/*
* Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/interp_masm.hpp"
#include "interpreter/templateTable.hpp"
#include "memory/universe.inline.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#define __ _masm->
// Platform-dependent initialization
void TemplateTable::pd_initialize() {
// No aarch64 specific initialization
}
// Address computation: local variables
static inline Address iaddress(int n) {
return Address(rlocals, Interpreter::local_offset_in_bytes(n));
}
static inline Address laddress(int n) {
return iaddress(n + 1);
}
static inline Address faddress(int n) {
return iaddress(n);
}
static inline Address daddress(int n) {
return laddress(n);
}
static inline Address aaddress(int n) {
return iaddress(n);
}
static inline Address iaddress(Register r) {
return Address(rlocals, r, Address::lsl(3));
}
static inline Address laddress(Register r, Register scratch,
InterpreterMacroAssembler* _masm) {
__ lea(scratch, Address(rlocals, r, Address::lsl(3)));
return Address(scratch, Interpreter::local_offset_in_bytes(1));
}
static inline Address faddress(Register r) {
return iaddress(r);
}
static inline Address daddress(Register r, Register scratch,
InterpreterMacroAssembler* _masm) {
return laddress(r, scratch, _masm);
}
static inline Address aaddress(Register r) {
return iaddress(r);
}
static inline Address at_rsp() {
return Address(esp, 0);
}
// At top of Java expression stack which may be different than esp(). It
// isn't for category 1 objects.
static inline Address at_tos () {
return Address(esp, Interpreter::expr_offset_in_bytes(0));
}
static inline Address at_tos_p1() {
return Address(esp, Interpreter::expr_offset_in_bytes(1));
}
static inline Address at_tos_p2() {
return Address(esp, Interpreter::expr_offset_in_bytes(2));
}
static inline Address at_tos_p3() {
return Address(esp, Interpreter::expr_offset_in_bytes(3));
}
static inline Address at_tos_p4() {
return Address(esp, Interpreter::expr_offset_in_bytes(4));
}
static inline Address at_tos_p5() {
return Address(esp, Interpreter::expr_offset_in_bytes(5));
}
// Condition conversion
static Assembler::Condition j_not(TemplateTable::Condition cc) {
switch (cc) {
case TemplateTable::equal : return Assembler::NE;
case TemplateTable::not_equal : return Assembler::EQ;
case TemplateTable::less : return Assembler::GE;
case TemplateTable::less_equal : return Assembler::GT;
case TemplateTable::greater : return Assembler::LE;
case TemplateTable::greater_equal: return Assembler::LT;
}
ShouldNotReachHere();
return Assembler::EQ;
}
// Miscelaneous helper routines
// Store an oop (or NULL) at the Address described by obj.
// If val == noreg this means store a NULL
static void do_oop_store(InterpreterMacroAssembler* _masm,
Address obj,
Register val,
BarrierSet::Name barrier,
bool precise) {
assert(val == noreg || val == r0, "parameter is just for looks");
switch (barrier) {
#if INCLUDE_ALL_GCS
case BarrierSet::G1SATBCTLogging:
{
// flatten object address if needed
if (obj.index() == noreg && obj.offset() == 0) {
if (obj.base() != r3) {
__ mov(r3, obj.base());
}
} else {
__ lea(r3, obj);
}
__ g1_write_barrier_pre(r3 /* obj */,
r1 /* pre_val */,
rthread /* thread */,
r10 /* tmp */,
val != noreg /* tosca_live */,
false /* expand_call */);
if (val == noreg) {
__ store_heap_oop_null(Address(r3, 0));
} else {
// G1 barrier needs uncompressed oop for region cross check.
Register new_val = val;
if (UseCompressedOops) {
new_val = rscratch2;
__ mov(new_val, val);
}
__ store_heap_oop(Address(r3, 0), val);
__ g1_write_barrier_post(r3 /* store_adr */,
new_val /* new_val */,
rthread /* thread */,
r10 /* tmp */,
r1 /* tmp2 */);
}
}
break;
#endif // INCLUDE_ALL_GCS
case BarrierSet::CardTableForRS:
case BarrierSet::CardTableExtension:
{
if (val == noreg) {
__ store_heap_oop_null(obj);
} else {
__ store_heap_oop(obj, val);
// flatten object address if needed
if (!precise || (obj.index() == noreg && obj.offset() == 0)) {
__ store_check(obj.base());
} else {
__ lea(r3, obj);
__ store_check(r3);
}
}
}
break;
case BarrierSet::ModRef:
case BarrierSet::Epsilon:
if (val == noreg) {
__ store_heap_oop_null(obj);
} else {
__ store_heap_oop(obj, val);
}
break;
default :
ShouldNotReachHere();
}
}
Address TemplateTable::at_bcp(int offset) {
assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
return Address(rbcp, offset);
}
void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
int byte_no)
{
if (!RewriteBytecodes) return;
Label L_patch_done;
switch (bc) {
case Bytecodes::_fast_aputfield:
case Bytecodes::_fast_bputfield:
case Bytecodes::_fast_zputfield:
case Bytecodes::_fast_cputfield:
case Bytecodes::_fast_dputfield:
case Bytecodes::_fast_fputfield:
case Bytecodes::_fast_iputfield:
case Bytecodes::_fast_lputfield:
case Bytecodes::_fast_sputfield:
{
// We skip bytecode quickening for putfield instructions when
// the put_code written to the constant pool cache is zero.
// This is required so that every execution of this instruction
// calls out to InterpreterRuntime::resolve_get_put to do
// additional, required work.
assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
assert(load_bc_into_bc_reg, "we use bc_reg as temp");
__ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
__ movw(bc_reg, bc);
__ cbzw(temp_reg, L_patch_done); // don't patch
}
break;
default:
assert(byte_no == -1, "sanity");
// the pair bytecodes have already done the load.
if (load_bc_into_bc_reg) {
__ movw(bc_reg, bc);
}
}
if (JvmtiExport::can_post_breakpoint()) {
Label L_fast_patch;
// if a breakpoint is present we can't rewrite the stream directly
__ load_unsigned_byte(temp_reg, at_bcp(0));
__ cmpw(temp_reg, Bytecodes::_breakpoint);
__ br(Assembler::NE, L_fast_patch);
// Let breakpoint table handling rewrite to quicker bytecode
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg);
__ b(L_patch_done);
__ bind(L_fast_patch);
}
#ifdef ASSERT
Label L_okay;
__ load_unsigned_byte(temp_reg, at_bcp(0));
__ cmpw(temp_reg, (int) Bytecodes::java_code(bc));
__ br(Assembler::EQ, L_okay);
__ cmpw(temp_reg, bc_reg);
__ br(Assembler::EQ, L_okay);
__ stop("patching the wrong bytecode");
__ bind(L_okay);
#endif
// patch bytecode
__ strb(bc_reg, at_bcp(0));
__ bind(L_patch_done);
}
// Individual instructions
void TemplateTable::nop() {
transition(vtos, vtos);
// nothing to do
}
void TemplateTable::shouldnotreachhere() {
transition(vtos, vtos);
__ stop("shouldnotreachhere bytecode");
}
void TemplateTable::aconst_null()
{
transition(vtos, atos);
__ mov(r0, 0);
}
void TemplateTable::iconst(int value)
{
transition(vtos, itos);
__ mov(r0, value);
}
void TemplateTable::lconst(int value)
{
__ mov(r0, value);
}
void TemplateTable::fconst(int value)
{
transition(vtos, ftos);
switch (value) {
case 0:
__ fmovs(v0, zr);
break;
case 1:
__ fmovs(v0, 1.0);
break;
case 2:
__ fmovs(v0, 2.0);
break;
default:
ShouldNotReachHere();
break;
}
}
void TemplateTable::dconst(int value)
{
transition(vtos, dtos);
switch (value) {
case 0:
__ fmovd(v0, zr);
break;
case 1:
__ fmovd(v0, 1.0);
break;
case 2:
__ fmovd(v0, 2.0);
break;
default:
ShouldNotReachHere();
break;
}
}
void TemplateTable::bipush()
{
transition(vtos, itos);
__ load_signed_byte32(r0, at_bcp(1));
}
void TemplateTable::sipush()
{
transition(vtos, itos);
__ load_unsigned_short(r0, at_bcp(1));
__ revw(r0, r0);
__ asrw(r0, r0, 16);
}
void TemplateTable::ldc(bool wide)
{
transition(vtos, vtos);
Label call_ldc, notFloat, notClass, Done;
if (wide) {
__ get_unsigned_2_byte_index_at_bcp(r1, 1);
} else {
__ load_unsigned_byte(r1, at_bcp(1));
}
__ get_cpool_and_tags(r2, r0);
const int base_offset = ConstantPool::header_size() * wordSize;
const int tags_offset = Array<u1>::base_offset_in_bytes();
// get type
__ add(r3, r1, tags_offset);
__ lea(r3, Address(r0, r3));
__ ldarb(r3, r3);
// unresolved class - get the resolved class
__ cmp(r3, JVM_CONSTANT_UnresolvedClass);
__ br(Assembler::EQ, call_ldc);
// unresolved class in error state - call into runtime to throw the error
// from the first resolution attempt
__ cmp(r3, JVM_CONSTANT_UnresolvedClassInError);
__ br(Assembler::EQ, call_ldc);
// resolved class - need to call vm to get java mirror of the class
__ cmp(r3, JVM_CONSTANT_Class);
__ br(Assembler::NE, notClass);
__ bind(call_ldc);
__ mov(c_rarg1, wide);
call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
__ push_ptr(r0);
__ verify_oop(r0);
__ b(Done);
__ bind(notClass);
__ cmp(r3, JVM_CONSTANT_Float);
__ br(Assembler::NE, notFloat);
// ftos
__ adds(r1, r2, r1, Assembler::LSL, 3);
__ ldrs(v0, Address(r1, base_offset));
__ push_f();
__ b(Done);
__ bind(notFloat);
#ifdef ASSERT
{
Label L;
__ cmp(r3, JVM_CONSTANT_Integer);
__ br(Assembler::EQ, L);
// String and Object are rewritten to fast_aldc
__ stop("unexpected tag type in ldc");
__ bind(L);
}
#endif
// itos JVM_CONSTANT_Integer only
__ adds(r1, r2, r1, Assembler::LSL, 3);
__ ldrw(r0, Address(r1, base_offset));
__ push_i(r0);
__ bind(Done);
}
// Fast path for caching oop constants.
void TemplateTable::fast_aldc(bool wide)
{
transition(vtos, atos);
Register result = r0;
Register tmp = r1;
int index_size = wide ? sizeof(u2) : sizeof(u1);
Label resolved;
// We are resolved if the resolved reference cache entry contains a
// non-null object (String, MethodType, etc.)
assert_different_registers(result, tmp);
__ get_cache_index_at_bcp(tmp, 1, index_size);
__ load_resolved_reference_at_index(result, tmp);
__ cbnz(result, resolved);
address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
// first time invocation - must resolve first
__ mov(tmp, (int)bytecode());
__ call_VM(result, entry, tmp);
__ bind(resolved);
if (VerifyOops) {
__ verify_oop(result);
}
}
void TemplateTable::ldc2_w()
{
transition(vtos, vtos);
Label Long, Done;
__ get_unsigned_2_byte_index_at_bcp(r0, 1);
__ get_cpool_and_tags(r1, r2);
const int base_offset = ConstantPool::header_size() * wordSize;
const int tags_offset = Array<u1>::base_offset_in_bytes();
// get type
__ lea(r2, Address(r2, r0, Address::lsl(0)));
__ load_unsigned_byte(r2, Address(r2, tags_offset));
__ cmpw(r2, (int)JVM_CONSTANT_Double);
__ br(Assembler::NE, Long);
// dtos
__ lea (r2, Address(r1, r0, Address::lsl(3)));
__ ldrd(v0, Address(r2, base_offset));
__ push_d();
__ b(Done);
__ bind(Long);
// ltos
__ lea(r0, Address(r1, r0, Address::lsl(3)));
__ ldr(r0, Address(r0, base_offset));
__ push_l();
__ bind(Done);
}
void TemplateTable::locals_index(Register reg, int offset)
{
__ ldrb(reg, at_bcp(offset));
__ neg(reg, reg);
}
void TemplateTable::iload() {
iload_internal();
}
void TemplateTable::nofast_iload() {
iload_internal(may_not_rewrite);
}
void TemplateTable::iload_internal(RewriteControl rc) {
transition(vtos, itos);
if (RewriteFrequentPairs && rc == may_rewrite) {
Label rewrite, done;
Register bc = r4;
// get next bytecode
__ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
// if _iload, wait to rewrite to iload2. We only want to rewrite the
// last two iloads in a pair. Comparing against fast_iload means that
// the next bytecode is neither an iload or a caload, and therefore
// an iload pair.
