->as_register());
__ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
__ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
__ delayed()->nop();
}
__ allocate_object(op->obj()->as_register(),
op->tmp1()->as_register(),
op->tmp2()->as_register(),
op->tmp3()->as_register(),
op->header_size(),
op->object_size(),
op->klass()->as_register(),
*op->stub()->entry());
__ bind(*op->stub()->continuation());
__ verify_oop(op->obj()->as_register());
}
void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
assert(op->tmp1()->as_register() == G1 &&
op->tmp2()->as_register() == G3 &&
op->tmp3()->as_register() == G4 &&
op->tmp4()->as_register() == O1 &&
op->klass()->as_register() == G5, "must be");
__ signx(op->len()->as_register());
if (UseSlowPath ||
(!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
(!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
__ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
__ delayed()->nop();
} else {
__ allocate_array(op->obj()->as_register(),
op->len()->as_register(),
op->tmp1()->as_register(),
op->tmp2()->as_register(),
op->tmp3()->as_register(),
arrayOopDesc::header_size(op->type()),
type2aelembytes(op->type()),
op->klass()->as_register(),
*op->stub()->entry());
}
__ bind(*op->stub()->continuation());
}
void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
ciMethodData *md, ciProfileData *data,
Register recv, Register tmp1, Label* update_done) {
uint i;
for (i = 0; i < VirtualCallData::row_limit(); i++) {
Label next_test;
// See if the receiver is receiver[n].
Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
mdo_offset_bias);
__ ld_ptr(receiver_addr, tmp1);
__ verify_klass_ptr(tmp1);
__ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
mdo_offset_bias);
__ ld_ptr(data_addr, tmp1);
__ add(tmp1, DataLayout::counter_increment, tmp1);
__ st_ptr(tmp1, data_addr);
__ ba(*update_done);
__ delayed()->nop();
__ bind(next_test);
}
// Didn't find receiver; find next empty slot and fill it in
for (i = 0; i < VirtualCallData::row_limit(); i++) {
Label next_test;
Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
mdo_offset_bias);
__ ld_ptr(recv_addr, tmp1);
__ br_notnull_short(tmp1, Assembler::pt, next_test);
__ st_ptr(recv, recv_addr);
__ set(DataLayout::counter_increment, tmp1);
__ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
mdo_offset_bias);
__ ba(*update_done);
__ delayed()->nop();
__ bind(next_test);
}
}
void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
md = method->method_data_or_null();
assert(md != NULL, "Sanity");
data = md->bci_to_data(bci);
assert(data != NULL, "need data for checkcast");
assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
// The offset is large so bias the mdo by the base of the slot so
// that the ld can use simm13s to reference the slots of the data
mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
}
}
void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
// we always need a stub for the failure case.
CodeStub* stub = op->stub();
Register obj = op->object()->as_register();
Register k_RInfo = op->tmp1()->as_register();
Register klass_RInfo = op->tmp2()->as_register();
Register dst = op->result_opr()->as_register();
Register Rtmp1 = op->tmp3()->as_register();
ciKlass* k = op->klass();
if (obj == k_RInfo) {
k_RInfo = klass_RInfo;
klass_RInfo = obj;
}
ciMethodData* md;
ciProfileData* data;
int mdo_offset_bias = 0;
if (op->should_profile()) {
ciMethod* method = op->profiled_method();
assert(method != NULL, "Should have method");
setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
Label not_null;
__ br_notnull_short(obj, Assembler::pn, not_null);
Register mdo = k_RInfo;
Register data_val = Rtmp1;
metadata2reg(md->constant_encoding(), mdo);
if (mdo_offset_bias > 0) {
__ set(mdo_offset_bias, data_val);
__ add(mdo, data_val, mdo);
}
Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
__ ldub(flags_addr, data_val);
__ or3(data_val, BitData::null_seen_byte_constant(), data_val);
__ stb(data_val, flags_addr);
__ ba(*obj_is_null);
__ delayed()->nop();
__ bind(not_null);
} else {
__ br_null(obj, false, Assembler::pn, *obj_is_null);
__ delayed()->nop();
}
Label profile_cast_failure, profile_cast_success;
Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
Label *success_target = op->should_profile() ? &profile_cast_success : success;
