hotspot/src/cpu/x86/vm/assembler_x86.hpp
author roland
Mon, 02 Nov 2009 11:17:55 +0100
changeset 4430 95b539dfa1e8
parent 3905 7d725029ac85
child 4433 2a23318c15bf
permissions -rw-r--r--
6769124: various 64-bit fixes for c1 Reviewed-by: never

/*
 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

class BiasedLockingCounters;

// Contains all the definitions needed for x86 assembly code generation.

// Calling convention
class Argument VALUE_OBJ_CLASS_SPEC {
 public:
  enum {
#ifdef _LP64
#ifdef _WIN64
    n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
    n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
#else
    n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
    n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
#endif // _WIN64
    n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
    n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
#else
    n_register_parameters = 0   // 0 registers used to pass arguments
#endif // _LP64
  };
};


#ifdef _LP64
// Symbolically name the register arguments used by the c calling convention.
// Windows is different from linux/solaris. So much for standards...

#ifdef _WIN64

REGISTER_DECLARATION(Register, c_rarg0, rcx);
REGISTER_DECLARATION(Register, c_rarg1, rdx);
REGISTER_DECLARATION(Register, c_rarg2, r8);
REGISTER_DECLARATION(Register, c_rarg3, r9);

REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);

#else

REGISTER_DECLARATION(Register, c_rarg0, rdi);
REGISTER_DECLARATION(Register, c_rarg1, rsi);
REGISTER_DECLARATION(Register, c_rarg2, rdx);
REGISTER_DECLARATION(Register, c_rarg3, rcx);
REGISTER_DECLARATION(Register, c_rarg4, r8);
REGISTER_DECLARATION(Register, c_rarg5, r9);

REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);

#endif // _WIN64

// Symbolically name the register arguments used by the Java calling convention.
// We have control over the convention for java so we can do what we please.
// What pleases us is to offset the java calling convention so that when
// we call a suitable jni method the arguments are lined up and we don't
// have to do little shuffling. A suitable jni method is non-static and a
// small number of arguments (two fewer args on windows)
//
//        |-------------------------------------------------------|
//        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
//        |-------------------------------------------------------|
//        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
//        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
//        |-------------------------------------------------------|
//        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
//        |-------------------------------------------------------|

REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
// Windows runs out of register args here
#ifdef _WIN64
REGISTER_DECLARATION(Register, j_rarg3, rdi);
REGISTER_DECLARATION(Register, j_rarg4, rsi);
#else
REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
#endif /* _WIN64 */
REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);

REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);

REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile

REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved

#else
// rscratch1 will apear in 32bit code that is dead but of course must compile
// Using noreg ensures if the dead code is incorrectly live and executed it
// will cause an assertion failure
#define rscratch1 noreg

#endif // _LP64

// Address is an abstraction used to represent a memory location
// using any of the amd64 addressing modes with one object.
//
// Note: A register location is represented via a Register, not
//       via an address for efficiency & simplicity reasons.

class ArrayAddress;

class Address VALUE_OBJ_CLASS_SPEC {
 public:
  enum ScaleFactor {
    no_scale = -1,
    times_1  =  0,
    times_2  =  1,
    times_4  =  2,
    times_8  =  3,
    times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
  };
  static ScaleFactor times(int size) {
    assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
    if (size == 8)  return times_8;
    if (size == 4)  return times_4;
    if (size == 2)  return times_2;
    return times_1;
  }
  static int scale_size(ScaleFactor scale) {
    assert(scale != no_scale, "");
    assert(((1 << (int)times_1) == 1 &&
            (1 << (int)times_2) == 2 &&
            (1 << (int)times_4) == 4 &&
            (1 << (int)times_8) == 8), "");
    return (1 << (int)scale);
  }

 private:
  Register         _base;
  Register         _index;
  ScaleFactor      _scale;
  int              _disp;
  RelocationHolder _rspec;

  // Easily misused constructors make them private
  // %%% can we make these go away?
  NOT_LP64(Address(address loc, RelocationHolder spec);)
  Address(int disp, address loc, relocInfo::relocType rtype);
  Address(int disp, address loc, RelocationHolder spec);

 public:

 int disp() { return _disp; }
  // creation
  Address()
    : _base(noreg),
      _index(noreg),
      _scale(no_scale),
      _disp(0) {
  }

  // No default displacement otherwise Register can be implicitly
  // converted to 0(Register) which is quite a different animal.

  Address(Register base, int disp)
    : _base(base),
      _index(noreg),
      _scale(no_scale),
      _disp(disp) {
  }

  Address(Register base, Register index, ScaleFactor scale, int disp = 0)
    : _base (base),
      _index(index),
      _scale(scale),
      _disp (disp) {
    assert(!index->is_valid() == (scale == Address::no_scale),
           "inconsistent address");
  }

  Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
    : _base (base),
      _index(index.register_or_noreg()),
      _scale(scale),
      _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
    if (!index.is_register())  scale = Address::no_scale;
    assert(!_index->is_valid() == (scale == Address::no_scale),
           "inconsistent address");
  }

  Address plus_disp(int disp) const {
    Address a = (*this);
    a._disp += disp;
    return a;
  }

  // The following two overloads are used in connection with the
  // ByteSize type (see sizes.hpp).  They simplify the use of
  // ByteSize'd arguments in assembly code. Note that their equivalent
  // for the optimized build are the member functions with int disp
  // argument since ByteSize is mapped to an int type in that case.
  //
  // Note: DO NOT introduce similar overloaded functions for WordSize
  // arguments as in the optimized mode, both ByteSize and WordSize
  // are mapped to the same type and thus the compiler cannot make a
  // distinction anymore (=> compiler errors).

#ifdef ASSERT
  Address(Register base, ByteSize disp)
    : _base(base),
      _index(noreg),
      _scale(no_scale),
      _disp(in_bytes(disp)) {
  }

  Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
    : _base(base),
      _index(index),
      _scale(scale),
      _disp(in_bytes(disp)) {
    assert(!index->is_valid() == (scale == Address::no_scale),
           "inconsistent address");
  }

  Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
    : _base (base),
      _index(index.register_or_noreg()),
      _scale(scale),
      _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
    if (!index.is_register())  scale = Address::no_scale;
    assert(!_index->is_valid() == (scale == Address::no_scale),
           "inconsistent address");
  }

#endif // ASSERT

  // accessors
  bool        uses(Register reg) const { return _base == reg || _index == reg; }
  Register    base()             const { return _base;  }
  Register    index()            const { return _index; }
  ScaleFactor scale()            const { return _scale; }
  int         disp()             const { return _disp;  }

  // Convert the raw encoding form into the form expected by the constructor for
  // Address.  An index of 4 (rsp) corresponds to having no index, so convert
  // that to noreg for the Address constructor.
  static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);

  static Address make_array(ArrayAddress);

 private:
  bool base_needs_rex() const {
    return _base != noreg && _base->encoding() >= 8;
  }

  bool index_needs_rex() const {
    return _index != noreg &&_index->encoding() >= 8;
  }

  relocInfo::relocType reloc() const { return _rspec.type(); }

  friend class Assembler;
  friend class MacroAssembler;
  friend class LIR_Assembler; // base/index/scale/disp
};