__ cmpw(r1, Bytecodes::_iload);
__ br(Assembler::EQ, done);
// if _fast_iload rewrite to _fast_iload2
__ cmpw(r1, Bytecodes::_fast_iload);
__ movw(bc, Bytecodes::_fast_iload2);
__ br(Assembler::EQ, rewrite);
// if _caload rewrite to _fast_icaload
__ cmpw(r1, Bytecodes::_caload);
__ movw(bc, Bytecodes::_fast_icaload);
__ br(Assembler::EQ, rewrite);
// else rewrite to _fast_iload
__ movw(bc, Bytecodes::_fast_iload);
// rewrite
// bc: new bytecode
__ bind(rewrite);
patch_bytecode(Bytecodes::_iload, bc, r1, false);
__ bind(done);
}
// do iload, get the local value into tos
locals_index(r1);
__ ldr(r0, iaddress(r1));
}
void TemplateTable::fast_iload2()
{
transition(vtos, itos);
locals_index(r1);
__ ldr(r0, iaddress(r1));
__ push(itos);
locals_index(r1, 3);
__ ldr(r0, iaddress(r1));
}
void TemplateTable::fast_iload()
{
transition(vtos, itos);
locals_index(r1);
__ ldr(r0, iaddress(r1));
}
void TemplateTable::lload()
{
transition(vtos, ltos);
__ ldrb(r1, at_bcp(1));
__ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
__ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
}
void TemplateTable::fload()
{
transition(vtos, ftos);
locals_index(r1);
// n.b. we use ldrd here because this is a 64 bit slot
// this is comparable to the iload case
__ ldrd(v0, faddress(r1));
}
void TemplateTable::dload()
{
transition(vtos, dtos);
__ ldrb(r1, at_bcp(1));
__ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
__ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
}
void TemplateTable::aload()
{
transition(vtos, atos);
locals_index(r1);
__ ldr(r0, iaddress(r1));
}
void TemplateTable::locals_index_wide(Register reg) {
__ ldrh(reg, at_bcp(2));
__ rev16w(reg, reg);
__ neg(reg, reg);
}
void TemplateTable::wide_iload() {
transition(vtos, itos);
locals_index_wide(r1);
__ ldr(r0, iaddress(r1));
}
void TemplateTable::wide_lload()
{
transition(vtos, ltos);
__ ldrh(r1, at_bcp(2));
__ rev16w(r1, r1);
__ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
__ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
}
void TemplateTable::wide_fload()
{
transition(vtos, ftos);
locals_index_wide(r1);
// n.b. we use ldrd here because this is a 64 bit slot
// this is comparable to the iload case
__ ldrd(v0, faddress(r1));
}
void TemplateTable::wide_dload()
{
transition(vtos, dtos);
__ ldrh(r1, at_bcp(2));
__ rev16w(r1, r1);
__ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
__ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
}
void TemplateTable::wide_aload()
{
transition(vtos, atos);
locals_index_wide(r1);
__ ldr(r0, aaddress(r1));
}
void TemplateTable::index_check(Register array, Register index)
{
// destroys r1, rscratch1
// check array
__ null_check(array, arrayOopDesc::length_offset_in_bytes());
// sign extend index for use by indexed load
// __ movl2ptr(index, index);
// check index
Register length = rscratch1;
__ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
__ cmpw(index, length);
if (index != r1) {
// ??? convention: move aberrant index into r1 for exception message
assert(r1 != array, "different registers");
__ mov(r1, index);
}
Label ok;
__ br(Assembler::LO, ok);
__ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
__ br(rscratch1);
__ bind(ok);
}
void TemplateTable::iaload()
{
transition(itos, itos);
__ mov(r1, r0);
__ pop_ptr(r0);
// r0: array
// r1: index
index_check(r0, r1); // leaves index in r1, kills rscratch1
__ lea(r1, Address(r0, r1, Address::uxtw(2)));
__ ldrw(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_INT)));
}
void TemplateTable::laload()
{
transition(itos, ltos);
__ mov(r1, r0);
__ pop_ptr(r0);
// r0: array
// r1: index
index_check(r0, r1); // leaves index in r1, kills rscratch1
__ lea(r1, Address(r0, r1, Address::uxtw(3)));
__ ldr(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_LONG)));
}
void TemplateTable::faload()
{
transition(itos, ftos);
__ mov(r1, r0);
__ pop_ptr(r0);
// r0: array
// r1: index
index_check(r0, r1); // leaves index in r1, kills rscratch1
__ lea(r1, Address(r0, r1, Address::uxtw(2)));
__ ldrs(v0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
}
void TemplateTable::daload()
{
transition(itos, dtos);
__ mov(r1, r0);
__ pop_ptr(r0);
// r0: array
// r1: index
index_check(r0, r1); // leaves index in r1, kills rscratch1
__ lea(r1, Address(r0, r1, Address::uxtw(3)));
__ ldrd(v0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
}
void TemplateTable::aaload()
{
transition(itos, atos);
__ mov(r1, r0);
__ pop_ptr(r0);
// r0: array
// r1: index
index_check(r0, r1); // leaves index in r1, kills rscratch1
int s = (UseCompressedOops ? 2 : 3);
__ lea(r1, Address(r0, r1, Address::uxtw(s)));
__ load_heap_oop(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
}
void TemplateTable::baload()
{
transition(itos, itos);
__ mov(r1, r0);
__ pop_ptr(r0);
// r0: array
// r1: index
index_check(r0, r1); // leaves index in r1, kills rscratch1
__ lea(r1, Address(r0, r1, Address::uxtw(0)));
__ load_signed_byte(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
}
void TemplateTable::caload()
{
transition(itos, itos);
__ mov(r1, r0);
__ pop_ptr(r0);
// r0: array
// r1: index
index_check(r0, r1); // leaves index in r1, kills rscratch1
__ lea(r1, Address(r0, r1, Address::uxtw(1)));
__ load_unsigned_short(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
}
// iload followed by caload frequent pair
void TemplateTable::fast_icaload()
{
transition(vtos, itos);
// load index out of locals
locals_index(r2);
__ ldr(r1, iaddress(r2));
__ pop_ptr(r0);
// r0: array
// r1: index
index_check(r0, r1); // leaves index in r1, kills rscratch1
__ lea(r1, Address(r0, r1, Address::uxtw(1)));
__ load_unsigned_short(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
}
void TemplateTable::saload()
{
transition(itos, itos);
__ mov(r1, r0);
__ pop_ptr(r0);
// r0: array
// r1: index
index_check(r0, r1); // leaves index in r1, kills rscratch1
__ lea(r1, Address(r0, r1, Address::uxtw(1)));
__ load_signed_short(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
}
void TemplateTable::iload(int n)
{
transition(vtos, itos);
__ ldr(r0, iaddress(n));
}
void TemplateTable::lload(int n)
{
transition(vtos, ltos);
__ ldr(r0, laddress(n));
}
void TemplateTable::fload(int n)
{
transition(vtos, ftos);
__ ldrs(v0, faddress(n));
}
void TemplateTable::dload(int n)
{
transition(vtos, dtos);
__ ldrd(v0, daddress(n));
}
void TemplateTable::aload(int n)
{
transition(vtos, atos);
__ ldr(r0, iaddress(n));
}
void TemplateTable::aload_0() {
aload_0_internal();
}
void TemplateTable::nofast_aload_0() {
aload_0_internal(may_not_rewrite);
}
void TemplateTable::aload_0_internal(RewriteControl rc) {
// According to bytecode histograms, the pairs:
//
// _aload_0, _fast_igetfield
// _aload_0, _fast_agetfield
// _aload_0, _fast_fgetfield
//
// occur frequently. If RewriteFrequentPairs is set, the (slow)
// _aload_0 bytecode checks if the next bytecode is either
// _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
// rewrites the current bytecode into a pair bytecode; otherwise it
// rewrites the current bytecode into _fast_aload_0 that doesn't do
// the pair check anymore.
//
// Note: If the next bytecode is _getfield, the rewrite must be
// delayed, otherwise we may miss an opportunity for a pair.
//
// Also rewrite frequent pairs
// aload_0, aload_1
// aload_0, iload_1
// These bytecodes with a small amount of code are most profitable
// to rewrite
if (RewriteFrequentPairs && rc == may_rewrite) {
Label rewrite, done;
const Register bc = r4;
// get next bytecode
__ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
// if _getfield then wait with rewrite
__ cmpw(r1, Bytecodes::Bytecodes::_getfield);
__ br(Assembler::EQ, done);
// if _igetfield then rewrite to _fast_iaccess_0
assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
__ cmpw(r1, Bytecodes::_fast_igetfield);
__ movw(bc, Bytecodes::_fast_iaccess_0);
__ br(Assembler::EQ, rewrite);
// if _agetfield then rewrite to _fast_aaccess_0
assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
__ cmpw(r1, Bytecodes::_fast_agetfield);
__ movw(bc, Bytecodes::_fast_aaccess_0);
__ br(Assembler::EQ, rewrite);
// if _fgetfield then rewrite to _fast_faccess_0
assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
__ cmpw(r1, Bytecodes::_fast_fgetfield);
__ movw(bc, Bytecodes::_fast_faccess_0);
__ br(Assembler::EQ, rewrite);
// else rewrite to _fast_aload0
assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
__ movw(bc, Bytecodes::Bytecodes::_fast_aload_0);
// rewrite
// bc: new bytecode
__ bind(rewrite);
patch_bytecode(Bytecodes::_aload_0, bc, r1, false);
__ bind(done);
}
// Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
aload(0);
}
void TemplateTable::istore()
{
transition(itos, vtos);
locals_index(r1);
// FIXME: We're being very pernickerty here storing a jint in a
// local with strw, which costs an extra instruction over what we'd
// be able to do with a simple str. We should just store the whole
// word.
__ lea(rscratch1, iaddress(r1));
__ strw(r0, Address(rscratch1));
}
void TemplateTable::lstore()
{
transition(ltos, vtos);
locals_index(r1);
__ str(r0, laddress(r1, rscratch1, _masm));
}
void TemplateTable::fstore() {
transition(ftos, vtos);
locals_index(r1);
__ lea(rscratch1, iaddress(r1));
__ strs(v0, Address(rscratch1));
}
void TemplateTable::dstore() {
transition(dtos, vtos);
locals_index(r1);
__ strd(v0, daddress(r1, rscratch1, _masm));
}
void TemplateTable::astore()
{
transition(vtos, vtos);
__ pop_ptr(r0);
locals_index(r1);
__ str(r0, aaddress(r1));
}
void TemplateTable::wide_istore() {
transition(vtos, vtos);
__ pop_i();
locals_index_wide(r1);
__ lea(rscratch1, iaddress(r1));
__ strw(r0, Address(rscratch1));
}
void TemplateTable::wide_lstore() {
transition(vtos, vtos);
__ pop_l();
locals_index_wide(r1);
__ str(r0, laddress(r1, rscratch1, _masm));
}
void TemplateTable::wide_fstore() {
transition(vtos, vtos);
__ pop_f();
locals_index_wide(r1);
__ lea(rscratch1, faddress(r1));
__ strs(v0, rscratch1);
}
void TemplateTable::wide_dstore() {
transition(vtos, vtos);
__ pop_d();
locals_index_wide(r1);
__ strd(v0, daddress(r1, rscratch1, _masm));
}
void TemplateTable::wide_astore() {
transition(vtos, vtos);
__ pop_ptr(r0);
locals_index_wide(r1);
__ str(r0, aaddress(r1));
}
void TemplateTable::iastore() {
transition(itos, vtos);
__ pop_i(r1);
__ pop_ptr(r3);
// r0: value
// r1: index
// r3: array
index_check(r3, r1); // prefer index in r1
__ lea(rscratch1, Address(r3, r1, Address::uxtw(2)));
__ strw(r0, Address(rscratch1,
arrayOopDesc::base_offset_in_bytes(T_INT)));
}
void TemplateTable::lastore() {
transition(ltos, vtos);
__ pop_i(r1);
__ pop_ptr(r3);
// r0: value
// r1: index
// r3: array
index_check(r3, r1); // prefer index in r1
__ lea(rscratch1, Address(r3, r1, Address::uxtw(3)));
__ str(r0, Address(rscratch1,
arrayOopDesc::base_offset_in_bytes(T_LONG)));
}
void TemplateTable::fastore() {
transition(ftos, vtos);
__ pop_i(r1);
__ pop_ptr(r3);
// v0: value
// r1: index
// r3: array
index_check(r3, r1); // prefer index in r1
__ lea(rscratch1, Address(r3, r1, Address::uxtw(2)));
__ strs(v0, Address(rscratch1,
arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
}
void TemplateTable::dastore() {
transition(dtos, vtos);
__ pop_i(r1);
__ pop_ptr(r3);
// v0: value
// r1: index
// r3: array
index_check(r3, r1); // prefer index in r1
__ lea(rscratch1, Address(r3, r1, Address::uxtw(3)));
__ strd(v0, Address(rscratch1,
arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
}
void TemplateTable::aastore() {
Label is_null, ok_is_subtype, done;
transition(vtos, vtos);
// stack: ..., array, index, value
__ ldr(r0, at_tos()); // value
__ ldr(r2, at_tos_p1()); // index
__ ldr(r3, at_tos_p2()); // array
Address element_address(r4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
index_check(r3, r2); // kills r1
__ lea(r4, Address(r3, r2, Address::uxtw(UseCompressedOops? 2 : 3)));
// do array store check - check for NULL value first
__ cbz(r0, is_null);
// Move subklass into r1
__ load_klass(r1, r0);
// Move superklass into r0
__ load_klass(r0, r3);
__ ldr(r0, Address(r0,
ObjArrayKlass::element_klass_offset()));
// Compress array + index*oopSize + 12 into a single register. Frees r2.