// patching may screw with our temporaries on sparc,
// so let's do it before loading the class
if (k->is_loaded()) {
metadata2reg(k->constant_encoding(), k_RInfo);
} else {
klass2reg_with_patching(k_RInfo, op->info_for_patch());
}
assert(obj != k_RInfo, "must be different");
// get object class
// not a safepoint as obj null check happens earlier
__ load_klass(obj, klass_RInfo);
if (op->fast_check()) {
assert_different_registers(klass_RInfo, k_RInfo);
__ cmp(k_RInfo, klass_RInfo);
__ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
__ delayed()->nop();
} else {
bool need_slow_path = true;
if (k->is_loaded()) {
if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
need_slow_path = false;
// perform the fast part of the checking logic
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
(need_slow_path ? success_target : NULL),
failure_target, NULL,
RegisterOrConstant(k->super_check_offset()));
} else {
// perform the fast part of the checking logic
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
failure_target, NULL);
}
if (need_slow_path) {
// call out-of-line instance of __ check_klass_subtype_slow_path(...):
assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
__ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
__ delayed()->nop();
__ cmp(G3, 0);
__ br(Assembler::equal, false, Assembler::pn, *failure_target);
__ delayed()->nop();
// Fall through to success case
}
}
if (op->should_profile()) {
Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
assert_different_registers(obj, mdo, recv, tmp1);
__ bind(profile_cast_success);
metadata2reg(md->constant_encoding(), mdo);
if (mdo_offset_bias > 0) {
__ set(mdo_offset_bias, tmp1);
__ add(mdo, tmp1, mdo);
}
__ load_klass(obj, recv);
type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
// Jump over the failure case
__ ba(*success);
__ delayed()->nop();
// Cast failure case
__ bind(profile_cast_failure);
metadata2reg(md->constant_encoding(), mdo);
if (mdo_offset_bias > 0) {
__ set(mdo_offset_bias, tmp1);
__ add(mdo, tmp1, mdo);
}
Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
__ ld_ptr(data_addr, tmp1);
__ sub(tmp1, DataLayout::counter_increment, tmp1);
__ st_ptr(tmp1, data_addr);
__ ba(*failure);
__ delayed()->nop();
}
__ ba(*success);
__ delayed()->nop();
}
void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
LIR_Code code = op->code();
if (code == lir_store_check) {
Register value = op->object()->as_register();
Register array = op->array()->as_register();
Register k_RInfo = op->tmp1()->as_register();
Register klass_RInfo = op->tmp2()->as_register();
Register Rtmp1 = op->tmp3()->as_register();
__ verify_oop(value);
CodeStub* stub = op->stub();
// check if it needs to be profiled
ciMethodData* md;
ciProfileData* data;
int mdo_offset_bias = 0;
if (op->should_profile()) {
ciMethod* method = op->profiled_method();
assert(method != NULL, "Should have method");
setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
}
Label profile_cast_success, profile_cast_failure, done;
Label *success_target = op->should_profile() ? &profile_cast_success : &done;
Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
if (op->should_profile()) {
Label not_null;
__ br_notnull_short(value, Assembler::pn, not_null);
Register mdo = k_RInfo;
Register data_val = Rtmp1;
metadata2reg(md->constant_encoding(), mdo);
if (mdo_offset_bias > 0) {
__ set(mdo_offset_bias, data_val);
__ add(mdo, data_val, mdo);
}
Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
__ ldub(flags_addr, data_val);
__ or3(data_val, BitData::null_seen_byte_constant(), data_val);
__ stb(data_val, flags_addr);
__ ba_short(done);
__ bind(not_null);
} else {
__ br_null_short(value, Assembler::pn, done);
}
add_debug_info_for_null_check_here(op->info_for_exception());
__ load_klass(array, k_RInfo);
__ load_klass(value, klass_RInfo);
// get instance klass
__ ld_ptr(Address(k_RInfo, ObjArrayKlass::element_klass_offset()), k_RInfo);
// perform the fast part of the checking logic
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
// call out-of-line instance of __ check_klass_subtype_slow_path(...):
assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
__ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
__ delayed()->nop();
__ cmp(G3, 0);
__ br(Assembler::equal, false, Assembler::pn, *failure_target);
__ delayed()->nop();
// fall through to the success case