//
// AddressLiteral has been split out from Address because operands of this type
// need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
// the few instructions that need to deal with address literals are unique and the
// MacroAssembler does not have to implement every instruction in the Assembler
// in order to search for address literals that may need special handling depending
// on the instruction and the platform. As small step on the way to merging i486/amd64
// directories.
//
class AddressLiteral VALUE_OBJ_CLASS_SPEC {
  friend class ArrayAddress;
  RelocationHolder _rspec;
  // Typically we use AddressLiterals we want to use their rval
  // However in some situations we want the lval (effect address) of the item.
  // We provide a special factory for making those lvals.
  bool _is_lval;

  // If the target is far we'll need to load the ea of this to
  // a register to reach it. Otherwise if near we can do rip
  // relative addressing.

  address          _target;

 protected:
  // creation
  AddressLiteral()
    : _is_lval(false),
      _target(NULL)
  {}

  public:


  AddressLiteral(address target, relocInfo::relocType rtype);

  AddressLiteral(address target, RelocationHolder const& rspec)
    : _rspec(rspec),
      _is_lval(false),
      _target(target)
  {}

  AddressLiteral addr() {
    AddressLiteral ret = *this;
    ret._is_lval = true;
    return ret;
  }


 private:

  address target() { return _target; }
  bool is_lval() { return _is_lval; }

  relocInfo::relocType reloc() const { return _rspec.type(); }
  const RelocationHolder& rspec() const { return _rspec; }

  friend class Assembler;
  friend class MacroAssembler;
  friend class Address;
  friend class LIR_Assembler;
};

// Convience classes
class RuntimeAddress: public AddressLiteral {

  public:

  RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}

};

class OopAddress: public AddressLiteral {

  public:

  OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}

};

class ExternalAddress: public AddressLiteral {

  public:

  ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}

};

class InternalAddress: public AddressLiteral {

  public:

  InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}

};

// x86 can do array addressing as a single operation since disp can be an absolute
// address amd64 can't. We create a class that expresses the concept but does extra
// magic on amd64 to get the final result

class ArrayAddress VALUE_OBJ_CLASS_SPEC {
  private:

  AddressLiteral _base;
  Address        _index;

  public:

  ArrayAddress() {};
  ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
  AddressLiteral base() { return _base; }
  Address index() { return _index; }

};

const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);

// The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
// level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
// is what you get. The Assembler is generating code into a CodeBuffer.

class Assembler : public AbstractAssembler  {
  friend class AbstractAssembler; // for the non-virtual hack
  friend class LIR_Assembler; // as_Address()
  friend class StubGenerator;

 public:
  enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
    zero          = 0x4,
    notZero       = 0x5,
    equal         = 0x4,
    notEqual      = 0x5,
    less          = 0xc,
    lessEqual     = 0xe,
    greater       = 0xf,
    greaterEqual  = 0xd,
    below         = 0x2,
    belowEqual    = 0x6,
    above         = 0x7,
    aboveEqual    = 0x3,
    overflow      = 0x0,
    noOverflow    = 0x1,
    carrySet      = 0x2,
    carryClear    = 0x3,
    negative      = 0x8,
    positive      = 0x9,
    parity        = 0xa,
    noParity      = 0xb
  };

  enum Prefix {
    // segment overrides
    CS_segment = 0x2e,
    SS_segment = 0x36,
    DS_segment = 0x3e,
    ES_segment = 0x26,
    FS_segment = 0x64,
    GS_segment = 0x65,

    REX        = 0x40,

    REX_B      = 0x41,
    REX_X      = 0x42,
    REX_XB     = 0x43,
    REX_R      = 0x44,
    REX_RB     = 0x45,
    REX_RX     = 0x46,
    REX_RXB    = 0x47,

    REX_W      = 0x48,

    REX_WB     = 0x49,
    REX_WX     = 0x4A,
    REX_WXB    = 0x4B,
    REX_WR     = 0x4C,
    REX_WRB    = 0x4D,
    REX_WRX    = 0x4E,
    REX_WRXB   = 0x4F
  };

  enum WhichOperand {
    // input to locate_operand, and format code for relocations
    imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
    disp32_operand = 1,          // embedded 32-bit displacement or address
    call32_operand = 2,          // embedded 32-bit self-relative displacement
#ifndef _LP64
    _WhichOperand_limit = 3
#else
     narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
    _WhichOperand_limit = 4
#endif
  };



  // NOTE: The general philopsophy of the declarations here is that 64bit versions
  // of instructions are freely declared without the need for wrapping them an ifdef.
  // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
  // In the .cpp file the implementations are wrapped so that they are dropped out
  // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
  // to the size it was prior to merging up the 32bit and 64bit assemblers.
  //
  // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
  // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.

private:


  // 64bit prefixes
  int prefix_and_encode(int reg_enc, bool byteinst = false);
  int prefixq_and_encode(int reg_enc);

  int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
  int prefixq_and_encode(int dst_enc, int src_enc);

  void prefix(Register reg);
  void prefix(Address adr);
  void prefixq(Address adr);

  void prefix(Address adr, Register reg,  bool byteinst = false);
  void prefixq(Address adr, Register reg);

  void prefix(Address adr, XMMRegister reg);

  void prefetch_prefix(Address src);

  // Helper functions for groups of instructions
  void emit_arith_b(int op1, int op2, Register dst, int imm8);

  void emit_arith(int op1, int op2, Register dst, int32_t imm32);
  // only 32bit??
  void emit_arith(int op1, int op2, Register dst, jobject obj);
  void emit_arith(int op1, int op2, Register dst, Register src);

  void emit_operand(Register reg,
                    Register base, Register index, Address::ScaleFactor scale,
                    int disp,
                    RelocationHolder const& rspec,
                    int rip_relative_correction = 0);

  void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);

  // operands that only take the original 32bit registers
  void emit_operand32(Register reg, Address adr);

  void emit_operand(XMMRegister reg,
                    Register base, Register index, Address::ScaleFactor scale,
                    int disp,
                    RelocationHolder const& rspec);

  void emit_operand(XMMRegister reg, Address adr);

  void emit_operand(MMXRegister reg, Address adr);

  // workaround gcc (3.2.1-7) bug
  void emit_operand(Address adr, MMXRegister reg);


  // Immediate-to-memory forms
  void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);

  void emit_farith(int b1, int b2, int i);


 protected:
  #ifdef ASSERT
  void check_relocation(RelocationHolder const& rspec, int format);
  #endif

  inline void emit_long64(jlong x);

  void emit_data(jint data, relocInfo::relocType    rtype, int format);
  void emit_data(jint data, RelocationHolder const& rspec, int format);
  void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
  void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);


  bool reachable(AddressLiteral adr) NOT_LP64({ return true;});

  // These are all easily abused and hence protected

  // 32BIT ONLY SECTION
#ifndef _LP64
  // Make these disappear in 64bit mode since they would never be correct
  void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
  void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY

  void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
  void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY

  void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
#else
  // 64BIT ONLY SECTION
  void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY

  void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
  void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);

  void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
  void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
#endif // _LP64

  // These are unique in that we are ensured by the caller that the 32bit
  // relative in these instructions will always be able to reach the potentially
  // 64bit address described by entry. Since they can take a 64bit address they
  // don't have the 32 suffix like the other instructions in this class.

  void call_literal(address entry, RelocationHolder const& rspec);
  void jmp_literal(address entry, RelocationHolder const& rspec);

  // Avoid using directly section
  // Instructions in this section are actually usable by anyone without danger
  // of failure but have performance issues that are addressed my enhanced
  // instructions which will do the proper thing base on the particular cpu.
  // We protect them because we don't trust you...