// Generate subtype check. Blows r2, r5
// Superklass in r0. Subklass in r1.
__ gen_subtype_check(r1, ok_is_subtype);
// Come here on failure
// object is at TOS
__ b(Interpreter::_throw_ArrayStoreException_entry);
// Come here on success
__ bind(ok_is_subtype);
// Get the value we will store
__ ldr(r0, at_tos());
// Now store using the appropriate barrier
do_oop_store(_masm, element_address, r0, _bs->kind(), true);
__ b(done);
// Have a NULL in r0, r3=array, r2=index. Store NULL at ary[idx]
__ bind(is_null);
__ profile_null_seen(r2);
// Store a NULL
do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
// Pop stack arguments
__ bind(done);
__ add(esp, esp, 3 * Interpreter::stackElementSize);
}
void TemplateTable::bastore()
{
transition(itos, vtos);
__ pop_i(r1);
__ pop_ptr(r3);
// r0: value
// r1: index
// r3: array
index_check(r3, r1); // prefer index in r1
// Need to check whether array is boolean or byte
// since both types share the bastore bytecode.
__ load_klass(r2, r3);
__ ldrw(r2, Address(r2, Klass::layout_helper_offset()));
int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit());
Label L_skip;
__ tbz(r2, diffbit_index, L_skip);
__ andw(r0, r0, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1
__ bind(L_skip);
__ lea(rscratch1, Address(r3, r1, Address::uxtw(0)));
__ strb(r0, Address(rscratch1,
arrayOopDesc::base_offset_in_bytes(T_BYTE)));
}
void TemplateTable::castore()
{
transition(itos, vtos);
__ pop_i(r1);
__ pop_ptr(r3);
// r0: value
// r1: index
// r3: array
index_check(r3, r1); // prefer index in r1
__ lea(rscratch1, Address(r3, r1, Address::uxtw(1)));
__ strh(r0, Address(rscratch1,
arrayOopDesc::base_offset_in_bytes(T_CHAR)));
}
void TemplateTable::sastore()
{
castore();
}
void TemplateTable::istore(int n)
{
transition(itos, vtos);
__ str(r0, iaddress(n));
}
void TemplateTable::lstore(int n)
{
transition(ltos, vtos);
__ str(r0, laddress(n));
}
void TemplateTable::fstore(int n)
{
transition(ftos, vtos);
__ strs(v0, faddress(n));
}
void TemplateTable::dstore(int n)
{
transition(dtos, vtos);
__ strd(v0, daddress(n));
}
void TemplateTable::astore(int n)
{
transition(vtos, vtos);
__ pop_ptr(r0);
__ str(r0, iaddress(n));
}
void TemplateTable::pop()
{
transition(vtos, vtos);
__ add(esp, esp, Interpreter::stackElementSize);
}
void TemplateTable::pop2()
{
transition(vtos, vtos);
__ add(esp, esp, 2 * Interpreter::stackElementSize);
}
void TemplateTable::dup()
{
transition(vtos, vtos);
__ ldr(r0, Address(esp, 0));
__ push(r0);
// stack: ..., a, a
}
void TemplateTable::dup_x1()
{
transition(vtos, vtos);
// stack: ..., a, b
__ ldr(r0, at_tos()); // load b
__ ldr(r2, at_tos_p1()); // load a
__ str(r0, at_tos_p1()); // store b
__ str(r2, at_tos()); // store a
__ push(r0); // push b
// stack: ..., b, a, b
}
void TemplateTable::dup_x2()
{
transition(vtos, vtos);
// stack: ..., a, b, c
__ ldr(r0, at_tos()); // load c
__ ldr(r2, at_tos_p2()); // load a
__ str(r0, at_tos_p2()); // store c in a
__ push(r0); // push c
// stack: ..., c, b, c, c
__ ldr(r0, at_tos_p2()); // load b
__ str(r2, at_tos_p2()); // store a in b
// stack: ..., c, a, c, c
__ str(r0, at_tos_p1()); // store b in c
// stack: ..., c, a, b, c
}
void TemplateTable::dup2()
{
transition(vtos, vtos);
// stack: ..., a, b
__ ldr(r0, at_tos_p1()); // load a
__ push(r0); // push a
__ ldr(r0, at_tos_p1()); // load b
__ push(r0); // push b
// stack: ..., a, b, a, b
}
void TemplateTable::dup2_x1()
{
transition(vtos, vtos);
// stack: ..., a, b, c
__ ldr(r2, at_tos()); // load c
__ ldr(r0, at_tos_p1()); // load b
__ push(r0); // push b
__ push(r2); // push c
// stack: ..., a, b, c, b, c
__ str(r2, at_tos_p3()); // store c in b
// stack: ..., a, c, c, b, c
__ ldr(r2, at_tos_p4()); // load a
__ str(r2, at_tos_p2()); // store a in 2nd c
// stack: ..., a, c, a, b, c
__ str(r0, at_tos_p4()); // store b in a
// stack: ..., b, c, a, b, c
}
void TemplateTable::dup2_x2()
{
transition(vtos, vtos);
// stack: ..., a, b, c, d
__ ldr(r2, at_tos()); // load d
__ ldr(r0, at_tos_p1()); // load c
__ push(r0) ; // push c
__ push(r2); // push d
// stack: ..., a, b, c, d, c, d
__ ldr(r0, at_tos_p4()); // load b
__ str(r0, at_tos_p2()); // store b in d
__ str(r2, at_tos_p4()); // store d in b
// stack: ..., a, d, c, b, c, d
__ ldr(r2, at_tos_p5()); // load a
__ ldr(r0, at_tos_p3()); // load c
__ str(r2, at_tos_p3()); // store a in c
__ str(r0, at_tos_p5()); // store c in a
// stack: ..., c, d, a, b, c, d
}
void TemplateTable::swap()
{
transition(vtos, vtos);
// stack: ..., a, b
__ ldr(r2, at_tos_p1()); // load a
__ ldr(r0, at_tos()); // load b
__ str(r2, at_tos()); // store a in b
__ str(r0, at_tos_p1()); // store b in a
// stack: ..., b, a
}
void TemplateTable::iop2(Operation op)
{
transition(itos, itos);
// r0 <== r1 op r0
__ pop_i(r1);
switch (op) {
case add : __ addw(r0, r1, r0); break;
case sub : __ subw(r0, r1, r0); break;
case mul : __ mulw(r0, r1, r0); break;
case _and : __ andw(r0, r1, r0); break;
case _or : __ orrw(r0, r1, r0); break;
case _xor : __ eorw(r0, r1, r0); break;
case shl : __ lslvw(r0, r1, r0); break;
case shr : __ asrvw(r0, r1, r0); break;
case ushr : __ lsrvw(r0, r1, r0);break;
default : ShouldNotReachHere();
}
}
void TemplateTable::lop2(Operation op)
{
transition(ltos, ltos);
// r0 <== r1 op r0
__ pop_l(r1);
switch (op) {
case add : __ add(r0, r1, r0); break;
case sub : __ sub(r0, r1, r0); break;
case mul : __ mul(r0, r1, r0); break;
case _and : __ andr(r0, r1, r0); break;
case _or : __ orr(r0, r1, r0); break;
case _xor : __ eor(r0, r1, r0); break;
default : ShouldNotReachHere();
}
}
void TemplateTable::idiv()
{
transition(itos, itos);
// explicitly check for div0
Label no_div0;
__ cbnzw(r0, no_div0);
__ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
__ br(rscratch1);
__ bind(no_div0);
__ pop_i(r1);
// r0 <== r1 idiv r0
__ corrected_idivl(r0, r1, r0, /* want_remainder */ false);
}
void TemplateTable::irem()
{
transition(itos, itos);
// explicitly check for div0
Label no_div0;
__ cbnzw(r0, no_div0);
__ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
__ br(rscratch1);
__ bind(no_div0);
__ pop_i(r1);
// r0 <== r1 irem r0
__ corrected_idivl(r0, r1, r0, /* want_remainder */ true);
}
void TemplateTable::lmul()
{
transition(ltos, ltos);
__ pop_l(r1);
__ mul(r0, r0, r1);
}
void TemplateTable::ldiv()
{
transition(ltos, ltos);
// explicitly check for div0
Label no_div0;
__ cbnz(r0, no_div0);
__ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
__ br(rscratch1);
__ bind(no_div0);
__ pop_l(r1);
// r0 <== r1 ldiv r0
__ corrected_idivq(r0, r1, r0, /* want_remainder */ false);
}
void TemplateTable::lrem()
{
transition(ltos, ltos);
// explicitly check for div0
Label no_div0;
__ cbnz(r0, no_div0);
__ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
__ br(rscratch1);
__ bind(no_div0);
__ pop_l(r1);
// r0 <== r1 lrem r0
__ corrected_idivq(r0, r1, r0, /* want_remainder */ true);
}
void TemplateTable::lshl()
{
transition(itos, ltos);
// shift count is in r0
__ pop_l(r1);
__ lslv(r0, r1, r0);
}
void TemplateTable::lshr()
{
transition(itos, ltos);
// shift count is in r0
__ pop_l(r1);
__ asrv(r0, r1, r0);
}
void TemplateTable::lushr()
{
transition(itos, ltos);
// shift count is in r0
__ pop_l(r1);
__ lsrv(r0, r1, r0);
}
void TemplateTable::fop2(Operation op)
{
transition(ftos, ftos);
switch (op) {
case add:
// n.b. use ldrd because this is a 64 bit slot
__ pop_f(v1);
__ fadds(v0, v1, v0);
break;
case sub:
__ pop_f(v1);
__ fsubs(v0, v1, v0);
break;
case mul:
__ pop_f(v1);
__ fmuls(v0, v1, v0);
break;
case div:
__ pop_f(v1);
__ fdivs(v0, v1, v0);
break;
case rem:
__ fmovs(v1, v0);
__ pop_f(v0);
__ call_VM_leaf_base1(CAST_FROM_FN_PTR(address, SharedRuntime::frem),
0, 2, MacroAssembler::ret_type_float);
break;
default:
ShouldNotReachHere();
break;
}
}
void TemplateTable::dop2(Operation op)
{
transition(dtos, dtos);
switch (op) {
case add:
// n.b. use ldrd because this is a 64 bit slot
__ pop_d(v1);
__ faddd(v0, v1, v0);
break;
case sub:
__ pop_d(v1);
__ fsubd(v0, v1, v0);
break;
case mul:
__ pop_d(v1);
__ fmuld(v0, v1, v0);
break;
case div:
__ pop_d(v1);
__ fdivd(v0, v1, v0);
break;
case rem:
__ fmovd(v1, v0);
__ pop_d(v0);
__ call_VM_leaf_base1(CAST_FROM_FN_PTR(address, SharedRuntime::drem),
0, 2, MacroAssembler::ret_type_double);
break;
default:
ShouldNotReachHere();
break;
}
}
void TemplateTable::ineg()
{
transition(itos, itos);
__ negw(r0, r0);
}
void TemplateTable::lneg()
{
transition(ltos, ltos);
__ neg(r0, r0);
}
void TemplateTable::fneg()
{
transition(ftos, ftos);
__ fnegs(v0, v0);
}
void TemplateTable::dneg()
{
transition(dtos, dtos);
__ fnegd(v0, v0);
}
void TemplateTable::iinc()
{
transition(vtos, vtos);
__ load_signed_byte(r1, at_bcp(2)); // get constant
locals_index(r2);
__ ldr(r0, iaddress(r2));
__ addw(r0, r0, r1);
__ str(r0, iaddress(r2));
}
void TemplateTable::wide_iinc()
{
transition(vtos, vtos);
// __ mov(r1, zr);
__ ldrw(r1, at_bcp(2)); // get constant and index
__ rev16(r1, r1);
__ ubfx(r2, r1, 0, 16);
__ neg(r2, r2);
__ sbfx(r1, r1, 16, 16);
__ ldr(r0, iaddress(r2));
__ addw(r0, r0, r1);
__ str(r0, iaddress(r2));
}
void TemplateTable::convert()
{
// Checking
#ifdef ASSERT
{
TosState tos_in = ilgl;
TosState tos_out = ilgl;
switch (bytecode()) {
case Bytecodes::_i2l: // fall through
case Bytecodes::_i2f: // fall through
case Bytecodes::_i2d: // fall through
case Bytecodes::_i2b: // fall through
case Bytecodes::_i2c: // fall through
case Bytecodes::_i2s: tos_in = itos; break;
case Bytecodes::_l2i: // fall through
case Bytecodes::_l2f: // fall through
case Bytecodes::_l2d: tos_in = ltos; break;
case Bytecodes::_f2i: // fall through
case Bytecodes::_f2l: // fall through
case Bytecodes::_f2d: tos_in = ftos; break;
case Bytecodes::_d2i: // fall through
case Bytecodes::_d2l: // fall through
case Bytecodes::_d2f: tos_in = dtos; break;
default : ShouldNotReachHere();
}
switch (bytecode()) {
case Bytecodes::_l2i: // fall through
case Bytecodes::_f2i: // fall through
case Bytecodes::_d2i: // fall through
case Bytecodes::_i2b: // fall through
case Bytecodes::_i2c: // fall through
case Bytecodes::_i2s: tos_out = itos; break;
case Bytecodes::_i2l: // fall through
case Bytecodes::_f2l: // fall through
case Bytecodes::_d2l: tos_out = ltos; break;
case Bytecodes::_i2f: // fall through
case Bytecodes::_l2f: // fall through
case Bytecodes::_d2f: tos_out = ftos; break;
case Bytecodes::_i2d: // fall through
case Bytecodes::_l2d: // fall through
case Bytecodes::_f2d: tos_out = dtos; break;
default : ShouldNotReachHere();
}
transition(tos_in, tos_out);
}
#endif // ASSERT
// static const int64_t is_nan = 0x8000000000000000L;
// Conversion
switch (bytecode()) {
case Bytecodes::_i2l:
__ sxtw(r0, r0);
break;
case Bytecodes::_i2f:
__ scvtfws(v0, r0);
break;
case Bytecodes::_i2d:
__ scvtfwd(v0, r0);
break;
case Bytecodes::_i2b:
__ sxtbw(r0, r0);
break;
case Bytecodes::_i2c:
__ uxthw(r0, r0);
break;
case Bytecodes::_i2s:
__ sxthw(r0, r0);
break;
case Bytecodes::_l2i:
__ uxtw(r0, r0);
break;
case Bytecodes::_l2f:
__ scvtfs(v0, r0);
break;
case Bytecodes::_l2d:
__ scvtfd(v0, r0);
break;
case Bytecodes::_f2i:
{
Label L_Okay;
__ clear_fpsr();
__ fcvtzsw(r0, v0);
__ get_fpsr(r1);
__ cbzw(r1, L_Okay);
__ call_VM_leaf_base1(CAST_FROM_FN_PTR(address, SharedRuntime::f2i),
0, 1, MacroAssembler::ret_type_integral);
__ bind(L_Okay);
}
break;
case Bytecodes::_f2l:
{
Label L_Okay;
__ clear_fpsr();
__ fcvtzs(r0, v0);
__ get_fpsr(r1);
__ cbzw(r1, L_Okay);
__ call_VM_leaf_base1(CAST_FROM_FN_PTR(address, SharedRuntime::f2l),
0, 1, MacroAssembler::ret_type_integral);
__ bind(L_Okay);
}
break;
case Bytecodes::_f2d:
__ fcvts(v0, v0);
break;
case Bytecodes::_d2i:
{
Label L_Okay;
__ clear_fpsr();
__ fcvtzdw(r0, v0);
__ get_fpsr(r1);
__ cbzw(r1, L_Okay);
__ call_VM_leaf_base1(CAST_FROM_FN_PTR(address, SharedRuntime::d2i),
0, 1, MacroAssembler::ret_type_integral);
__ bind(L_Okay);
}
break;
case Bytecodes::_d2l:
{
Label L_Okay;
__ clear_fpsr();
__ fcvtzd(r0, v0);
__ get_fpsr(r1);
__ cbzw(r1, L_Okay);
__ call_VM_leaf_base1(CAST_FROM_FN_PTR(address, SharedRuntime::d2l),
0, 1, MacroAssembler::ret_type_integral);
__ bind(L_Okay);
}
break;
case Bytecodes::_d2f:
__ fcvtd(v0, v0);
break;
default:
ShouldNotReachHere();
}
}
void TemplateTable::lcmp()
{
transition(ltos, itos);
Label done;
__ pop_l(r1);
__ cmp(r1, r0);
__ mov(r0, (u_int64_t)-1L);
__ br(Assembler::LT, done);
// __ mov(r0, 1UL);
// __ csel(r0, r0, zr, Assembler::NE);
// and here is a faster way
__ csinc(r0, zr, zr, Assembler::EQ);
__ bind(done);
}
void TemplateTable::float_cmp(bool is_float, int unordered_result)
{
Label done;
if (is_float) {
// XXX get rid of pop here, use ... reg, mem32
__ pop_f(v1);
__ fcmps(v1, v0);
} else {
// XXX get rid of pop here, use ... reg, mem64
__ pop_d(v1);
__ fcmpd(v1, v0);
}
if (unordered_result < 0) {
// we want -1 for unordered or less than, 0 for equal and 1 for
// greater than.
__ mov(r0, (u_int64_t)-1L);
// for FP LT tests less than or unordered
__ br(Assembler::LT, done);
// install 0 for EQ otherwise 1
__ csinc(r0, zr, zr, Assembler::EQ);
} else {
// we want -1 for less than, 0 for equal and 1 for unordered or
// greater than.
__ mov(r0, 1L);
// for FP HI tests greater than or unordered
__ br(Assembler::HI, done);
// install 0 for EQ otherwise ~0
__ csinv(r0, zr, zr, Assembler::EQ);
}
__ bind(done);
}
void TemplateTable::branch(bool is_jsr, bool is_wide)
{
// We might be moving to a safepoint. The thread which calls
// Interpreter::notice_safepoints() will effectively flush its cache
// when it makes a system call, but we need to do something to
// ensure that we see the changed dispatch table.
__ membar(MacroAssembler::LoadLoad);
__ profile_taken_branch(r0, r1);
const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
InvocationCounter::counter_offset();
const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
InvocationCounter::counter_offset();
// load branch displacement
if (!is_wide) {
__ ldrh(r2, at_bcp(1));
__ rev16(r2, r2);
// sign extend the 16 bit value in r2
__ sbfm(r2, r2, 0, 15);
} else {
__ ldrw(r2, at_bcp(1));
__ revw(r2, r2);
// sign extend the 32 bit value in r2
__ sbfm(r2, r2, 0, 31);
}
// Handle all the JSR stuff here, then exit.
// It's much shorter and cleaner than intermingling with the non-JSR
// normal-branch stuff occurring below.
if (is_jsr) {
// Pre-load the next target bytecode into rscratch1
__ load_unsigned_byte(rscratch1, Address(rbcp, r2));
// compute return address as bci
__ ldr(rscratch2, Address(rmethod, Method::const_offset()));
__ add(rscratch2, rscratch2,
in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3));
__ sub(r1, rbcp, rscratch2);
__ push_i(r1);
// Adjust the bcp by the 16-bit displacement in r2
__ add(rbcp, rbcp, r2);
__ dispatch_only(vtos, /*generate_poll*/true);
return;
}
// Normal (non-jsr) branch handling
// Adjust the bcp by the displacement in r2
__ add(rbcp, rbcp, r2);
assert(UseLoopCounter || !UseOnStackReplacement,
"on-stack-replacement requires loop counters");
Label backedge_counter_overflow;
Label profile_method;
Label dispatch;
if (UseLoopCounter) {
// increment backedge counter for backward branches
// r0: MDO
// w1: MDO bumped taken-count
// r2: target offset
__ cmp(r2, zr);
__ br(Assembler::GT, dispatch); // count only if backward branch
// ECN: FIXME: This code smells
// check if MethodCounters exists
Label has_counters;
__ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
__ cbnz(rscratch1, has_counters);
__ push(r0);
__ push(r1);
__ push(r2);
__ call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::build_method_counters), rmethod);
__ pop(r2);
__ pop(r1);
__ pop(r0);
__ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
__ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory
__ bind(has_counters);
if (TieredCompilation) {
Label no_mdo;
int increment = InvocationCounter::count_increment;
if (ProfileInterpreter) {
// Are we profiling?
__ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
__ cbz(r1, no_mdo);
// Increment the MDO backedge counter
const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) +
in_bytes(InvocationCounter::counter_offset()));
const Address mask(r1, in_bytes(MethodData::backedge_mask_offset()));
__ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
r0, rscratch1, false, Assembler::EQ, &backedge_counter_overflow);
__ b(dispatch);
}
__ bind(no_mdo);
// Increment backedge counter in MethodCounters*
__ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset()));
__ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask,
r0, rscratch2, false, Assembler::EQ, &backedge_counter_overflow);
} else { // not TieredCompilation
// increment counter
__ ldr(rscratch2, Address(rmethod, Method::method_counters_offset()));
__ ldrw(r0, Address(rscratch2, be_offset)); // load backedge counter
__ addw(rscratch1, r0, InvocationCounter::count_increment); // increment counter
__ strw(rscratch1, Address(rscratch2, be_offset)); // store counter
__ ldrw(r0, Address(rscratch2, inv_offset)); // load invocation counter
__ andw(r0, r0, (unsigned)InvocationCounter::count_mask_value); // and the status bits
__ addw(r0, r0, rscratch1); // add both counters
if (ProfileInterpreter) {
// Test to see if we should create a method data oop
__ ldrw(rscratch1, Address(rscratch2, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
__ cmpw(r0, rscratch1);
__ br(Assembler::LT, dispatch);
// if no method data exists, go to profile method
__ test_method_data_pointer(r0, profile_method);
if (UseOnStackReplacement) {
// check for overflow against w1 which is the MDO taken count
__ ldrw(rscratch1, Address(rscratch2, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
__ cmpw(r1, rscratch1);
__ br(Assembler::LO, dispatch); // Intel == Assembler::below
// When ProfileInterpreter is on, the backedge_count comes
// from the MethodData*, which value does not get reset on
// the call to frequency_counter_overflow(). To avoid
// excessive calls to the overflow routine while the method is
// being compiled, add a second test to make sure the overflow
// function is called only once every overflow_frequency.
const int overflow_frequency = 1024;
__ andsw(r1, r1, overflow_frequency - 1);
__ br(Assembler::EQ, backedge_counter_overflow);
}
} else {
if (UseOnStackReplacement) {
// check for overflow against w0, which is the sum of the
// counters
__ ldrw(rscratch1, Address(rscratch2, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
__ cmpw(r0, rscratch1);
__ br(Assembler::HS, backedge_counter_overflow); // Intel == Assembler::aboveEqual
}
}
}
}
__ bind(dispatch);
// Pre-load the next target bytecode into rscratch1
__ load_unsigned_byte(rscratch1, Address(rbcp, 0));
// continue with the bytecode @ target
// rscratch1: target bytecode
// rbcp: target bcp
__ dispatch_only(vtos, /*generate_poll*/true);
if (UseLoopCounter) {
if (ProfileInterpreter) {
// Out-of-line code to allocate method data oop.
__ bind(profile_method);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
__ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode
__ set_method_data_pointer_for_bcp();
__ b(dispatch);
}
if (TieredCompilation || UseOnStackReplacement) {
// invocation counter overflow
__ bind(backedge_counter_overflow);
__ neg(r2, r2);
__ add(r2, r2, rbcp); // branch bcp
// IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::frequency_counter_overflow),
r2);
if (!UseOnStackReplacement)
__ b(dispatch);
}
if (UseOnStackReplacement) {
__ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode
// r0: osr nmethod (osr ok) or NULL (osr not possible)
// w1: target bytecode
// r2: scratch
__ cbz(r0, dispatch); // test result -- no osr if null
// nmethod may have been invalidated (VM may block upon call_VM return)
__ ldrb(r2, Address(r0, nmethod::state_offset()));
if (nmethod::in_use != 0)
__ sub(r2, r2, nmethod::in_use);
__ cbnz(r2, dispatch);
// We have the address of an on stack replacement routine in r0
// We need to prepare to execute the OSR method. First we must
// migrate the locals and monitors off of the stack.
__ mov(r19, r0); // save the nmethod
call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
// r0 is OSR buffer, move it to expected parameter location
__ mov(j_rarg0, r0);
// remove activation
// get sender esp
__ ldr(esp,
Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
// remove frame anchor
__ leave();
// Ensure compiled code always sees stack at proper alignment
__ andr(sp, esp, -16);
// and begin the OSR nmethod
__ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset()));
__ br(rscratch1);
}
}
}
void TemplateTable::if_0cmp(Condition cc)
{
transition(itos, vtos);
// assume branch is more often taken than not (loops use backward branches)
Label not_taken;
if (cc == equal)
__ cbnzw(r0, not_taken);
else if (cc == not_equal)
__ cbzw(r0, not_taken);
else {
__ andsw(zr, r0, r0);
__ br(j_not(cc), not_taken);
}
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(r0);
}
void TemplateTable::if_icmp(Condition cc)
{
transition(itos, vtos);
// assume branch is more often taken than not (loops use backward branches)
Label not_taken;
__ pop_i(r1);
__ cmpw(r1, r0, Assembler::LSL);
__ br(j_not(cc), not_taken);
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(r0);
}
void TemplateTable::if_nullcmp(Condition cc)
{
transition(atos, vtos);
// assume branch is more often taken than not (loops use backward branches)
Label not_taken;
if (cc == equal)
__ cbnz(r0, not_taken);
else
__ cbz(r0, not_taken);
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(r0);
}
void TemplateTable::if_acmp(Condition cc)
{
transition(atos, vtos);
// assume branch is more often taken than not (loops use backward branches)
Label not_taken;
__ pop_ptr(r1);
__ cmp(r1, r0);
__ br(j_not(cc), not_taken);
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(r0);
}
void TemplateTable::ret() {
transition(vtos, vtos);
// We might be moving to a safepoint. The thread which calls
// Interpreter::notice_safepoints() will effectively flush its cache
// when it makes a system call, but we need to do something to
// ensure that we see the changed dispatch table.