if (op->should_profile()) {
Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
assert_different_registers(value, mdo, recv, tmp1);
__ bind(profile_cast_success);
metadata2reg(md->constant_encoding(), mdo);
if (mdo_offset_bias > 0) {
__ set(mdo_offset_bias, tmp1);
__ add(mdo, tmp1, mdo);
}
__ load_klass(value, recv);
type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
__ ba_short(done);
// Cast failure case
__ bind(profile_cast_failure);
metadata2reg(md->constant_encoding(), mdo);
if (mdo_offset_bias > 0) {
__ set(mdo_offset_bias, tmp1);
__ add(mdo, tmp1, mdo);
}
Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
__ ld_ptr(data_addr, tmp1);
__ sub(tmp1, DataLayout::counter_increment, tmp1);
__ st_ptr(tmp1, data_addr);
__ ba(*stub->entry());
__ delayed()->nop();
}
__ bind(done);
} else if (code == lir_checkcast) {
Register obj = op->object()->as_register();
Register dst = op->result_opr()->as_register();
Label success;
emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
__ bind(success);
__ mov(obj, dst);
} else if (code == lir_instanceof) {
Register obj = op->object()->as_register();
Register dst = op->result_opr()->as_register();
Label success, failure, done;
emit_typecheck_helper(op, &success, &failure, &failure);
__ bind(failure);
__ set(0, dst);
__ ba_short(done);
__ bind(success);
__ set(1, dst);
__ bind(done);
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
if (op->code() == lir_cas_long) {
assert(VM_Version::supports_cx8(), "wrong machine");
Register addr = op->addr()->as_pointer_register();
Register cmp_value_lo = op->cmp_value()->as_register_lo();
Register cmp_value_hi = op->cmp_value()->as_register_hi();
Register new_value_lo = op->new_value()->as_register_lo();
Register new_value_hi = op->new_value()->as_register_hi();
Register t1 = op->tmp1()->as_register();
Register t2 = op->tmp2()->as_register();
__ mov(cmp_value_lo, t1);
__ mov(new_value_lo, t2);
// perform the compare and swap operation
__ casx(addr, t1, t2);
// generate condition code - if the swap succeeded, t2 ("new value" reg) was
// overwritten with the original value in "addr" and will be equal to t1.
__ cmp(t1, t2);
} else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
Register addr = op->addr()->as_pointer_register();
Register cmp_value = op->cmp_value()->as_register();
Register new_value = op->new_value()->as_register();
Register t1 = op->tmp1()->as_register();
Register t2 = op->tmp2()->as_register();
__ mov(cmp_value, t1);
__ mov(new_value, t2);
if (op->code() == lir_cas_obj) {
if (UseCompressedOops) {
__ encode_heap_oop(t1);
__ encode_heap_oop(t2);
__ cas(addr, t1, t2);
} else {
__ cas_ptr(addr, t1, t2);
}
} else {
__ cas(addr, t1, t2);
}
__ cmp(t1, t2);
} else {
Unimplemented();
}
}
void LIR_Assembler::set_24bit_FPU() {
Unimplemented();
}
void LIR_Assembler::reset_FPU() {
Unimplemented();
}
void LIR_Assembler::breakpoint() {
__ breakpoint_trap();
}
void LIR_Assembler::push(LIR_Opr opr) {
Unimplemented();
}
void LIR_Assembler::pop(LIR_Opr opr) {
Unimplemented();
}
void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
Register dst = dst_opr->as_register();
Register reg = mon_addr.base();
int offset = mon_addr.disp();
// compute pointer to BasicLock
if (mon_addr.is_simm13()) {
__ add(reg, offset, dst);
} else {
__ set(offset, dst);
__ add(dst, reg, dst);
}
}
void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
assert(op->crc()->is_single_cpu(), "crc must be register");
assert(op->val()->is_single_cpu(), "byte value must be register");
assert(op->result_opr()->is_single_cpu(), "result must be register");
Register crc = op->crc()->as_register();
Register val = op->val()->as_register();
Register table = op->result_opr()->as_register();
Register res = op->result_opr()->as_register();
assert_different_registers(val, crc, table);
__ set(ExternalAddress(StubRoutines::crc_table_addr()), table);
__ not1(crc);
__ clruwu(crc);
__ update_byte_crc32(crc, val, table);
__ not1(crc);
__ mov(crc, res);
}
void LIR_Assembler::emit_lock(LIR_OpLock* op) {
Register obj = op->obj_opr()->as_register();
Register hdr = op->hdr_opr()->as_register();
Register lock = op->lock_opr()->as_register();
// obj may not be an oop
if (op->code() == lir_lock) {
MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