  // Don't use next inc() and dec() methods directly. INC & DEC instructions
  // could cause a partial flag stall since they don't set CF flag.
  // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
  // which call inc() & dec() or add() & sub() in accordance with
  // the product flag UseIncDec value.

  void decl(Register dst);
  void decl(Address dst);
  void decq(Register dst);
  void decq(Address dst);

  void incl(Register dst);
  void incl(Address dst);
  void incq(Register dst);
  void incq(Address dst);

  // New cpus require use of movsd and movss to avoid partial register stall
  // when loading from memory. But for old Opteron use movlpd instead of movsd.
  // The selection is done in MacroAssembler::movdbl() and movflt().

  // Move Scalar Single-Precision Floating-Point Values
  void movss(XMMRegister dst, Address src);
  void movss(XMMRegister dst, XMMRegister src);
  void movss(Address dst, XMMRegister src);

  // Move Scalar Double-Precision Floating-Point Values
  void movsd(XMMRegister dst, Address src);
  void movsd(XMMRegister dst, XMMRegister src);
  void movsd(Address dst, XMMRegister src);
  void movlpd(XMMRegister dst, Address src);

  // New cpus require use of movaps and movapd to avoid partial register stall
  // when moving between registers.
  void movaps(XMMRegister dst, XMMRegister src);
  void movapd(XMMRegister dst, XMMRegister src);

  // End avoid using directly


  // Instruction prefixes
  void prefix(Prefix p);

  public:

  // Creation
  Assembler(CodeBuffer* code) : AbstractAssembler(code) {}

  // Decoding
  static address locate_operand(address inst, WhichOperand which);
  static address locate_next_instruction(address inst);

  // Utilities

#ifdef _LP64
 static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) )  <= x   &&   x  <  ( CONST64(1) << (nbits-1) ); }
 static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
#else
 static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) )  <= x   &&   x  <  ( 1 << (nbits-1) ); }
 static bool is_simm32(int32_t x) { return true; }
#endif // LP64

  // Generic instructions
  // Does 32bit or 64bit as needed for the platform. In some sense these
  // belong in macro assembler but there is no need for both varieties to exist

  void lea(Register dst, Address src);

  void mov(Register dst, Register src);

  void pusha();
  void popa();

  void pushf();
  void popf();

  void push(int32_t imm32);

  void push(Register src);

  void pop(Register dst);

  // These are dummies to prevent surprise implicit conversions to Register
  void push(void* v);
  void pop(void* v);


  // These do register sized moves/scans
  void rep_mov();
  void rep_set();
  void repne_scan();
#ifdef _LP64
  void repne_scanl();
#endif

  // Vanilla instructions in lexical order

  void adcl(Register dst, int32_t imm32);
  void adcl(Register dst, Address src);
  void adcl(Register dst, Register src);

  void adcq(Register dst, int32_t imm32);
  void adcq(Register dst, Address src);
  void adcq(Register dst, Register src);


  void addl(Address dst, int32_t imm32);
  void addl(Address dst, Register src);
  void addl(Register dst, int32_t imm32);
  void addl(Register dst, Address src);
  void addl(Register dst, Register src);

  void addq(Address dst, int32_t imm32);
  void addq(Address dst, Register src);
  void addq(Register dst, int32_t imm32);
  void addq(Register dst, Address src);
  void addq(Register dst, Register src);


  void addr_nop_4();
  void addr_nop_5();
  void addr_nop_7();
  void addr_nop_8();

  // Add Scalar Double-Precision Floating-Point Values
  void addsd(XMMRegister dst, Address src);
  void addsd(XMMRegister dst, XMMRegister src);

  // Add Scalar Single-Precision Floating-Point Values
  void addss(XMMRegister dst, Address src);
  void addss(XMMRegister dst, XMMRegister src);

  void andl(Register dst, int32_t imm32);
  void andl(Register dst, Address src);
  void andl(Register dst, Register src);

  void andq(Register dst, int32_t imm32);
  void andq(Register dst, Address src);
  void andq(Register dst, Register src);


  // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
  void andpd(XMMRegister dst, Address src);
  void andpd(XMMRegister dst, XMMRegister src);

  void bsfl(Register dst, Register src);
  void bsrl(Register dst, Register src);

#ifdef _LP64
  void bsfq(Register dst, Register src);
  void bsrq(Register dst, Register src);
#endif

  void bswapl(Register reg);

  void bswapq(Register reg);

  void call(Label& L, relocInfo::relocType rtype);
  void call(Register reg);  // push pc; pc <- reg
  void call(Address adr);   // push pc; pc <- adr

  void cdql();

  void cdqq();

  void cld() { emit_byte(0xfc); }

  void clflush(Address adr);

  void cmovl(Condition cc, Register dst, Register src);
  void cmovl(Condition cc, Register dst, Address src);

  void cmovq(Condition cc, Register dst, Register src);
  void cmovq(Condition cc, Register dst, Address src);


  void cmpb(Address dst, int imm8);

  void cmpl(Address dst, int32_t imm32);

  void cmpl(Register dst, int32_t imm32);
  void cmpl(Register dst, Register src);
  void cmpl(Register dst, Address src);

  void cmpq(Address dst, int32_t imm32);
  void cmpq(Address dst, Register src);

  void cmpq(Register dst, int32_t imm32);
  void cmpq(Register dst, Register src);
  void cmpq(Register dst, Address src);

  // these are dummies used to catch attempting to convert NULL to Register
  void cmpl(Register dst, void* junk); // dummy
  void cmpq(Register dst, void* junk); // dummy

  void cmpw(Address dst, int imm16);

  void cmpxchg8 (Address adr);

  void cmpxchgl(Register reg, Address adr);

  void cmpxchgq(Register reg, Address adr);

  // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
  void comisd(XMMRegister dst, Address src);

  // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
  void comiss(XMMRegister dst, Address src);

  // Identify processor type and features
  void cpuid() {
    emit_byte(0x0F);
    emit_byte(0xA2);
  }

  // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
  void cvtsd2ss(XMMRegister dst, XMMRegister src);

  // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
  void cvtsi2sdl(XMMRegister dst, Register src);
  void cvtsi2sdq(XMMRegister dst, Register src);

  // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
  void cvtsi2ssl(XMMRegister dst, Register src);
  void cvtsi2ssq(XMMRegister dst, Register src);

  // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
  void cvtdq2pd(XMMRegister dst, XMMRegister src);

  // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
  void cvtdq2ps(XMMRegister dst, XMMRegister src);

  // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
  void cvtss2sd(XMMRegister dst, XMMRegister src);

  // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
  void cvttsd2sil(Register dst, Address src);
  void cvttsd2sil(Register dst, XMMRegister src);
  void cvttsd2siq(Register dst, XMMRegister src);

  // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
  void cvttss2sil(Register dst, XMMRegister src);
  void cvttss2siq(Register dst, XMMRegister src);