__ membar(MacroAssembler::LoadLoad);
locals_index(r1);
__ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
__ profile_ret(r1, r2);
__ ldr(rbcp, Address(rmethod, Method::const_offset()));
__ lea(rbcp, Address(rbcp, r1));
__ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
__ dispatch_next(vtos, 0, /*generate_poll*/true);
}
void TemplateTable::wide_ret() {
transition(vtos, vtos);
locals_index_wide(r1);
__ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
__ profile_ret(r1, r2);
__ ldr(rbcp, Address(rmethod, Method::const_offset()));
__ lea(rbcp, Address(rbcp, r1));
__ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
__ dispatch_next(vtos, 0, /*generate_poll*/true);
}
void TemplateTable::tableswitch() {
Label default_case, continue_execution;
transition(itos, vtos);
// align rbcp
__ lea(r1, at_bcp(BytesPerInt));
__ andr(r1, r1, -BytesPerInt);
// load lo & hi
__ ldrw(r2, Address(r1, BytesPerInt));
__ ldrw(r3, Address(r1, 2 * BytesPerInt));
__ rev32(r2, r2);
__ rev32(r3, r3);
// check against lo & hi
__ cmpw(r0, r2);
__ br(Assembler::LT, default_case);
__ cmpw(r0, r3);
__ br(Assembler::GT, default_case);
// lookup dispatch offset
__ subw(r0, r0, r2);
__ lea(r3, Address(r1, r0, Address::uxtw(2)));
__ ldrw(r3, Address(r3, 3 * BytesPerInt));
__ profile_switch_case(r0, r1, r2);
// continue execution
__ bind(continue_execution);
__ rev32(r3, r3);
__ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0)));
__ add(rbcp, rbcp, r3, ext::sxtw);
__ dispatch_only(vtos, /*generate_poll*/true);
// handle default
__ bind(default_case);
__ profile_switch_default(r0);
__ ldrw(r3, Address(r1, 0));
__ b(continue_execution);
}
void TemplateTable::lookupswitch() {
transition(itos, itos);
__ stop("lookupswitch bytecode should have been rewritten");
}
void TemplateTable::fast_linearswitch() {
transition(itos, vtos);
Label loop_entry, loop, found, continue_execution;
// bswap r0 so we can avoid bswapping the table entries
__ rev32(r0, r0);
// align rbcp
__ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of
// this instruction (change offsets
// below)
__ andr(r19, r19, -BytesPerInt);
// set counter
__ ldrw(r1, Address(r19, BytesPerInt));
__ rev32(r1, r1);
__ b(loop_entry);
// table search
__ bind(loop);
__ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
__ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt));
__ cmpw(r0, rscratch1);
__ br(Assembler::EQ, found);
__ bind(loop_entry);
__ subs(r1, r1, 1);
__ br(Assembler::PL, loop);
// default case
__ profile_switch_default(r0);
__ ldrw(r3, Address(r19, 0));
__ b(continue_execution);
// entry found -> get offset
__ bind(found);
__ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
__ ldrw(r3, Address(rscratch1, 3 * BytesPerInt));
__ profile_switch_case(r1, r0, r19);
// continue execution
__ bind(continue_execution);
__ rev32(r3, r3);
__ add(rbcp, rbcp, r3, ext::sxtw);
__ ldrb(rscratch1, Address(rbcp, 0));
__ dispatch_only(vtos, /*generate_poll*/true);
}
void TemplateTable::fast_binaryswitch() {
transition(itos, vtos);
// Implementation using the following core algorithm:
//
// int binary_search(int key, LookupswitchPair* array, int n) {
// // Binary search according to "Methodik des Programmierens" by
// // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
// int i = 0;
// int j = n;
// while (i+1 < j) {
// // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
// // with Q: for all i: 0 <= i < n: key < a[i]
// // where a stands for the array and assuming that the (inexisting)
// // element a[n] is infinitely big.
// int h = (i + j) >> 1;
// // i < h < j
// if (key < array[h].fast_match()) {
// j = h;
// } else {
// i = h;
// }
// }
// // R: a[i] <= key < a[i+1] or Q
// // (i.e., if key is within array, i is the correct index)
// return i;
// }
// Register allocation
const Register key = r0; // already set (tosca)
const Register array = r1;
const Register i = r2;
const Register j = r3;
const Register h = rscratch1;
const Register temp = rscratch2;
// Find array start
__ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
// get rid of this
// instruction (change
// offsets below)
__ andr(array, array, -BytesPerInt);
// Initialize i & j
__ mov(i, 0); // i = 0;
__ ldrw(j, Address(array, -BytesPerInt)); // j = length(array);
// Convert j into native byteordering
__ rev32(j, j);
// And start
Label entry;
__ b(entry);
// binary search loop
{
Label loop;
__ bind(loop);
// int h = (i + j) >> 1;
__ addw(h, i, j); // h = i + j;
__ lsrw(h, h, 1); // h = (i + j) >> 1;
// if (key < array[h].fast_match()) {
// j = h;
// } else {
// i = h;
// }
// Convert array[h].match to native byte-ordering before compare
__ ldr(temp, Address(array, h, Address::lsl(3)));
__ rev32(temp, temp);
__ cmpw(key, temp);
// j = h if (key < array[h].fast_match())
__ csel(j, h, j, Assembler::LT);
// i = h if (key >= array[h].fast_match())
__ csel(i, h, i, Assembler::GE);
// while (i+1 < j)
__ bind(entry);
__ addw(h, i, 1); // i+1
__ cmpw(h, j); // i+1 < j
__ br(Assembler::LT, loop);
}
// end of binary search, result index is i (must check again!)
Label default_case;
// Convert array[i].match to native byte-ordering before compare
__ ldr(temp, Address(array, i, Address::lsl(3)));
__ rev32(temp, temp);
__ cmpw(key, temp);
__ br(Assembler::NE, default_case);
// entry found -> j = offset
__ add(j, array, i, ext::uxtx, 3);
__ ldrw(j, Address(j, BytesPerInt));
__ profile_switch_case(i, key, array);
__ rev32(j, j);
__ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
__ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
__ dispatch_only(vtos, /*generate_poll*/true);
// default case -> j = default offset
__ bind(default_case);
__ profile_switch_default(i);
__ ldrw(j, Address(array, -2 * BytesPerInt));
__ rev32(j, j);
__ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
__ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
__ dispatch_only(vtos, /*generate_poll*/true);
}
void TemplateTable::_return(TosState state)
{
transition(state, state);
assert(_desc->calls_vm(),
"inconsistent calls_vm information"); // call in remove_activation
if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
assert(state == vtos, "only valid state");
__ ldr(c_rarg1, aaddress(0));
__ load_klass(r3, c_rarg1);
__ ldrw(r3, Address(r3, Klass::access_flags_offset()));
Label skip_register_finalizer;
__ tbz(r3, exact_log2(JVM_ACC_HAS_FINALIZER), skip_register_finalizer);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
__ bind(skip_register_finalizer);
}
// Issue a StoreStore barrier after all stores but before return
// from any constructor for any class with a final field. We don't
// know if this is a finalizer, so we always do so.
if (_desc->bytecode() == Bytecodes::_return)
__ membar(MacroAssembler::StoreStore);
// Narrow result if state is itos but result type is smaller.
// Need to narrow in the return bytecode rather than in generate_return_entry
// since compiled code callers expect the result to already be narrowed.
if (state == itos) {
__ narrow(r0);
}
__ remove_activation(state);
__ ret(lr);
}
// ----------------------------------------------------------------------------
// Volatile variables demand their effects be made known to all CPU's
// in order. Store buffers on most chips allow reads & writes to
// reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
// without some kind of memory barrier (i.e., it's not sufficient that
// the interpreter does not reorder volatile references, the hardware
// also must not reorder them).
//
// According to the new Java Memory Model (JMM):
// (1) All volatiles are serialized wrt to each other. ALSO reads &
// writes act as aquire & release, so:
// (2) A read cannot let unrelated NON-volatile memory refs that
// happen after the read float up to before the read. It's OK for
// non-volatile memory refs that happen before the volatile read to
// float down below it.
// (3) Similar a volatile write cannot let unrelated NON-volatile
// memory refs that happen BEFORE the write float down to after the
// write. It's OK for non-volatile memory refs that happen after the
// volatile write to float up before it.
//
// We only put in barriers around volatile refs (they are expensive),
// not _between_ memory refs (that would require us to track the
// flavor of the previous memory refs). Requirements (2) and (3)
// require some barriers before volatile stores and after volatile
// loads. These nearly cover requirement (1) but miss the
// volatile-store-volatile-load case. This final case is placed after
// volatile-stores although it could just as well go before
// volatile-loads.
void TemplateTable::resolve_cache_and_index(int byte_no,
Register Rcache,
Register index,
size_t index_size) {
const Register temp = r19;
assert_different_registers(Rcache, index, temp);
Label resolved;
Bytecodes::Code code = bytecode();
switch (code) {
case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
}
assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
__ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
__ cmp(temp, (int) code); // have we resolved this bytecode?
__ br(Assembler::EQ, resolved);
// resolve first time through
address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
__ mov(temp, (int) code);
__ call_VM(noreg, entry, temp);
// Update registers with resolved info
__ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
// n.b. unlike x86 Rcache is now rcpool plus the indexed offset
// so all clients ofthis method must be modified accordingly
__ bind(resolved);
}
// The Rcache and index registers must be set before call
// n.b unlike x86 cache already includes the index offset
void TemplateTable::load_field_cp_cache_entry(Register obj,
Register cache,
Register index,
Register off,
Register flags,
bool is_static = false) {
assert_different_registers(cache, index, flags, off);
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
// Field offset
__ ldr(off, Address(cache, in_bytes(cp_base_offset +
ConstantPoolCacheEntry::f2_offset())));
// Flags
__ ldrw(flags, Address(cache, in_bytes(cp_base_offset +
ConstantPoolCacheEntry::flags_offset())));
// klass overwrite register
if (is_static) {
__ ldr(obj, Address(cache, in_bytes(cp_base_offset +
ConstantPoolCacheEntry::f1_offset())));
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
__ ldr(obj, Address(obj, mirror_offset));
__ resolve_oop_handle(obj);
}
}
void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
Register method,
Register itable_index,
Register flags,
bool is_invokevirtual,
bool is_invokevfinal, /*unused*/
bool is_invokedynamic) {
// setup registers
const Register cache = rscratch2;
const Register index = r4;
assert_different_registers(method, flags);
assert_different_registers(method, cache, index);
assert_different_registers(itable_index, flags);
assert_different_registers(itable_index, cache, index);
// determine constant pool cache field offsets
assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
const int method_offset = in_bytes(
ConstantPoolCache::base_offset() +
(is_invokevirtual
? ConstantPoolCacheEntry::f2_offset()
: ConstantPoolCacheEntry::f1_offset()));
const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::flags_offset());
// access constant pool cache fields
const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::f2_offset());
size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
resolve_cache_and_index(byte_no, cache, index, index_size);
__ ldr(method, Address(cache, method_offset));
if (itable_index != noreg) {
__ ldr(itable_index, Address(cache, index_offset));
}
__ ldrw(flags, Address(cache, flags_offset));
}
// The registers cache and index expected to be set before call.
// Correct values of the cache and index registers are preserved.
void TemplateTable::jvmti_post_field_access(Register cache, Register index,
bool is_static, bool has_tos) {
// do the JVMTI work here to avoid disturbing the register state below
// We use c_rarg registers here because we want to use the register used in
// the call to the VM
if (JvmtiExport::can_post_field_access()) {
// Check to see if a field access watch has been set before we
// take the time to call into the VM.