if (UseFastLocking) {
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
// add debug info for NullPointerException only if one is possible
if (op->info() != NULL) {
add_debug_info_for_null_check_here(op->info());
}
__ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
} else {
// always do slow locking
// note: the slow locking code could be inlined here, however if we use
// slow locking, speed doesn't matter anyway and this solution is
// simpler and requires less duplicated code - additionally, the
// slow locking code is the same in either case which simplifies
// debugging
__ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
__ delayed()->nop();
}
} else {
assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
if (UseFastLocking) {
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
__ unlock_object(hdr, obj, lock, *op->stub()->entry());
} else {
// always do slow unlocking
// note: the slow unlocking code could be inlined here, however if we use
// slow unlocking, speed doesn't matter anyway and this solution is
// simpler and requires less duplicated code - additionally, the
// slow unlocking code is the same in either case which simplifies
// debugging
__ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
__ delayed()->nop();
}
}
__ bind(*op->stub()->continuation());
}
void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
ciMethod* method = op->profiled_method();
int bci = op->profiled_bci();
ciMethod* callee = op->profiled_callee();
// Update counter for all call types
ciMethodData* md = method->method_data_or_null();
assert(md != NULL, "Sanity");
ciProfileData* data = md->bci_to_data(bci);
assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
Register mdo = op->mdo()->as_register();
assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
Register tmp1 = op->tmp1()->as_register_lo();
metadata2reg(md->constant_encoding(), mdo);
int mdo_offset_bias = 0;
if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
data->size_in_bytes())) {
// The offset is large so bias the mdo by the base of the slot so
// that the ld can use simm13s to reference the slots of the data
mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
__ set(mdo_offset_bias, O7);
__ add(mdo, O7, mdo);
}
Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
// Perform additional virtual call profiling for invokevirtual and
// invokeinterface bytecodes
if (op->should_profile_receiver_type()) {
assert(op->recv()->is_single_cpu(), "recv must be allocated");
Register recv = op->recv()->as_register();
assert_different_registers(mdo, tmp1, recv);
assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
ciKlass* known_klass = op->known_holder();
if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
// We know the type that will be seen at this call site; we can
// statically update the MethodData* rather than needing to do
// dynamic tests on the receiver type
// NOTE: we should probably put a lock around this search to
// avoid collisions by concurrent compilations
ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
uint i;
for (i = 0; i < VirtualCallData::row_limit(); i++) {
ciKlass* receiver = vc_data->receiver(i);
if (known_klass->equals(receiver)) {
Address data_addr(mdo, md->byte_offset_of_slot(data,
VirtualCallData::receiver_count_offset(i)) -
mdo_offset_bias);
__ ld_ptr(data_addr, tmp1);
__ add(tmp1, DataLayout::counter_increment, tmp1);
__ st_ptr(tmp1, data_addr);
return;
}
}
// Receiver type not found in profile data; select an empty slot
// Note that this is less efficient than it should be because it
// always does a write to the receiver part of the
// VirtualCallData rather than just the first time
for (i = 0; i < VirtualCallData::row_limit(); i++) {
ciKlass* receiver = vc_data->receiver(i);
if (receiver == NULL) {
Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
mdo_offset_bias);
metadata2reg(known_klass->constant_encoding(), tmp1);
__ st_ptr(tmp1, recv_addr);
Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
mdo_offset_bias);
__ ld_ptr(data_addr, tmp1);
__ add(tmp1, DataLayout::counter_increment, tmp1);
__ st_ptr(tmp1, data_addr);
return;
}
}
} else {
__ load_klass(recv, recv);
Label update_done;
type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
// Receiver did not match any saved receiver and there is no empty row for it.