  // Divide Scalar Double-Precision Floating-Point Values
  void divsd(XMMRegister dst, Address src);
  void divsd(XMMRegister dst, XMMRegister src);

  // Divide Scalar Single-Precision Floating-Point Values
  void divss(XMMRegister dst, Address src);
  void divss(XMMRegister dst, XMMRegister src);

  void emms();

  void fabs();

  void fadd(int i);

  void fadd_d(Address src);
  void fadd_s(Address src);

  // "Alternate" versions of x87 instructions place result down in FPU
  // stack instead of on TOS

  void fadda(int i); // "alternate" fadd
  void faddp(int i = 1);

  void fchs();

  void fcom(int i);

  void fcomp(int i = 1);
  void fcomp_d(Address src);
  void fcomp_s(Address src);

  void fcompp();

  void fcos();

  void fdecstp();

  void fdiv(int i);
  void fdiv_d(Address src);
  void fdivr_s(Address src);
  void fdiva(int i);  // "alternate" fdiv
  void fdivp(int i = 1);

  void fdivr(int i);
  void fdivr_d(Address src);
  void fdiv_s(Address src);

  void fdivra(int i); // "alternate" reversed fdiv

  void fdivrp(int i = 1);

  void ffree(int i = 0);

  void fild_d(Address adr);
  void fild_s(Address adr);

  void fincstp();

  void finit();

  void fist_s (Address adr);
  void fistp_d(Address adr);
  void fistp_s(Address adr);

  void fld1();

  void fld_d(Address adr);
  void fld_s(Address adr);
  void fld_s(int index);
  void fld_x(Address adr);  // extended-precision (80-bit) format

  void fldcw(Address src);

  void fldenv(Address src);

  void fldlg2();

  void fldln2();

  void fldz();

  void flog();
  void flog10();

  void fmul(int i);

  void fmul_d(Address src);
  void fmul_s(Address src);

  void fmula(int i);  // "alternate" fmul

  void fmulp(int i = 1);

  void fnsave(Address dst);

  void fnstcw(Address src);

  void fnstsw_ax();

  void fprem();
  void fprem1();

  void frstor(Address src);

  void fsin();

  void fsqrt();

  void fst_d(Address adr);
  void fst_s(Address adr);

  void fstp_d(Address adr);
  void fstp_d(int index);
  void fstp_s(Address adr);
  void fstp_x(Address adr); // extended-precision (80-bit) format

  void fsub(int i);
  void fsub_d(Address src);
  void fsub_s(Address src);

  void fsuba(int i);  // "alternate" fsub

  void fsubp(int i = 1);

  void fsubr(int i);
  void fsubr_d(Address src);
  void fsubr_s(Address src);

  void fsubra(int i); // "alternate" reversed fsub

  void fsubrp(int i = 1);

  void ftan();

  void ftst();

  void fucomi(int i = 1);
  void fucomip(int i = 1);

  void fwait();

  void fxch(int i = 1);

  void fxrstor(Address src);

  void fxsave(Address dst);

  void fyl2x();

  void hlt();

  void idivl(Register src);

  void idivq(Register src);

  void imull(Register dst, Register src);
  void imull(Register dst, Register src, int value);

  void imulq(Register dst, Register src);
  void imulq(Register dst, Register src, int value);


  // jcc is the generic conditional branch generator to run-
  // time routines, jcc is used for branches to labels. jcc
  // takes a branch opcode (cc) and a label (L) and generates
  // either a backward branch or a forward branch and links it
  // to the label fixup chain. Usage:
  //
  // Label L;      // unbound label
  // jcc(cc, L);   // forward branch to unbound label
  // bind(L);      // bind label to the current pc
  // jcc(cc, L);   // backward branch to bound label
  // bind(L);      // illegal: a label may be bound only once
  //
  // Note: The same Label can be used for forward and backward branches
  // but it may be bound only once.

  void jcc(Condition cc, Label& L,
           relocInfo::relocType rtype = relocInfo::none);

  // Conditional jump to a 8-bit offset to L.
  // WARNING: be very careful using this for forward jumps.  If the label is
  // not bound within an 8-bit offset of this instruction, a run-time error
  // will occur.
  void jccb(Condition cc, Label& L);

  void jmp(Address entry);    // pc <- entry

  // Label operations & relative jumps (PPUM Appendix D)
  void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L

  void jmp(Register entry); // pc <- entry

  // Unconditional 8-bit offset jump to L.
  // WARNING: be very careful using this for forward jumps.  If the label is
  // not bound within an 8-bit offset of this instruction, a run-time error
  // will occur.
  void jmpb(Label& L);

  void ldmxcsr( Address src );

  void leal(Register dst, Address src);

  void leaq(Register dst, Address src);

  void lfence() {
    emit_byte(0x0F);
    emit_byte(0xAE);
    emit_byte(0xE8);
  }

  void lock();

  void lzcntl(Register dst, Register src);

#ifdef _LP64
  void lzcntq(Register dst, Register src);
#endif

  enum Membar_mask_bits {
    StoreStore = 1 << 3,
    LoadStore  = 1 << 2,
    StoreLoad  = 1 << 1,
    LoadLoad   = 1 << 0
  };

  // Serializes memory and blows flags
  void membar(Membar_mask_bits order_constraint) {
    if (os::is_MP()) {
      // We only have to handle StoreLoad
      if (order_constraint & StoreLoad) {
        // All usable chips support "locked" instructions which suffice
        // as barriers, and are much faster than the alternative of
        // using cpuid instruction. We use here a locked add [esp],0.
        // This is conveniently otherwise a no-op except for blowing
        // flags.
        // Any change to this code may need to revisit other places in
        // the code where this idiom is used, in particular the
        // orderAccess code.
        lock();
        addl(Address(rsp, 0), 0);// Assert the lock# signal here
      }
    }
  }

  void mfence();

  // Moves

  void mov64(Register dst, int64_t imm64);

  void movb(Address dst, Register src);
  void movb(Address dst, int imm8);
  void movb(Register dst, Address src);

  void movdl(XMMRegister dst, Register src);
  void movdl(Register dst, XMMRegister src);

  // Move Double Quadword
  void movdq(XMMRegister dst, Register src);
  void movdq(Register dst, XMMRegister src);

  // Move Aligned Double Quadword
  void movdqa(Address     dst, XMMRegister src);
  void movdqa(XMMRegister dst, Address src);
  void movdqa(XMMRegister dst, XMMRegister src);

  // Move Unaligned Double Quadword
  void movdqu(Address     dst, XMMRegister src);
  void movdqu(XMMRegister dst, Address src);
  void movdqu(XMMRegister dst, XMMRegister src);

  void movl(Register dst, int32_t imm32);
  void movl(Address dst, int32_t imm32);
  void movl(Register dst, Register src);
  void movl(Register dst, Address src);
  void movl(Address dst, Register src);

  // These dummies prevent using movl from converting a zero (like NULL) into Register
  // by giving the compiler two choices it can't resolve

  void movl(Address  dst, void* junk);
  void movl(Register dst, void* junk);

#ifdef _LP64
  void movq(Register dst, Register src);
  void movq(Register dst, Address src);
  void movq(Address dst, Register src);
#endif

  void movq(Address     dst, MMXRegister src );
  void movq(MMXRegister dst, Address src );