Label L1;
assert_different_registers(cache, index, r0);
__ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
__ ldrw(r0, Address(rscratch1));
__ cbzw(r0, L1);
__ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
__ lea(c_rarg2, Address(c_rarg2, in_bytes(ConstantPoolCache::base_offset())));
if (is_static) {
__ mov(c_rarg1, zr); // NULL object reference
} else {
__ ldr(c_rarg1, at_tos()); // get object pointer without popping it
__ verify_oop(c_rarg1);
}
// c_rarg1: object pointer or NULL
// c_rarg2: cache entry pointer
// c_rarg3: jvalue object on the stack
__ call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::post_field_access),
c_rarg1, c_rarg2, c_rarg3);
__ get_cache_and_index_at_bcp(cache, index, 1);
__ bind(L1);
}
}
void TemplateTable::pop_and_check_object(Register r)
{
__ pop_ptr(r);
__ null_check(r); // for field access must check obj.
__ verify_oop(r);
}
void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
{
const Register cache = r2;
const Register index = r3;
const Register obj = r4;
const Register off = r19;
const Register flags = r0;
const Register raw_flags = r6;
const Register bc = r4; // uses same reg as obj, so don't mix them
resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
jvmti_post_field_access(cache, index, is_static, false);
load_field_cp_cache_entry(obj, cache, index, off, raw_flags, is_static);
if (!is_static) {
// obj is on the stack
pop_and_check_object(obj);
}
// 8179954: We need to make sure that the code generated for
// volatile accesses forms a sequentially-consistent set of
// operations when combined with STLR and LDAR. Without a leading
// membar it's possible for a simple Dekker test to fail if loads
// use LDR;DMB but stores use STLR. This can happen if C2 compiles
// the stores in one method and we interpret the loads in another.
if (! UseBarriersForVolatile) {
Label notVolatile;
__ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
__ membar(MacroAssembler::AnyAny);
__ bind(notVolatile);
}
const Address field(obj, off);
Label Done, notByte, notBool, notInt, notShort, notChar,
notLong, notFloat, notObj, notDouble;
// x86 uses a shift and mask or wings it with a shift plus assert
// the mask is not needed. aarch64 just uses bitfield extract
__ ubfxw(flags, raw_flags, ConstantPoolCacheEntry::tos_state_shift,
ConstantPoolCacheEntry::tos_state_bits);
assert(btos == 0, "change code, btos != 0");
__ cbnz(flags, notByte);
// Don't rewrite getstatic, only getfield
if (is_static) rc = may_not_rewrite;
// btos
__ load_signed_byte(r0, field);
__ push(btos);
// Rewrite bytecode to be faster
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
}
__ b(Done);
__ bind(notByte);
__ cmp(flags, ztos);
__ br(Assembler::NE, notBool);
// ztos (same code as btos)
__ ldrsb(r0, field);
__ push(ztos);
// Rewrite bytecode to be faster
if (rc == may_rewrite) {
// use btos rewriting, no truncating to t/f bit is needed for getfield.
patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
}
__ b(Done);
__ bind(notBool);
__ cmp(flags, atos);
__ br(Assembler::NE, notObj);
// atos
__ load_heap_oop(r0, field);
__ push(atos);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
}
__ b(Done);
__ bind(notObj);
__ cmp(flags, itos);
__ br(Assembler::NE, notInt);
// itos
__ ldrw(r0, field);
__ push(itos);
// Rewrite bytecode to be faster
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
}
__ b(Done);
__ bind(notInt);
__ cmp(flags, ctos);
__ br(Assembler::NE, notChar);
// ctos
__ load_unsigned_short(r0, field);
__ push(ctos);
// Rewrite bytecode to be faster
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1);
}
__ b(Done);
__ bind(notChar);
__ cmp(flags, stos);
__ br(Assembler::NE, notShort);
// stos
__ load_signed_short(r0, field);
__ push(stos);
// Rewrite bytecode to be faster
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1);
}
__ b(Done);
__ bind(notShort);
__ cmp(flags, ltos);
__ br(Assembler::NE, notLong);
// ltos
__ ldr(r0, field);
__ push(ltos);
// Rewrite bytecode to be faster
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1);
}
__ b(Done);
__ bind(notLong);
__ cmp(flags, ftos);
__ br(Assembler::NE, notFloat);
// ftos
__ ldrs(v0, field);
__ push(ftos);
// Rewrite bytecode to be faster
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1);
}
__ b(Done);
__ bind(notFloat);
#ifdef ASSERT
__ cmp(flags, dtos);
__ br(Assembler::NE, notDouble);
#endif
// dtos
__ ldrd(v0, field);
__ push(dtos);
// Rewrite bytecode to be faster
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1);
}
#ifdef ASSERT
__ b(Done);
__ bind(notDouble);
__ stop("Bad state");
#endif
__ bind(Done);
Label notVolatile;
__ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
__ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
__ bind(notVolatile);
}
void TemplateTable::getfield(int byte_no)
{
getfield_or_static(byte_no, false);
}
void TemplateTable::nofast_getfield(int byte_no) {
getfield_or_static(byte_no, false, may_not_rewrite);
}
void TemplateTable::getstatic(int byte_no)
{
getfield_or_static(byte_no, true);
}
// The registers cache and index expected to be set before call.
// The function may destroy various registers, just not the cache and index registers.
void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
transition(vtos, vtos);
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
if (JvmtiExport::can_post_field_modification()) {
// Check to see if a field modification watch has been set before
// we take the time to call into the VM.
Label L1;
assert_different_registers(cache, index, r0);
__ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
__ ldrw(r0, Address(rscratch1));
__ cbz(r0, L1);
__ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
if (is_static) {
// Life is simple. Null out the object pointer.
__ mov(c_rarg1, zr);
} else {
// Life is harder. The stack holds the value on top, followed by
// the object. We don't know the size of the value, though; it
// could be one or two words depending on its type. As a result,
// we must find the type to determine where the object is.
__ ldrw(c_rarg3, Address(c_rarg2,
in_bytes(cp_base_offset +
ConstantPoolCacheEntry::flags_offset())));
__ lsr(c_rarg3, c_rarg3,
ConstantPoolCacheEntry::tos_state_shift);
ConstantPoolCacheEntry::verify_tos_state_shift();
Label nope2, done, ok;
__ ldr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue
__ cmpw(c_rarg3, ltos);
__ br(Assembler::EQ, ok);
__ cmpw(c_rarg3, dtos);
__ br(Assembler::NE, nope2);
__ bind(ok);
__ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue)
__ bind(nope2);
}
// cache entry pointer
__ add(c_rarg2, c_rarg2, in_bytes(cp_base_offset));
// object (tos)
__ mov(c_rarg3, esp);
// c_rarg1: object pointer set up above (NULL if static)
// c_rarg2: cache entry pointer
// c_rarg3: jvalue object on the stack
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::post_field_modification),
c_rarg1, c_rarg2, c_rarg3);
__ get_cache_and_index_at_bcp(cache, index, 1);
__ bind(L1);
}
}
void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
transition(vtos, vtos);
const Register cache = r2;
const Register index = r3;
const Register obj = r2;
const Register off = r19;
const Register flags = r0;
const Register bc = r4;
resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
jvmti_post_field_mod(cache, index, is_static);
load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
Label Done;
__ mov(r5, flags);
{
Label notVolatile;
__ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
__ membar(MacroAssembler::StoreStore);
__ bind(notVolatile);
}
// field address
const Address field(obj, off);
Label notByte, notBool, notInt, notShort, notChar,
notLong, notFloat, notObj, notDouble;
// x86 uses a shift and mask or wings it with a shift plus assert
// the mask is not needed. aarch64 just uses bitfield extract
__ ubfxw(flags, flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits);
assert(btos == 0, "change code, btos != 0");
__ cbnz(flags, notByte);
// Don't rewrite putstatic, only putfield
if (is_static) rc = may_not_rewrite;
// btos
{
__ pop(btos);
if (!is_static) pop_and_check_object(obj);
__ strb(r0, field);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no);
}
__ b(Done);
}
__ bind(notByte);
__ cmp(flags, ztos);
__ br(Assembler::NE, notBool);
// ztos
{
__ pop(ztos);
if (!is_static) pop_and_check_object(obj);
__ andw(r0, r0, 0x1);
__ strb(r0, field);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
}
__ b(Done);
}
__ bind(notBool);
__ cmp(flags, atos);
__ br(Assembler::NE, notObj);
// atos
{
__ pop(atos);
if (!is_static) pop_and_check_object(obj);
// Store into the field
do_oop_store(_masm, field, r0, _bs->kind(), false);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
}
__ b(Done);
}
__ bind(notObj);
__ cmp(flags, itos);
__ br(Assembler::NE, notInt);
// itos
{
__ pop(itos);
if (!is_static) pop_and_check_object(obj);
__ strw(r0, field);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
}
__ b(Done);
}
__ bind(notInt);
__ cmp(flags, ctos);
__ br(Assembler::NE, notChar);
// ctos
{
__ pop(ctos);
if (!is_static) pop_and_check_object(obj);
__ strh(r0, field);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no);
}
__ b(Done);
}
__ bind(notChar);
__ cmp(flags, stos);
__ br(Assembler::NE, notShort);
// stos
{
__ pop(stos);
if (!is_static) pop_and_check_object(obj);
__ strh(r0, field);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no);
}
__ b(Done);
}
__ bind(notShort);
__ cmp(flags, ltos);
__ br(Assembler::NE, notLong);
// ltos
{
__ pop(ltos);
if (!is_static) pop_and_check_object(obj);
__ str(r0, field);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no);
}
__ b(Done);
}
__ bind(notLong);
__ cmp(flags, ftos);
__ br(Assembler::NE, notFloat);
// ftos
{
__ pop(ftos);
if (!is_static) pop_and_check_object(obj);
__ strs(v0, field);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no);
}
__ b(Done);
}
__ bind(notFloat);
#ifdef ASSERT
__ cmp(flags, dtos);
__ br(Assembler::NE, notDouble);
#endif
// dtos
{
__ pop(dtos);
if (!is_static) pop_and_check_object(obj);
__ strd(v0, field);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
}
}
#ifdef ASSERT
__ b(Done);
__ bind(notDouble);
__ stop("Bad state");
#endif
__ bind(Done);
{
Label notVolatile;
__ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
__ membar(MacroAssembler::StoreLoad);
__ bind(notVolatile);
}
}
void TemplateTable::putfield(int byte_no)
{
putfield_or_static(byte_no, false);
}
void TemplateTable::nofast_putfield(int byte_no) {
putfield_or_static(byte_no, false, may_not_rewrite);
}
void TemplateTable::putstatic(int byte_no) {
putfield_or_static(byte_no, true);
}
void TemplateTable::jvmti_post_fast_field_mod()
{
if (JvmtiExport::can_post_field_modification()) {
// Check to see if a field modification watch has been set before
// we take the time to call into the VM.
Label L2;
__ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
__ ldrw(c_rarg3, Address(rscratch1));
__ cbzw(c_rarg3, L2);
__ pop_ptr(r19); // copy the object pointer from tos
__ verify_oop(r19);
__ push_ptr(r19); // put the object pointer back on tos
// Save tos values before call_VM() clobbers them. Since we have
// to do it for every data type, we use the saved values as the
// jvalue object.
switch (bytecode()) { // load values into the jvalue object
case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
case Bytecodes::_fast_bputfield: // fall through
case Bytecodes::_fast_zputfield: // fall through
case Bytecodes::_fast_sputfield: // fall through
case Bytecodes::_fast_cputfield: // fall through
case Bytecodes::_fast_iputfield: __ push_i(r0); break;
case Bytecodes::_fast_dputfield: __ push_d(); break;
case Bytecodes::_fast_fputfield: __ push_f(); break;
case Bytecodes::_fast_lputfield: __ push_l(r0); break;
default:
ShouldNotReachHere();
}
__ mov(c_rarg3, esp); // points to jvalue on the stack
// access constant pool cache entry
__ get_cache_entry_pointer_at_bcp(c_rarg2, r0, 1);
__ verify_oop(r19);
// r19: object pointer copied above
// c_rarg2: cache entry pointer
// c_rarg3: jvalue object on the stack
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::post_field_modification),
r19, c_rarg2, c_rarg3);
switch (bytecode()) { // restore tos values
case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
case Bytecodes::_fast_bputfield: // fall through
case Bytecodes::_fast_zputfield: // fall through
case Bytecodes::_fast_sputfield: // fall through
case Bytecodes::_fast_cputfield: // fall through
case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
case Bytecodes::_fast_dputfield: __ pop_d(); break;
case Bytecodes::_fast_fputfield: __ pop_f(); break;
case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
}
__ bind(L2);
}
}
void TemplateTable::fast_storefield(TosState state)
{
transition(state, vtos);
ByteSize base = ConstantPoolCache::base_offset();
jvmti_post_fast_field_mod();
// access constant pool cache
__ get_cache_and_index_at_bcp(r2, r1, 1);
// test for volatile with r3
__ ldrw(r3, Address(r2, in_bytes(base +
ConstantPoolCacheEntry::flags_offset())));
// replace index with field offset from cache entry
__ ldr(r1, Address(r2, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
{
Label notVolatile;
__ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
__ membar(MacroAssembler::StoreStore);
__ bind(notVolatile);
}
Label notVolatile;
// Get object from stack
pop_and_check_object(r2);
// field address
const Address field(r2, r1);
// access field
switch (bytecode()) {
case Bytecodes::_fast_aputfield:
do_oop_store(_masm, field, r0, _bs->kind(), false);
break;
case Bytecodes::_fast_lputfield:
__ str(r0, field);
break;
case Bytecodes::_fast_iputfield:
__ strw(r0, field);
break;
case Bytecodes::_fast_zputfield:
__ andw(r0, r0, 0x1); // boolean is true if LSB is 1
// fall through to bputfield
case Bytecodes::_fast_bputfield:
__ strb(r0, field);
break;
case Bytecodes::_fast_sputfield:
// fall through
case Bytecodes::_fast_cputfield:
__ strh(r0, field);
break;
case Bytecodes::_fast_fputfield:
__ strs(v0, field);
break;
case Bytecodes::_fast_dputfield:
__ strd(v0, field);
break;
default:
ShouldNotReachHere();
}
{
Label notVolatile;
__ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
__ membar(MacroAssembler::StoreLoad);
__ bind(notVolatile);
}
}
void TemplateTable::fast_accessfield(TosState state)
{
transition(atos, state);
// Do the JVMTI work here to avoid disturbing the register state below
if (JvmtiExport::can_post_field_access()) {
// Check to see if a field access watch has been set before we
// take the time to call into the VM.