// Increment total counter to indicate polymorphic case.
__ ld_ptr(counter_addr, tmp1);
__ add(tmp1, DataLayout::counter_increment, tmp1);
__ st_ptr(tmp1, counter_addr);
__ bind(update_done);
}
} else {
// Static call
__ ld_ptr(counter_addr, tmp1);
__ add(tmp1, DataLayout::counter_increment, tmp1);
__ st_ptr(tmp1, counter_addr);
}
}
void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
Register obj = op->obj()->as_register();
Register tmp1 = op->tmp()->as_pointer_register();
Register tmp2 = G1;
Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
ciKlass* exact_klass = op->exact_klass();
intptr_t current_klass = op->current_klass();
bool not_null = op->not_null();
bool no_conflict = op->no_conflict();
Label update, next, none;
bool do_null = !not_null;
bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
assert(do_null || do_update, "why are we here?");
assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
__ verify_oop(obj);
if (tmp1 != obj) {
__ mov(obj, tmp1);
}
if (do_null) {
__ br_notnull_short(tmp1, Assembler::pt, update);
if (!TypeEntries::was_null_seen(current_klass)) {
__ ld_ptr(mdo_addr, tmp1);
__ or3(tmp1, TypeEntries::null_seen, tmp1);
__ st_ptr(tmp1, mdo_addr);
}
if (do_update) {
__ ba(next);
__ delayed()->nop();
}
#ifdef ASSERT
} else {
__ br_notnull_short(tmp1, Assembler::pt, update);
__ stop("unexpect null obj");
#endif
}
__ bind(update);
if (do_update) {
#ifdef ASSERT
if (exact_klass != NULL) {
Label ok;
__ load_klass(tmp1, tmp1);
metadata2reg(exact_klass->constant_encoding(), tmp2);
__ cmp_and_br_short(tmp1, tmp2, Assembler::equal, Assembler::pt, ok);
__ stop("exact klass and actual klass differ");
__ bind(ok);
}
#endif
Label do_update;
__ ld_ptr(mdo_addr, tmp2);
if (!no_conflict) {
if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
if (exact_klass != NULL) {
metadata2reg(exact_klass->constant_encoding(), tmp1);
} else {
__ load_klass(tmp1, tmp1);
}
__ xor3(tmp1, tmp2, tmp1);
__ btst(TypeEntries::type_klass_mask, tmp1);
// klass seen before, nothing to do. The unknown bit may have been
// set already but no need to check.
__ brx(Assembler::zero, false, Assembler::pt, next);
__ delayed()->
btst(TypeEntries::type_unknown, tmp1);
// already unknown. Nothing to do anymore.
__ brx(Assembler::notZero, false, Assembler::pt, next);
if (TypeEntries::is_type_none(current_klass)) {
__ delayed()->btst(TypeEntries::type_mask, tmp2);
__ brx(Assembler::zero, true, Assembler::pt, do_update);
// first time here. Set profile type.
__ delayed()->or3(tmp2, tmp1, tmp2);
} else {
__ delayed()->nop();
}
} else {
assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
__ btst(TypeEntries::type_unknown, tmp2);
// already unknown. Nothing to do anymore.
__ brx(Assembler::notZero, false, Assembler::pt, next);
__ delayed()->nop();
}
// different than before. Cannot keep accurate profile.