#ifdef _LP64
  // These dummies prevent using movq from converting a zero (like NULL) into Register
  // by giving the compiler two choices it can't resolve

  void movq(Address  dst, void* dummy);
  void movq(Register dst, void* dummy);
#endif

  // Move Quadword
  void movq(Address     dst, XMMRegister src);
  void movq(XMMRegister dst, Address src);

  void movsbl(Register dst, Address src);
  void movsbl(Register dst, Register src);

#ifdef _LP64
  void movsbq(Register dst, Address src);
  void movsbq(Register dst, Register src);

  // Move signed 32bit immediate to 64bit extending sign
  void movslq(Address dst, int32_t imm64);
  void movslq(Register dst, int32_t imm64);

  void movslq(Register dst, Address src);
  void movslq(Register dst, Register src);
  void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
#endif

  void movswl(Register dst, Address src);
  void movswl(Register dst, Register src);

#ifdef _LP64
  void movswq(Register dst, Address src);
  void movswq(Register dst, Register src);
#endif

  void movw(Address dst, int imm16);
  void movw(Register dst, Address src);
  void movw(Address dst, Register src);

  void movzbl(Register dst, Address src);
  void movzbl(Register dst, Register src);

#ifdef _LP64
  void movzbq(Register dst, Address src);
  void movzbq(Register dst, Register src);
#endif

  void movzwl(Register dst, Address src);
  void movzwl(Register dst, Register src);

#ifdef _LP64
  void movzwq(Register dst, Address src);
  void movzwq(Register dst, Register src);
#endif

  void mull(Address src);
  void mull(Register src);

  // Multiply Scalar Double-Precision Floating-Point Values
  void mulsd(XMMRegister dst, Address src);
  void mulsd(XMMRegister dst, XMMRegister src);

  // Multiply Scalar Single-Precision Floating-Point Values
  void mulss(XMMRegister dst, Address src);
  void mulss(XMMRegister dst, XMMRegister src);

  void negl(Register dst);

#ifdef _LP64
  void negq(Register dst);
#endif

  void nop(int i = 1);

  void notl(Register dst);

#ifdef _LP64
  void notq(Register dst);
#endif

  void orl(Address dst, int32_t imm32);
  void orl(Register dst, int32_t imm32);
  void orl(Register dst, Address src);
  void orl(Register dst, Register src);

  void orq(Address dst, int32_t imm32);
  void orq(Register dst, int32_t imm32);
  void orq(Register dst, Address src);
  void orq(Register dst, Register src);

  // SSE4.2 string instructions
  void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
  void pcmpestri(XMMRegister xmm1, Address src, int imm8);

#ifndef _LP64 // no 32bit push/pop on amd64
  void popl(Address dst);
#endif

#ifdef _LP64
  void popq(Address dst);
#endif

  void popcntl(Register dst, Address src);
  void popcntl(Register dst, Register src);

#ifdef _LP64
  void popcntq(Register dst, Address src);
  void popcntq(Register dst, Register src);
#endif

  // Prefetches (SSE, SSE2, 3DNOW only)

  void prefetchnta(Address src);
  void prefetchr(Address src);
  void prefetcht0(Address src);
  void prefetcht1(Address src);
  void prefetcht2(Address src);
  void prefetchw(Address src);

  // Shuffle Packed Doublewords
  void pshufd(XMMRegister dst, XMMRegister src, int mode);
  void pshufd(XMMRegister dst, Address src,     int mode);

  // Shuffle Packed Low Words
  void pshuflw(XMMRegister dst, XMMRegister src, int mode);
  void pshuflw(XMMRegister dst, Address src,     int mode);

  // Shift Right Logical Quadword Immediate
  void psrlq(XMMRegister dst, int shift);

  // Logical Compare Double Quadword
  void ptest(XMMRegister dst, XMMRegister src);
  void ptest(XMMRegister dst, Address src);

  // Interleave Low Bytes
  void punpcklbw(XMMRegister dst, XMMRegister src);

#ifndef _LP64 // no 32bit push/pop on amd64
  void pushl(Address src);
#endif

  void pushq(Address src);

  // Xor Packed Byte Integer Values
  void pxor(XMMRegister dst, Address src);
  void pxor(XMMRegister dst, XMMRegister src);

  void rcll(Register dst, int imm8);

  void rclq(Register dst, int imm8);

  void ret(int imm16);

  void sahf();

  void sarl(Register dst, int imm8);
  void sarl(Register dst);

  void sarq(Register dst, int imm8);
  void sarq(Register dst);

  void sbbl(Address dst, int32_t imm32);
  void sbbl(Register dst, int32_t imm32);
  void sbbl(Register dst, Address src);
  void sbbl(Register dst, Register src);

  void sbbq(Address dst, int32_t imm32);
  void sbbq(Register dst, int32_t imm32);
  void sbbq(Register dst, Address src);
  void sbbq(Register dst, Register src);

  void setb(Condition cc, Register dst);

  void shldl(Register dst, Register src);

  void shll(Register dst, int imm8);
  void shll(Register dst);

  void shlq(Register dst, int imm8);
  void shlq(Register dst);

  void shrdl(Register dst, Register src);

  void shrl(Register dst, int imm8);
  void shrl(Register dst);

  void shrq(Register dst, int imm8);
  void shrq(Register dst);

  void smovl(); // QQQ generic?

  // Compute Square Root of Scalar Double-Precision Floating-Point Value
  void sqrtsd(XMMRegister dst, Address src);
  void sqrtsd(XMMRegister dst, XMMRegister src);

  void std() { emit_byte(0xfd); }

  void stmxcsr( Address dst );

  void subl(Address dst, int32_t imm32);
  void subl(Address dst, Register src);
  void subl(Register dst, int32_t imm32);
  void subl(Register dst, Address src);
  void subl(Register dst, Register src);

  void subq(Address dst, int32_t imm32);
  void subq(Address dst, Register src);
  void subq(Register dst, int32_t imm32);
  void subq(Register dst, Address src);
  void subq(Register dst, Register src);


  // Subtract Scalar Double-Precision Floating-Point Values
  void subsd(XMMRegister dst, Address src);
  void subsd(XMMRegister dst, XMMRegister src);

  // Subtract Scalar Single-Precision Floating-Point Values
  void subss(XMMRegister dst, Address src);
  void subss(XMMRegister dst, XMMRegister src);

  void testb(Register dst, int imm8);

  void testl(Register dst, int32_t imm32);
  void testl(Register dst, Register src);
  void testl(Register dst, Address src);

  void testq(Register dst, int32_t imm32);
  void testq(Register dst, Register src);


  // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
  void ucomisd(XMMRegister dst, Address src);
  void ucomisd(XMMRegister dst, XMMRegister src);

  // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
  void ucomiss(XMMRegister dst, Address src);
  void ucomiss(XMMRegister dst, XMMRegister src);

  void xaddl(Address dst, Register src);

  void xaddq(Address dst, Register src);

  void xchgl(Register reg, Address adr);
  void xchgl(Register dst, Register src);

  void xchgq(Register reg, Address adr);
  void xchgq(Register dst, Register src);

  void xorl(Register dst, int32_t imm32);
  void xorl(Register dst, Address src);
  void xorl(Register dst, Register src);

  void xorq(Register dst, Address src);
  void xorq(Register dst, Register src);