Label L1;
__ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
__ ldrw(r2, Address(rscratch1));
__ cbzw(r2, L1);
// access constant pool cache entry
__ get_cache_entry_pointer_at_bcp(c_rarg2, rscratch2, 1);
__ verify_oop(r0);
__ push_ptr(r0); // save object pointer before call_VM() clobbers it
__ mov(c_rarg1, r0);
// c_rarg1: object pointer copied above
// c_rarg2: cache entry pointer
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::post_field_access),
c_rarg1, c_rarg2);
__ pop_ptr(r0); // restore object pointer
__ bind(L1);
}
// access constant pool cache
__ get_cache_and_index_at_bcp(r2, r1, 1);
__ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::f2_offset())));
__ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::flags_offset())));
// r0: object
__ verify_oop(r0);
__ null_check(r0);
const Address field(r0, r1);
// 8179954: We need to make sure that the code generated for
// volatile accesses forms a sequentially-consistent set of
// operations when combined with STLR and LDAR. Without a leading
// membar it's possible for a simple Dekker test to fail if loads
// use LDR;DMB but stores use STLR. This can happen if C2 compiles
// the stores in one method and we interpret the loads in another.
if (! UseBarriersForVolatile) {
Label notVolatile;
__ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
__ membar(MacroAssembler::AnyAny);
__ bind(notVolatile);
}
// access field
switch (bytecode()) {
case Bytecodes::_fast_agetfield:
__ load_heap_oop(r0, field);
__ verify_oop(r0);
break;
case Bytecodes::_fast_lgetfield:
__ ldr(r0, field);
break;
case Bytecodes::_fast_igetfield:
__ ldrw(r0, field);
break;
case Bytecodes::_fast_bgetfield:
__ load_signed_byte(r0, field);
break;
case Bytecodes::_fast_sgetfield:
__ load_signed_short(r0, field);
break;
case Bytecodes::_fast_cgetfield:
__ load_unsigned_short(r0, field);
break;
case Bytecodes::_fast_fgetfield:
__ ldrs(v0, field);
break;
case Bytecodes::_fast_dgetfield:
__ ldrd(v0, field);
break;
default:
ShouldNotReachHere();
}
{
Label notVolatile;
__ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
__ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
__ bind(notVolatile);
}
}
void TemplateTable::fast_xaccess(TosState state)
{
transition(vtos, state);
// get receiver
__ ldr(r0, aaddress(0));
// access constant pool cache
__ get_cache_and_index_at_bcp(r2, r3, 2);
__ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::f2_offset())));
// 8179954: We need to make sure that the code generated for
// volatile accesses forms a sequentially-consistent set of
// operations when combined with STLR and LDAR. Without a leading
// membar it's possible for a simple Dekker test to fail if loads
// use LDR;DMB but stores use STLR. This can happen if C2 compiles
// the stores in one method and we interpret the loads in another.
if (! UseBarriersForVolatile) {
Label notVolatile;
__ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::flags_offset())));
__ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
__ membar(MacroAssembler::AnyAny);
__ bind(notVolatile);
}
// make sure exception is reported in correct bcp range (getfield is
// next instruction)
__ increment(rbcp);
__ null_check(r0);
switch (state) {
case itos:
__ ldrw(r0, Address(r0, r1, Address::lsl(0)));
break;
case atos:
__ load_heap_oop(r0, Address(r0, r1, Address::lsl(0)));
__ verify_oop(r0);
break;
case ftos:
__ ldrs(v0, Address(r0, r1, Address::lsl(0)));
break;
default:
ShouldNotReachHere();
}
{
Label notVolatile;
__ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::flags_offset())));
__ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
__ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
__ bind(notVolatile);
}
__ decrement(rbcp);
}
//-----------------------------------------------------------------------------
// Calls
void TemplateTable::count_calls(Register method, Register temp)
{
__ call_Unimplemented();
}
void TemplateTable::prepare_invoke(int byte_no,
Register method, // linked method (or i-klass)
Register index, // itable index, MethodType, etc.
Register recv, // if caller wants to see it
Register flags // if caller wants to test it
) {
// determine flags
Bytecodes::Code code = bytecode();
const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
const bool is_invokedynamic = code == Bytecodes::_invokedynamic;
const bool is_invokehandle = code == Bytecodes::_invokehandle;
const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
const bool is_invokespecial = code == Bytecodes::_invokespecial;
const bool load_receiver = (recv != noreg);
const bool save_flags = (flags != noreg);
assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
assert(flags == noreg || flags == r3, "");
assert(recv == noreg || recv == r2, "");
// setup registers & access constant pool cache
if (recv == noreg) recv = r2;
if (flags == noreg) flags = r3;
assert_different_registers(method, index, recv, flags);
// save 'interpreter return address'
__ save_bcp();
load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
// maybe push appendix to arguments (just before return address)
if (is_invokedynamic || is_invokehandle) {
Label L_no_push;
__ tbz(flags, ConstantPoolCacheEntry::has_appendix_shift, L_no_push);
// Push the appendix as a trailing parameter.
// This must be done before we get the receiver,
// since the parameter_size includes it.
__ push(r19);
__ mov(r19, index);
assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
__ load_resolved_reference_at_index(index, r19);
__ pop(r19);
__ push(index); // push appendix (MethodType, CallSite, etc.)
__ bind(L_no_push);
}
// load receiver if needed (note: no return address pushed yet)
if (load_receiver) {
__ andw(recv, flags, ConstantPoolCacheEntry::parameter_size_mask);
// FIXME -- is this actually correct? looks like it should be 2
// const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address
// const int receiver_is_at_end = -1; // back off one slot to get receiver
// Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
// __ movptr(recv, recv_addr);
__ add(rscratch1, esp, recv, ext::uxtx, 3); // FIXME: uxtb here?
__ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1)));
__ verify_oop(recv);
}
// compute return type
// x86 uses a shift and mask or wings it with a shift plus assert
// the mask is not needed. aarch64 just uses bitfield extract
__ ubfxw(rscratch2, flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits);
// load return address
{
const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
__ mov(rscratch1, table_addr);
__ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3)));
}
}
void TemplateTable::invokevirtual_helper(Register index,
Register recv,
Register flags)
{
// Uses temporary registers r0, r3
assert_different_registers(index, recv, r0, r3);
// Test for an invoke of a final method
Label notFinal;
__ tbz(flags, ConstantPoolCacheEntry::is_vfinal_shift, notFinal);
const Register method = index; // method must be rmethod
assert(method == rmethod,
"methodOop must be rmethod for interpreter calling convention");
// do the call - the index is actually the method to call
// that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
// It's final, need a null check here!
__ null_check(recv);
// profile this call
__ profile_final_call(r0);
__ profile_arguments_type(r0, method, r4, true);
__ jump_from_interpreted(method, r0);
__ bind(notFinal);
// get receiver klass
__ null_check(recv, oopDesc::klass_offset_in_bytes());
__ load_klass(r0, recv);
// profile this call
__ profile_virtual_call(r0, rlocals, r3);
// get target methodOop & entry point
__ lookup_virtual_method(r0, index, method);
__ profile_arguments_type(r3, method, r4, true);
// FIXME -- this looks completely redundant. is it?
// __ ldr(r3, Address(method, Method::interpreter_entry_offset()));
__ jump_from_interpreted(method, r3);
}
void TemplateTable::invokevirtual(int byte_no)
{
transition(vtos, vtos);
assert(byte_no == f2_byte, "use this argument");
prepare_invoke(byte_no, rmethod, noreg, r2, r3);
// rmethod: index (actually a Method*)
// r2: receiver
// r3: flags
invokevirtual_helper(rmethod, r2, r3);
}
void TemplateTable::invokespecial(int byte_no)
{
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
prepare_invoke(byte_no, rmethod, noreg, // get f1 Method*
r2); // get receiver also for null check
__ verify_oop(r2);
__ null_check(r2);
// do the call
__ profile_call(r0);
__ profile_arguments_type(r0, rmethod, rbcp, false);
__ jump_from_interpreted(rmethod, r0);
}
void TemplateTable::invokestatic(int byte_no)
{
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
prepare_invoke(byte_no, rmethod); // get f1 Method*
// do the call
__ profile_call(r0);
__ profile_arguments_type(r0, rmethod, r4, false);
__ jump_from_interpreted(rmethod, r0);
}
void TemplateTable::fast_invokevfinal(int byte_no)
{
__ call_Unimplemented();
}
void TemplateTable::invokeinterface(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
prepare_invoke(byte_no, r0, rmethod, // get f1 Klass*, f2 Method*
r2, r3); // recv, flags
// r0: interface klass (from f1)
// rmethod: method (from f2)
// r2: receiver
// r3: flags
// Special case of invokeinterface called for virtual method of
// java.lang.Object. See cpCacheOop.cpp for details.
// This code isn't produced by javac, but could be produced by
// another compliant java compiler.
Label notMethod;
__ tbz(r3, ConstantPoolCacheEntry::is_forced_virtual_shift, notMethod);
invokevirtual_helper(rmethod, r2, r3);
__ bind(notMethod);
// Get receiver klass into r3 - also a null check
__ restore_locals();
__ null_check(r2, oopDesc::klass_offset_in_bytes());
__ load_klass(r3, r2);
Label no_such_interface, no_such_method;
// Receiver subtype check against REFC.
// Superklass in r0. Subklass in r3. Blows rscratch2, r13
__ lookup_interface_method(// inputs: rec. class, interface, itable index
r3, r0, noreg,
// outputs: scan temp. reg, scan temp. reg
rscratch2, r13,
no_such_interface,
/*return_method=*/false);
// profile this call
__ profile_virtual_call(r3, r13, r19);
// Get declaring interface class from method, and itable index
__ ldr(r0, Address(rmethod, Method::const_offset()));
__ ldr(r0, Address(r0, ConstMethod::constants_offset()));
__ ldr(r0, Address(r0, ConstantPool::pool_holder_offset_in_bytes()));
__ ldrw(rmethod, Address(rmethod, Method::itable_index_offset()));
__ subw(rmethod, rmethod, Method::itable_index_max);
__ negw(rmethod, rmethod);
__ lookup_interface_method(// inputs: rec. class, interface, itable index
r3, r0, rmethod,
// outputs: method, scan temp. reg
rmethod, r13,
no_such_interface);
// rmethod,: methodOop to call
// r2: receiver
// Check for abstract method error
// Note: This should be done more efficiently via a throw_abstract_method_error
// interpreter entry point and a conditional jump to it in case of a null
// method.
__ cbz(rmethod, no_such_method);
__ profile_arguments_type(r3, rmethod, r13, true);
// do the call
// r2: receiver
// rmethod,: methodOop
__ jump_from_interpreted(rmethod, r3);
__ should_not_reach_here();
// exception handling code follows...
// note: must restore interpreter registers to canonical
// state for exception handling to work correctly!
__ bind(no_such_method);
// throw exception
__ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
__ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
// the call_VM checks for exception, so we should never return here.
__ should_not_reach_here();
__ bind(no_such_interface);
// throw exception
__ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
__ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
__ call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_IncompatibleClassChangeError));
// the call_VM checks for exception, so we should never return here.
__ should_not_reach_here();
return;
}
void TemplateTable::invokehandle(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
prepare_invoke(byte_no, rmethod, r0, r2);
__ verify_method_ptr(r2);
__ verify_oop(r2);
__ null_check(r2);
// FIXME: profile the LambdaForm also
// r13 is safe to use here as a scratch reg because it is about to
// be clobbered by jump_from_interpreted().
__ profile_final_call(r13);
__ profile_arguments_type(r13, rmethod, r4, true);
__ jump_from_interpreted(rmethod, r0);
}
void TemplateTable::invokedynamic(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
prepare_invoke(byte_no, rmethod, r0);
// r0: CallSite object (from cpool->resolved_references[])
// rmethod: MH.linkToCallSite method (from f2)
// Note: r0_callsite is already pushed by prepare_invoke
// %%% should make a type profile for any invokedynamic that takes a ref argument
// profile this call
__ profile_call(rbcp);
__ profile_arguments_type(r3, rmethod, r13, false);
__ verify_oop(r0);
__ jump_from_interpreted(rmethod, r0);
}
//-----------------------------------------------------------------------------
// Allocation
void TemplateTable::_new() {
transition(vtos, atos);
__ get_unsigned_2_byte_index_at_bcp(r3, 1);
Label slow_case;
Label done;
Label initialize_header;
Label initialize_object; // including clearing the fields
__ get_cpool_and_tags(r4, r0);
// Make sure the class we're about to instantiate has been resolved.