__ or3(tmp2, TypeEntries::type_unknown, tmp2);
} else {
// There's a single possible klass at this profile point
assert(exact_klass != NULL, "should be");
if (TypeEntries::is_type_none(current_klass)) {
metadata2reg(exact_klass->constant_encoding(), tmp1);
__ xor3(tmp1, tmp2, tmp1);
__ btst(TypeEntries::type_klass_mask, tmp1);
__ brx(Assembler::zero, false, Assembler::pt, next);
#ifdef ASSERT
{
Label ok;
__ delayed()->btst(TypeEntries::type_mask, tmp2);
__ brx(Assembler::zero, true, Assembler::pt, ok);
__ delayed()->nop();
__ stop("unexpected profiling mismatch");
__ bind(ok);
}
// first time here. Set profile type.
__ or3(tmp2, tmp1, tmp2);
#else
// first time here. Set profile type.
__ delayed()->or3(tmp2, tmp1, tmp2);
#endif
} else {
assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
// already unknown. Nothing to do anymore.
__ btst(TypeEntries::type_unknown, tmp2);
__ brx(Assembler::notZero, false, Assembler::pt, next);
__ delayed()->or3(tmp2, TypeEntries::type_unknown, tmp2);
}
}
__ bind(do_update);
__ st_ptr(tmp2, mdo_addr);
__ bind(next);
}
}
void LIR_Assembler::align_backward_branch_target() {
__ align(OptoLoopAlignment);
}
void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
// make sure we are expecting a delay
// this has the side effect of clearing the delay state
// so we can use _masm instead of _masm->delayed() to do the
// code generation.
__ delayed();
// make sure we only emit one instruction
int offset = code_offset();
op->delay_op()->emit_code(this);
#ifdef ASSERT
if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
op->delay_op()->print();
}
assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
"only one instruction can go in a delay slot");
#endif
// we may also be emitting the call info for the instruction
// which we are the delay slot of.
CodeEmitInfo* call_info = op->call_info();
if (call_info) {
add_call_info(code_offset(), call_info);
}
if (VerifyStackAtCalls) {
_masm->sub(FP, SP, O7);
_masm->cmp(O7, initial_frame_size_in_bytes());
_masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
}
}
void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
// tmp must be unused
assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
assert(left->is_register(), "can only handle registers");
if (left->is_single_cpu()) {
__ neg(left->as_register(), dest->as_register());
} else if (left->is_single_fpu()) {
__ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
} else if (left->is_double_fpu()) {
__ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
} else {
assert (left->is_double_cpu(), "Must be a long");
Register Rlow = left->as_register_lo();
Register Rhi = left->as_register_hi();
__ sub(G0, Rlow, dest->as_register_lo());
}
}
void LIR_Assembler::fxch(int i) {
Unimplemented();
}
void LIR_Assembler::fld(int i) {
Unimplemented();
}
void LIR_Assembler::ffree(int i) {
Unimplemented();
}
void LIR_Assembler::rt_call(LIR_Opr result, address dest,
const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
// if tmp is invalid, then the function being called doesn't destroy the thread
if (tmp->is_valid()) {
__ save_thread(tmp->as_pointer_register());
}
__ call(dest, relocInfo::runtime_call_type);
__ delayed()->nop();
if (info != NULL) {
add_call_info_here(info);
}
if (tmp->is_valid()) {
__ restore_thread(tmp->as_pointer_register());
}
#ifdef ASSERT
__ verify_thread();
#endif // ASSERT
}
void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
ShouldNotReachHere();
NEEDS_CLEANUP;
if (type == T_LONG) {
LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
// (extended to allow indexed as well as constant displaced for JSR-166)
Register idx = noreg; // contains either constant offset or index
int disp = mem_addr->disp();
if (mem_addr->index() == LIR_OprFact::illegalOpr) {
if (!Assembler::is_simm13(disp)) {
idx = O7;
__ set(disp, idx);
}
} else {
assert(disp == 0, "not both indexed and disp");
idx = mem_addr->index()->as_register();
}
int null_check_offset = -1;
Register base = mem_addr->base()->as_register();
if (src->is_register() && dest->is_address()) {
// G4 is high half, G5 is low half
// clear the top bits of G5, and scale up G4
__ srl (src->as_register_lo(), 0, G5);
__ sllx(src->as_register_hi(), 32, G4);
// combine the two halves into the 64 bits of G4
__ or3(G4, G5, G4);
null_check_offset = __ offset();
if (idx == noreg) {
__ stx(G4, base, disp);
} else {
__ stx(G4, base, idx);
}
} else if (src->is_address() && dest->is_register()) {
null_check_offset = __ offset();
if (idx == noreg) {
__ ldx(base, disp, G5);
} else {
__ ldx(base, idx, G5);
}
__ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
__ mov (G5, dest->as_register_lo()); // copy low half into lo
} else {
Unimplemented();
}
if (info != NULL) {
add_debug_info_for_null_check(null_check_offset, info);
}
} else {
// use normal move for all other volatiles since they don't need
// special handling to remain atomic.