  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  void xorpd(XMMRegister dst, Address src);
  void xorpd(XMMRegister dst, XMMRegister src);

  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  void xorps(XMMRegister dst, Address src);
  void xorps(XMMRegister dst, XMMRegister src);

  void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
};


// MacroAssembler extends Assembler by frequently used macros.
//
// Instructions for which a 'better' code sequence exists depending
// on arguments should also go in here.

class MacroAssembler: public Assembler {
  friend class LIR_Assembler;
  friend class Runtime1;      // as_Address()
 protected:

  Address as_Address(AddressLiteral adr);
  Address as_Address(ArrayAddress adr);

  // Support for VM calls
  //
  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  // may customize this version by overriding it for its purposes (e.g., to save/restore
  // additional registers when doing a VM call).
#ifdef CC_INTERP
  // c++ interpreter never wants to use interp_masm version of call_VM
  #define VIRTUAL
#else
  #define VIRTUAL virtual
#endif

  VIRTUAL void call_VM_leaf_base(
    address entry_point,               // the entry point
    int     number_of_arguments        // the number of arguments to pop after the call
  );

  // This is the base routine called by the different versions of call_VM. The interpreter
  // may customize this version by overriding it for its purposes (e.g., to save/restore
  // additional registers when doing a VM call).
  //
  // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  // returns the register which contains the thread upon return. If a thread register has been
  // specified, the return value will correspond to that register. If no last_java_sp is specified
  // (noreg) than rsp will be used instead.
  VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
    Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
    Register java_thread,              // the thread if computed before     ; use noreg otherwise
    Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
    address  entry_point,              // the entry point
    int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
    bool     check_exceptions          // whether to check for pending exceptions after return
  );

  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  // The implementation is only non-empty for the InterpreterMacroAssembler,
  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  virtual void check_and_handle_popframe(Register java_thread);
  virtual void check_and_handle_earlyret(Register java_thread);

  void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);

  // helpers for FPU flag access
  // tmp is a temporary register, if none is available use noreg
  void save_rax   (Register tmp);
  void restore_rax(Register tmp);

 public:
  MacroAssembler(CodeBuffer* code) : Assembler(code) {}

  // Support for NULL-checks
  //
  // Generates code that causes a NULL OS exception if the content of reg is NULL.
  // If the accessed location is M[reg + offset] and the offset is known, provide the
  // offset. No explicit code generation is needed if the offset is within a certain
  // range (0 <= offset <= page_size).

  void null_check(Register reg, int offset = -1);
  static bool needs_explicit_null_check(intptr_t offset);

  // Required platform-specific helpers for Label::patch_instructions.
  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  void pd_patch_instruction(address branch, address target);
#ifndef PRODUCT
  static void pd_print_patched_instruction(address branch);
#endif

  // The following 4 methods return the offset of the appropriate move instruction

  // Support for fast byte/short loading with zero extension (depending on particular CPU)
  int load_unsigned_byte(Register dst, Address src);
  int load_unsigned_short(Register dst, Address src);

  // Support for fast byte/short loading with sign extension (depending on particular CPU)
  int load_signed_byte(Register dst, Address src);
  int load_signed_short(Register dst, Address src);

  // Support for sign-extension (hi:lo = extend_sign(lo))
  void extend_sign(Register hi, Register lo);

  // Loading values by size and signed-ness
  void load_sized_value(Register dst, Address src, int size_in_bytes, bool is_signed);

  // Support for inc/dec with optimal instruction selection depending on value

  void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
  void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }

  void decrementl(Address dst, int value = 1);
  void decrementl(Register reg, int value = 1);

  void decrementq(Register reg, int value = 1);
  void decrementq(Address dst, int value = 1);

  void incrementl(Address dst, int value = 1);
  void incrementl(Register reg, int value = 1);

  void incrementq(Register reg, int value = 1);
  void incrementq(Address dst, int value = 1);


  // Support optimal SSE move instructions.
  void movflt(XMMRegister dst, XMMRegister src) {
    if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
    else                       { movss (dst, src); return; }
  }
  void movflt(XMMRegister dst, Address src) { movss(dst, src); }
  void movflt(XMMRegister dst, AddressLiteral src);
  void movflt(Address dst, XMMRegister src) { movss(dst, src); }

  void movdbl(XMMRegister dst, XMMRegister src) {
    if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
    else                       { movsd (dst, src); return; }
  }

  void movdbl(XMMRegister dst, AddressLiteral src);

  void movdbl(XMMRegister dst, Address src) {
    if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
    else                         { movlpd(dst, src); return; }
  }
  void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }

  void incrementl(AddressLiteral dst);
  void incrementl(ArrayAddress dst);

  // Alignment
  void align(int modulus);

  // Misc
  void fat_nop(); // 5 byte nop

  // Stack frame creation/removal
  void enter();
  void leave();

  // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
  // The pointer will be loaded into the thread register.
  void get_thread(Register thread);


  // Support for VM calls
  //
  // It is imperative that all calls into the VM are handled via the call_VM macros.
  // They make sure that the stack linkage is setup correctly. call_VM's correspond
  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.


  void call_VM(Register oop_result,
               address entry_point,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               address entry_point,
               Register arg_1,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               address entry_point,
               Register arg_1, Register arg_2,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               address entry_point,
               Register arg_1, Register arg_2, Register arg_3,
               bool check_exceptions = true);

  // Overloadings with last_Java_sp
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               int number_of_arguments = 0,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               Register arg_1, bool
               check_exceptions = true);
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               Register arg_1, Register arg_2,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               Register arg_1, Register arg_2, Register arg_3,
               bool check_exceptions = true);

  void call_VM_leaf(address entry_point,
                    int number_of_arguments = 0);
  void call_VM_leaf(address entry_point,
                    Register arg_1);
  void call_VM_leaf(address entry_point,
                    Register arg_1, Register arg_2);
  void call_VM_leaf(address entry_point,
                    Register arg_1, Register arg_2, Register arg_3);

  // last Java Frame (fills frame anchor)
  void set_last_Java_frame(Register thread,
                           Register last_java_sp,
                           Register last_java_fp,
                           address last_java_pc);

  // thread in the default location (r15_thread on 64bit)
  void set_last_Java_frame(Register last_java_sp,
                           Register last_java_fp,
                           address last_java_pc);

  void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);

  // thread in the default location (r15_thread on 64bit)
  void reset_last_Java_frame(bool clear_fp, bool clear_pc);

  // Stores
  void store_check(Register obj);                // store check for obj - register is destroyed afterwards
  void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)

  void g1_write_barrier_pre(Register obj,
#ifndef _LP64
                            Register thread,
#endif
                            Register tmp,
                            Register tmp2,
                            bool     tosca_live);
  void g1_write_barrier_post(Register store_addr,
                             Register new_val,
#ifndef _LP64
                             Register thread,
#endif
                             Register tmp,
                             Register tmp2);


  // split store_check(Register obj) to enhance instruction interleaving
  void store_check_part_1(Register obj);
  void store_check_part_2(Register obj);

  // C 'boolean' to Java boolean: x == 0 ? 0 : 1
  void c2bool(Register x);

  // C++ bool manipulation

  void movbool(Register dst, Address src);
  void movbool(Address dst, bool boolconst);
  void movbool(Address dst, Register src);
  void testbool(Register dst);