// This is done before loading InstanceKlass to be consistent with the order
// how Constant Pool is updated (see ConstantPool::klass_at_put)
const int tags_offset = Array<u1>::base_offset_in_bytes();
__ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
__ lea(rscratch1, Address(rscratch1, tags_offset));
__ ldarb(rscratch1, rscratch1);
__ cmp(rscratch1, JVM_CONSTANT_Class);
__ br(Assembler::NE, slow_case);
// get InstanceKlass
__ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
// make sure klass is initialized & doesn't have finalizer
// make sure klass is fully initialized
__ ldrb(rscratch1, Address(r4, InstanceKlass::init_state_offset()));
__ cmp(rscratch1, InstanceKlass::fully_initialized);
__ br(Assembler::NE, slow_case);
// get instance_size in InstanceKlass (scaled to a count of bytes)
__ ldrw(r3,
Address(r4,
Klass::layout_helper_offset()));
// test to see if it has a finalizer or is malformed in some way
__ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case);
// Allocate the instance:
// If TLAB is enabled:
// Try to allocate in the TLAB.
// If fails, go to the slow path.
// Else If inline contiguous allocations are enabled:
// Try to allocate in eden.
// If fails due to heap end, go to slow path.
//
// If TLAB is enabled OR inline contiguous is enabled:
// Initialize the allocation.
// Exit.
//
// Go to slow path.
const bool allow_shared_alloc =
Universe::heap()->supports_inline_contig_alloc();
if (UseTLAB) {
__ tlab_allocate(r0, r3, 0, noreg, r1, slow_case);
if (ZeroTLAB) {
// the fields have been already cleared
__ b(initialize_header);
} else {
// initialize both the header and fields
__ b(initialize_object);
}
} else {
// Allocation in the shared Eden, if allowed.
//
// r3: instance size in bytes
if (allow_shared_alloc) {
__ eden_allocate(r0, r3, 0, r10, slow_case);
__ incr_allocated_bytes(rthread, r3, 0, rscratch1);
}
}
// If UseTLAB or allow_shared_alloc are true, the object is created above and
// there is an initialize need. Otherwise, skip and go to the slow path.
if (UseTLAB || allow_shared_alloc) {
// The object is initialized before the header. If the object size is
// zero, go directly to the header initialization.
__ bind(initialize_object);
__ sub(r3, r3, sizeof(oopDesc));
__ cbz(r3, initialize_header);
// Initialize object fields
{
__ add(r2, r0, sizeof(oopDesc));
Label loop;
__ bind(loop);
__ str(zr, Address(__ post(r2, BytesPerLong)));
__ sub(r3, r3, BytesPerLong);
__ cbnz(r3, loop);
}
// initialize object header only.
__ bind(initialize_header);
if (UseBiasedLocking) {
__ ldr(rscratch1, Address(r4, Klass::prototype_header_offset()));
} else {
__ mov(rscratch1, (intptr_t)markOopDesc::prototype());
}
__ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
__ store_klass_gap(r0, zr); // zero klass gap for compressed oops
__ store_klass(r0, r4); // store klass last
{
SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
// Trigger dtrace event for fastpath
__ push(atos); // save the return value
__ call_VM_leaf(
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), r0);
__ pop(atos); // restore the return value
}
__ b(done);
}
// slow case
__ bind(slow_case);
__ get_constant_pool(c_rarg1);
__ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
__ verify_oop(r0);
// continue
__ bind(done);
// Must prevent reordering of stores for object initialization with stores that publish the new object.
__ membar(Assembler::StoreStore);
}
void TemplateTable::newarray() {
transition(itos, atos);
__ load_unsigned_byte(c_rarg1, at_bcp(1));
__ mov(c_rarg2, r0);
call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
c_rarg1, c_rarg2);
// Must prevent reordering of stores for object initialization with stores that publish the new object.
__ membar(Assembler::StoreStore);
}
void TemplateTable::anewarray() {
transition(itos, atos);
__ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
__ get_constant_pool(c_rarg1);
__ mov(c_rarg3, r0);
call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
c_rarg1, c_rarg2, c_rarg3);
// Must prevent reordering of stores for object initialization with stores that publish the new object.
__ membar(Assembler::StoreStore);
}
void TemplateTable::arraylength() {
transition(atos, itos);
__ null_check(r0, arrayOopDesc::length_offset_in_bytes());
__ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes()));
}
void TemplateTable::checkcast()
{
transition(atos, atos);
Label done, is_null, ok_is_subtype, quicked, resolved;
__ cbz(r0, is_null);
// Get cpool & tags index
__ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
__ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
// See if bytecode has already been quicked
__ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
__ lea(r1, Address(rscratch1, r19));
__ ldarb(r1, r1);
__ cmp(r1, JVM_CONSTANT_Class);
__ br(Assembler::EQ, quicked);
__ push(atos); // save receiver for result, and for GC
call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
// vm_result_2 has metadata result
__ get_vm_result_2(r0, rthread);
__ pop(r3); // restore receiver
__ b(resolved);
// Get superklass in r0 and subklass in r3
__ bind(quicked);
__ mov(r3, r0); // Save object in r3; r0 needed for subtype check
__ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
__ bind(resolved);
__ load_klass(r19, r3);
// Generate subtype check. Blows r2, r5. Object in r3.
// Superklass in r0. Subklass in r19.
__ gen_subtype_check(r19, ok_is_subtype);
// Come here on failure
__ push(r3);
// object is at TOS
__ b(Interpreter::_throw_ClassCastException_entry);
// Come here on success
__ bind(ok_is_subtype);
__ mov(r0, r3); // Restore object in r3
// Collect counts on whether this test sees NULLs a lot or not.
if (ProfileInterpreter) {
__ b(done);
__ bind(is_null);
__ profile_null_seen(r2);
} else {
__ bind(is_null); // same as 'done'
}
__ bind(done);
}
void TemplateTable::instanceof() {
transition(atos, itos);
Label done, is_null, ok_is_subtype, quicked, resolved;
__ cbz(r0, is_null);
// Get cpool & tags index
__ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
__ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
// See if bytecode has already been quicked
__ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
__ lea(r1, Address(rscratch1, r19));
__ ldarb(r1, r1);
__ cmp(r1, JVM_CONSTANT_Class);
__ br(Assembler::EQ, quicked);
__ push(atos); // save receiver for result, and for GC
call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
// vm_result_2 has metadata result
__ get_vm_result_2(r0, rthread);
__ pop(r3); // restore receiver
__ verify_oop(r3);
__ load_klass(r3, r3);
__ b(resolved);
// Get superklass in r0 and subklass in r3
__ bind(quicked);
__ load_klass(r3, r0);
__ load_resolved_klass_at_offset(r2, r19, r0, rscratch1);
__ bind(resolved);
// Generate subtype check. Blows r2, r5
// Superklass in r0. Subklass in r3.
__ gen_subtype_check(r3, ok_is_subtype);
// Come here on failure
__ mov(r0, 0);
__ b(done);
// Come here on success
__ bind(ok_is_subtype);
__ mov(r0, 1);
// Collect counts on whether this test sees NULLs a lot or not.
if (ProfileInterpreter) {
__ b(done);
__ bind(is_null);
__ profile_null_seen(r2);
} else {
__ bind(is_null); // same as 'done'
}
__ bind(done);
// r0 = 0: obj == NULL or obj is not an instanceof the specified klass
// r0 = 1: obj != NULL and obj is an instanceof the specified klass
}
//-----------------------------------------------------------------------------
// Breakpoints
void TemplateTable::_breakpoint() {
// Note: We get here even if we are single stepping..
// jbug inists on setting breakpoints at every bytecode
// even if we are in single step mode.
transition(vtos, vtos);
// get the unpatched byte code
__ get_method(c_rarg1);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::get_original_bytecode_at),
c_rarg1, rbcp);
__ mov(r19, r0);
// post the breakpoint event
__ call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
rmethod, rbcp);
// complete the execution of original bytecode
__ mov(rscratch1, r19);
__ dispatch_only_normal(vtos);
}
//-----------------------------------------------------------------------------
// Exceptions
void TemplateTable::athrow() {
transition(atos, vtos);
__ null_check(r0);
__ b(Interpreter::throw_exception_entry());
}
//-----------------------------------------------------------------------------
// Synchronization
//
// Note: monitorenter & exit are symmetric routines; which is reflected
// in the assembly code structure as well
//
// Stack layout:
//
// [expressions ] <--- esp = expression stack top
// ..
// [expressions ]
// [monitor entry] <--- monitor block top = expression stack bot
// ..
// [monitor entry]
// [frame data ] <--- monitor block bot
// ...
// [saved rbp ] <--- rbp
void TemplateTable::monitorenter()
{
transition(atos, vtos);
// check for NULL object
__ null_check(r0);
const Address monitor_block_top(
rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
const Address monitor_block_bot(
rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
Label allocated;
// initialize entry pointer
__ mov(c_rarg1, zr); // points to free slot or NULL
// find a free slot in the monitor block (result in c_rarg1)
{
Label entry, loop, exit;
__ ldr(c_rarg3, monitor_block_top); // points to current entry,
// starting with top-most entry
__ lea(c_rarg2, monitor_block_bot); // points to word before bottom
__ b(entry);
__ bind(loop);
// check if current entry is used
// if not used then remember entry in c_rarg1
__ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
__ cmp(zr, rscratch1);
__ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ);
// check if current entry is for same object
__ cmp(r0, rscratch1);
// if same object then stop searching
__ br(Assembler::EQ, exit);
// otherwise advance to next entry
__ add(c_rarg3, c_rarg3, entry_size);
__ bind(entry);
// check if bottom reached
__ cmp(c_rarg3, c_rarg2);
// if not at bottom then check this entry
__ br(Assembler::NE, loop);
__ bind(exit);
}
__ cbnz(c_rarg1, allocated); // check if a slot has been found and
// if found, continue with that on
// allocate one if there's no free slot
{
Label entry, loop;
// 1. compute new pointers // rsp: old expression stack top
__ ldr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
__ sub(esp, esp, entry_size); // move expression stack top
__ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom
__ mov(c_rarg3, esp); // set start value for copy loop
__ str(c_rarg1, monitor_block_bot); // set new monitor block bottom
__ sub(sp, sp, entry_size); // make room for the monitor
__ b(entry);
// 2. move expression stack contents
__ bind(loop);
__ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
// word from old location
__ str(c_rarg2, Address(c_rarg3, 0)); // and store it at new location
__ add(c_rarg3, c_rarg3, wordSize); // advance to next word
__ bind(entry);
__ cmp(c_rarg3, c_rarg1); // check if bottom reached
__ br(Assembler::NE, loop); // if not at bottom then
// copy next word
}
// call run-time routine
// c_rarg1: points to monitor entry
__ bind(allocated);
// Increment bcp to point to the next bytecode, so exception
// handling for async. exceptions work correctly.
// The object has already been poped from the stack, so the
// expression stack looks correct.
__ increment(rbcp);
// store object
__ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
__ lock_object(c_rarg1);
// check to make sure this monitor doesn't cause stack overflow after locking
__ save_bcp(); // in case of exception
__ generate_stack_overflow_check(0);
// The bcp has already been incremented. Just need to dispatch to
// next instruction.
__ dispatch_next(vtos);
}
void TemplateTable::monitorexit()
{
transition(atos, vtos);
// check for NULL object
__ null_check(r0);
const Address monitor_block_top(
rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
const Address monitor_block_bot(
rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
Label found;
// find matching slot
{
Label entry, loop;
__ ldr(c_rarg1, monitor_block_top); // points to current entry,
// starting with top-most entry
__ lea(c_rarg2, monitor_block_bot); // points to word before bottom
// of monitor block
__ b(entry);
__ bind(loop);
// check if current entry is for same object
__ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
__ cmp(r0, rscratch1);
// if same object then stop searching
__ br(Assembler::EQ, found);
// otherwise advance to next entry
__ add(c_rarg1, c_rarg1, entry_size);
__ bind(entry);
// check if bottom reached
__ cmp(c_rarg1, c_rarg2);
// if not at bottom then check this entry
__ br(Assembler::NE, loop);
}
// error handling. Unlocking was not block-structured
__ call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_illegal_monitor_state_exception));
__ should_not_reach_here();
// call run-time routine
__ bind(found);
__ push_ptr(r0); // make sure object is on stack (contract with oopMaps)
__ unlock_object(c_rarg1);
__ pop_ptr(r0); // discard object
}
// Wide instructions
void TemplateTable::wide()
{
__ load_unsigned_byte(r19, at_bcp(1));
__ mov(rscratch1, (address)Interpreter::_wentry_point);
__ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3)));
__ br(rscratch1);
}
// Multi arrays
void TemplateTable::multianewarray() {
transition(vtos, atos);
__ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions
// last dim is on top of stack; we want address of first one:
// first_addr = last_addr + (ndims - 1) * wordSize
__ lea(c_rarg1, Address(esp, r0, Address::uxtw(3)));
__ sub(c_rarg1, c_rarg1, wordSize);
call_VM(r0,
CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
c_rarg1);
__ load_unsigned_byte(r1, at_bcp(3));
__ lea(esp, Address(esp, r1, Address::uxtw(3)));
}