move_op(src, dest, type, lir_patch_none, info, false, false, false);
}
}
void LIR_Assembler::membar() {
// only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
__ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
}
void LIR_Assembler::membar_acquire() {
// no-op on TSO
}
void LIR_Assembler::membar_release() {
// no-op on TSO
}
void LIR_Assembler::membar_loadload() {
// no-op
//__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
}
void LIR_Assembler::membar_storestore() {
// no-op
//__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
}
void LIR_Assembler::membar_loadstore() {
// no-op
//__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
}
void LIR_Assembler::membar_storeload() {
__ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
}
void LIR_Assembler::on_spin_wait() {
Unimplemented();
}
// Pack two sequential registers containing 32 bit values
// into a single 64 bit register.
// src and src->successor() are packed into dst
// src and dst may be the same register.
// Note: src is destroyed
void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
Register rs = src->as_register();
Register rd = dst->as_register_lo();
__ sllx(rs, 32, rs);
__ srl(rs->successor(), 0, rs->successor());
__ or3(rs, rs->successor(), rd);
}
// Unpack a 64 bit value in a register into
// two sequential registers.
// src is unpacked into dst and dst->successor()
void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
Register rs = src->as_register_lo();
Register rd = dst->as_register_hi();
assert_different_registers(rs, rd, rd->successor());
__ srlx(rs, 32, rd);
__ srl (rs, 0, rd->successor());
}
void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
const LIR_Address* addr = addr_opr->as_address_ptr();
assert(addr->scale() == LIR_Address::times_1, "can't handle complex addresses yet");
const Register dest_reg = dest->as_pointer_register();
const Register base_reg = addr->base()->as_pointer_register();
if (patch_code != lir_patch_none) {
PatchingStub* patch = new PatchingStub(_masm, PatchingStub::access_field_id);
assert(addr->disp() != 0, "must have");
assert(base_reg != G3_scratch, "invariant");
__ patchable_set(0, G3_scratch);
patching_epilog(patch, patch_code, base_reg, info);
assert(dest_reg != G3_scratch, "invariant");
if (addr->index()->is_valid()) {
const Register index_reg = addr->index()->as_pointer_register();
assert(index_reg != G3_scratch, "invariant");
__ add(index_reg, G3_scratch, G3_scratch);
}
__ add(base_reg, G3_scratch, dest_reg);
} else {
if (Assembler::is_simm13(addr->disp())) {
if (addr->index()->is_valid()) {
const Register index_reg = addr->index()->as_pointer_register();
assert(index_reg != G3_scratch, "invariant");
__ add(base_reg, addr->disp(), G3_scratch);
__ add(index_reg, G3_scratch, dest_reg);
} else {
__ add(base_reg, addr->disp(), dest_reg);
}
} else {
__ set(addr->disp(), G3_scratch);
if (addr->index()->is_valid()) {
const Register index_reg = addr->index()->as_pointer_register();
assert(index_reg != G3_scratch, "invariant");
__ add(index_reg, G3_scratch, G3_scratch);
}
__ add(base_reg, G3_scratch, dest_reg);
}
}
}
void LIR_Assembler::get_thread(LIR_Opr result_reg) {
assert(result_reg->is_register(), "check");
__ mov(G2_thread, result_reg->as_register());
}
#ifdef ASSERT
// emit run-time assertion
void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
assert(op->code() == lir_assert, "must be");
if (op->in_opr1()->is_valid()) {