  // oop manipulations
  void load_klass(Register dst, Register src);
  void store_klass(Register dst, Register src);

  void load_prototype_header(Register dst, Register src);

#ifdef _LP64
  void store_klass_gap(Register dst, Register src);

  void load_heap_oop(Register dst, Address src);
  void store_heap_oop(Address dst, Register src);
  void encode_heap_oop(Register r);
  void decode_heap_oop(Register r);
  void encode_heap_oop_not_null(Register r);
  void decode_heap_oop_not_null(Register r);
  void encode_heap_oop_not_null(Register dst, Register src);
  void decode_heap_oop_not_null(Register dst, Register src);

  void set_narrow_oop(Register dst, jobject obj);
  void set_narrow_oop(Address dst, jobject obj);
  void cmp_narrow_oop(Register dst, jobject obj);
  void cmp_narrow_oop(Address dst, jobject obj);

  // if heap base register is used - reinit it with the correct value
  void reinit_heapbase();
#endif // _LP64

  // Int division/remainder for Java
  // (as idivl, but checks for special case as described in JVM spec.)
  // returns idivl instruction offset for implicit exception handling
  int corrected_idivl(Register reg);

  // Long division/remainder for Java
  // (as idivq, but checks for special case as described in JVM spec.)
  // returns idivq instruction offset for implicit exception handling
  int corrected_idivq(Register reg);

  void int3();

  // Long operation macros for a 32bit cpu
  // Long negation for Java
  void lneg(Register hi, Register lo);

  // Long multiplication for Java
  // (destroys contents of eax, ebx, ecx and edx)
  void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y

  // Long shifts for Java
  // (semantics as described in JVM spec.)
  void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
  void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)

  // Long compare for Java
  // (semantics as described in JVM spec.)
  void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)


  // misc

  // Sign extension
  void sign_extend_short(Register reg);
  void sign_extend_byte(Register reg);

  // Division by power of 2, rounding towards 0
  void division_with_shift(Register reg, int shift_value);

  // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
  //
  // CF (corresponds to C0) if x < y
  // PF (corresponds to C2) if unordered
  // ZF (corresponds to C3) if x = y
  //
  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
  void fcmp(Register tmp);
  // Variant of the above which allows y to be further down the stack
  // and which only pops x and y if specified. If pop_right is
  // specified then pop_left must also be specified.
  void fcmp(Register tmp, int index, bool pop_left, bool pop_right);

  // Floating-point comparison for Java
  // Compares the top-most stack entries on the FPU stack and stores the result in dst.
  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  // (semantics as described in JVM spec.)
  void fcmp2int(Register dst, bool unordered_is_less);
  // Variant of the above which allows y to be further down the stack
  // and which only pops x and y if specified. If pop_right is
  // specified then pop_left must also be specified.
  void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);

  // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
  // tmp is a temporary register, if none is available use noreg
  void fremr(Register tmp);


  // same as fcmp2int, but using SSE2
  void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);

  // Inlined sin/cos generator for Java; must not use CPU instruction
  // directly on Intel as it does not have high enough precision
  // outside of the range [-pi/4, pi/4]. Extra argument indicate the
  // number of FPU stack slots in use; all but the topmost will
  // require saving if a slow case is necessary. Assumes argument is
  // on FP TOS; result is on FP TOS.  No cpu registers are changed by
  // this code.
  void trigfunc(char trig, int num_fpu_regs_in_use = 1);

  // branch to L if FPU flag C2 is set/not set
  // tmp is a temporary register, if none is available use noreg
  void jC2 (Register tmp, Label& L);
  void jnC2(Register tmp, Label& L);

  // Pop ST (ffree & fincstp combined)
  void fpop();

  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  void push_fTOS();

  // pops double TOS element from CPU stack and pushes on FPU stack
  void pop_fTOS();

  void empty_FPU_stack();

  void push_IU_state();
  void pop_IU_state();

  void push_FPU_state();
  void pop_FPU_state();

  void push_CPU_state();
  void pop_CPU_state();

  // Round up to a power of two
  void round_to(Register reg, int modulus);

  // Callee saved registers handling
  void push_callee_saved_registers();
  void pop_callee_saved_registers();

  // allocation
  void eden_allocate(
    Register obj,                      // result: pointer to object after successful allocation
    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
    int      con_size_in_bytes,        // object size in bytes if   known at compile time
    Register t1,                       // temp register
    Label&   slow_case                 // continuation point if fast allocation fails
  );
  void tlab_allocate(
    Register obj,                      // result: pointer to object after successful allocation
    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
    int      con_size_in_bytes,        // object size in bytes if   known at compile time
    Register t1,                       // temp register
    Register t2,                       // temp register
    Label&   slow_case                 // continuation point if fast allocation fails
  );
  void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);

  // interface method calling
  void lookup_interface_method(Register recv_klass,
                               Register intf_klass,
                               RegisterOrConstant itable_index,
                               Register method_result,
                               Register scan_temp,
                               Label& no_such_interface);

  // Test sub_klass against super_klass, with fast and slow paths.

  // The fast path produces a tri-state answer: yes / no / maybe-slow.
  // One of the three labels can be NULL, meaning take the fall-through.
  // If super_check_offset is -1, the value is loaded up from super_klass.
  // No registers are killed, except temp_reg.
  void check_klass_subtype_fast_path(Register sub_klass,
                                     Register super_klass,
                                     Register temp_reg,
                                     Label* L_success,
                                     Label* L_failure,
                                     Label* L_slow_path,
                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));

  // The rest of the type check; must be wired to a corresponding fast path.
  // It does not repeat the fast path logic, so don't use it standalone.
  // The temp_reg and temp2_reg can be noreg, if no temps are available.
  // Updates the sub's secondary super cache as necessary.
  // If set_cond_codes, condition codes will be Z on success, NZ on failure.
  void check_klass_subtype_slow_path(Register sub_klass,
                                     Register super_klass,
                                     Register temp_reg,
                                     Register temp2_reg,
                                     Label* L_success,
                                     Label* L_failure,
                                     bool set_cond_codes = false);

  // Simplified, combined version, good for typical uses.
  // Falls through on failure.
  void check_klass_subtype(Register sub_klass,
                           Register super_klass,
                           Register temp_reg,
                           Label& L_success);

  // method handles (JSR 292)
  void check_method_handle_type(Register mtype_reg, Register mh_reg,
                                Register temp_reg,
                                Label& wrong_method_type);
  void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
                                  Register temp_reg);
  void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
  Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);


  //----
  void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0

  // Debugging

  // only if +VerifyOops
  void verify_oop(Register reg, const char* s = "broken oop");
  void verify_oop_addr(Address addr, const char * s = "broken oop addr");

  // only if +VerifyFPU
  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");

  // prints msg, dumps registers and stops execution
  void stop(const char* msg);

  // prints msg and continues
  void warn(const char* msg);

  static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
  static void debug64(char* msg, int64_t pc, int64_t regs[]);

  void os_breakpoint();

  void untested()                                { stop("untested"); }

  void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, sizeof(b), "unimplemented: %s", what);  stop(b); }

  void should_not_reach_here()                   { stop("should not reach here"); }

  void print_CPU_state();