assert(op->in_opr2()->is_valid(), "both operands must be valid");
comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
} else {
assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
assert(op->condition() == lir_cond_always, "no other conditions allowed");
}
Label ok;
if (op->condition() != lir_cond_always) {
Assembler::Condition acond;
switch (op->condition()) {
case lir_cond_equal: acond = Assembler::equal; break;
case lir_cond_notEqual: acond = Assembler::notEqual; break;
case lir_cond_less: acond = Assembler::less; break;
case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
case lir_cond_greater: acond = Assembler::greater; break;
case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
default: ShouldNotReachHere();
};
__ br(acond, false, Assembler::pt, ok);
__ delayed()->nop();
}
if (op->halt()) {
const char* str = __ code_string(op->msg());
__ stop(str);
} else {
breakpoint();
}
__ bind(ok);
}
#endif
void LIR_Assembler::peephole(LIR_List* lir) {
LIR_OpList* inst = lir->instructions_list();
for (int i = 0; i < inst->length(); i++) {
LIR_Op* op = inst->at(i);
switch (op->code()) {
case lir_cond_float_branch:
case lir_branch: {
LIR_OpBranch* branch = op->as_OpBranch();
assert(branch->info() == NULL, "shouldn't be state on branches anymore");
LIR_Op* delay_op = NULL;
// we'd like to be able to pull following instructions into
// this slot but we don't know enough to do it safely yet so
// only optimize block to block control flow.
if (LIRFillDelaySlots && branch->block()) {
LIR_Op* prev = inst->at(i - 1);
if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
// swap previous instruction into delay slot
inst->at_put(i - 1, op);
inst->at_put(i, new LIR_OpDelay(prev, op->info()));
#ifndef PRODUCT
if (LIRTracePeephole) {
tty->print_cr("delayed");
inst->at(i - 1)->print();
inst->at(i)->print();
tty->cr();
}
#endif
continue;
}
}
if (!delay_op) {
delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
}
inst->insert_before(i + 1, delay_op);
break;
}
case lir_static_call:
case lir_virtual_call:
case lir_icvirtual_call:
case lir_optvirtual_call:
case lir_dynamic_call: {
LIR_Op* prev = inst->at(i - 1);
if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
(op->code() != lir_virtual_call ||
!prev->result_opr()->is_single_cpu() ||
prev->result_opr()->as_register() != O0) &&
LIR_Assembler::is_single_instruction(prev)) {
// Only moves without info can be put into the delay slot.
// Also don't allow the setup of the receiver in the delay
// slot for vtable calls.
inst->at_put(i - 1, op);
inst->at_put(i, new LIR_OpDelay(prev, op->info()));
#ifndef PRODUCT
if (LIRTracePeephole) {
tty->print_cr("delayed");
inst->at(i - 1)->print();
inst->at(i)->print();
tty->cr();
}
#endif
} else {
LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
inst->insert_before(i + 1, delay_op);
i++;
}
break;
}
}
}
}
void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
LIR_Address* addr = src->as_address_ptr();
assert(data == dest, "swap uses only 2 operands");
assert (code == lir_xchg, "no xadd on sparc");
if (data->type() == T_INT) {
__ swap(as_Address(addr), data->as_register());
} else if (data->is_oop()) {
Register obj = data->as_register();
Register narrow = tmp->as_register();
assert(UseCompressedOops, "swap is 32bit only");
__ encode_heap_oop(obj, narrow);
__ swap(as_Address(addr), narrow);
__ decode_heap_oop(narrow, obj);
} else {
ShouldNotReachHere();
}
}
#undef __