  // Stack overflow checking
  void bang_stack_with_offset(int offset) {
    // stack grows down, caller passes positive offset
    assert(offset > 0, "must bang with negative offset");
    movl(Address(rsp, (-offset)), rax);
  }

  // Writes to stack successive pages until offset reached to check for
  // stack overflow + shadow pages.  Also, clobbers tmp
  void bang_stack_size(Register size, Register tmp);

  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
                                                Register tmp,
                                                int offset);

  // Support for serializing memory accesses between threads
  void serialize_memory(Register thread, Register tmp);

  void verify_tlab();

  // Biased locking support
  // lock_reg and obj_reg must be loaded up with the appropriate values.
  // swap_reg must be rax, and is killed.
  // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
  // be killed; if not supplied, push/pop will be used internally to
  // allocate a temporary (inefficient, avoid if possible).
  // Optional slow case is for implementations (interpreter and C1) which branch to
  // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
  // Returns offset of first potentially-faulting instruction for null
  // check info (currently consumed only by C1). If
  // swap_reg_contains_mark is true then returns -1 as it is assumed
  // the calling code has already passed any potential faults.
  int biased_locking_enter(Register lock_reg, Register obj_reg,
                           Register swap_reg, Register tmp_reg,
                           bool swap_reg_contains_mark,
                           Label& done, Label* slow_case = NULL,
                           BiasedLockingCounters* counters = NULL);
  void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);


  Condition negate_condition(Condition cond);

  // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
  // operands. In general the names are modified to avoid hiding the instruction in Assembler
  // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
  // here in MacroAssembler. The major exception to this rule is call

  // Arithmetics


  void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
  void addptr(Address dst, Register src);

  void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
  void addptr(Register dst, int32_t src);
  void addptr(Register dst, Register src);

  void andptr(Register dst, int32_t src);
  void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }

  void cmp8(AddressLiteral src1, int imm);

  // renamed to drag out the casting of address to int32_t/intptr_t
  void cmp32(Register src1, int32_t imm);

  void cmp32(AddressLiteral src1, int32_t imm);
  // compare reg - mem, or reg - &mem
  void cmp32(Register src1, AddressLiteral src2);

  void cmp32(Register src1, Address src2);

#ifndef _LP64
  void cmpoop(Address dst, jobject obj);
  void cmpoop(Register dst, jobject obj);
#endif // _LP64

  // NOTE src2 must be the lval. This is NOT an mem-mem compare
  void cmpptr(Address src1, AddressLiteral src2);

  void cmpptr(Register src1, AddressLiteral src2);

  void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }

  void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }

  // cmp64 to avoild hiding cmpq
  void cmp64(Register src1, AddressLiteral src);

  void cmpxchgptr(Register reg, Address adr);

  void locked_cmpxchgptr(Register reg, AddressLiteral adr);


  void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }


  void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }

  void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }

  void shlptr(Register dst, int32_t shift);
  void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }

  void shrptr(Register dst, int32_t shift);
  void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }

  void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
  void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }

  void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }

  void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  void subptr(Register dst, int32_t src);
  void subptr(Register dst, Register src);


  void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }

  void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }

  void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }



  // Helper functions for statistics gathering.
  // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
  void cond_inc32(Condition cond, AddressLiteral counter_addr);
  // Unconditional atomic increment.
  void atomic_incl(AddressLiteral counter_addr);

  void lea(Register dst, AddressLiteral adr);
  void lea(Address dst, AddressLiteral adr);
  void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }

  void leal32(Register dst, Address src) { leal(dst, src); }

  void test32(Register src1, AddressLiteral src2);

  void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }

  void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
  void testptr(Register src1, Register src2);

  void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }

  // Calls

  void call(Label& L, relocInfo::relocType rtype);
  void call(Register entry);

  // NOTE: this call tranfers to the effective address of entry NOT
  // the address contained by entry. This is because this is more natural
  // for jumps/calls.
  void call(AddressLiteral entry);

  // Jumps

  // NOTE: these jumps tranfer to the effective address of dst NOT
  // the address contained by dst. This is because this is more natural
  // for jumps/calls.
  void jump(AddressLiteral dst);
  void jump_cc(Condition cc, AddressLiteral dst);

  // 32bit can do a case table jump in one instruction but we no longer allow the base
  // to be installed in the Address class. This jump will tranfers to the address
  // contained in the location described by entry (not the address of entry)
  void jump(ArrayAddress entry);

  // Floating

  void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
  void andpd(XMMRegister dst, AddressLiteral src);

  void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
  void comiss(XMMRegister dst, AddressLiteral src);

  void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
  void comisd(XMMRegister dst, AddressLiteral src);

  void fldcw(Address src) { Assembler::fldcw(src); }
  void fldcw(AddressLiteral src);

  void fld_s(int index)   { Assembler::fld_s(index); }
  void fld_s(Address src) { Assembler::fld_s(src); }
  void fld_s(AddressLiteral src);

  void fld_d(Address src) { Assembler::fld_d(src); }
  void fld_d(AddressLiteral src);

  void fld_x(Address src) { Assembler::fld_x(src); }
  void fld_x(AddressLiteral src);

  void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
  void ldmxcsr(AddressLiteral src);

private:
  // these are private because users should be doing movflt/movdbl

  void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
  void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
  void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
  void movss(XMMRegister dst, AddressLiteral src);

  void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
  void movlpd(XMMRegister dst, AddressLiteral src);

public:

  void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
  void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
  void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
  void movsd(XMMRegister dst, AddressLiteral src);

  void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
  void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
  void ucomiss(XMMRegister dst, AddressLiteral src);

  void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
  void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
  void ucomisd(XMMRegister dst, AddressLiteral src);

  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
  void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
  void xorpd(XMMRegister dst, AddressLiteral src);

  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
  void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
  void xorps(XMMRegister dst, AddressLiteral src);

  // Data

  void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }

  void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }

  void movoop(Register dst, jobject obj);
  void movoop(Address dst, jobject obj);

  void movptr(ArrayAddress dst, Register src);
  // can this do an lea?
  void movptr(Register dst, ArrayAddress src);

  void movptr(Register dst, Address src);

  void movptr(Register dst, AddressLiteral src);

  void movptr(Register dst, intptr_t src);
  void movptr(Register dst, Register src);
  void movptr(Address dst, intptr_t src);

  void movptr(Address dst, Register src);

#ifdef _LP64
  // Generally the next two are only used for moving NULL
  // Although there are situations in initializing the mark word where
  // they could be used. They are dangerous.

  // They only exist on LP64 so that int32_t and intptr_t are not the same
  // and we have ambiguous declarations.

  void movptr(Address dst, int32_t imm32);
  void movptr(Register dst, int32_t imm32);
#endif // _LP64

  // to avoid hiding movl
  void mov32(AddressLiteral dst, Register src);
  void mov32(Register dst, AddressLiteral src);

  // to avoid hiding movb
  void movbyte(ArrayAddress dst, int src);

  // Can push value or effective address
  void pushptr(AddressLiteral src);

  void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }

  void pushoop(jobject obj);

  // sign extend as need a l to ptr sized element
  void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }

  // IndexOf strings.
  void string_indexof(Register str1, Register str2,
                      Register cnt1, Register cnt2, Register result,
                      XMMRegister vec, Register tmp);

  // Compare strings.
  void string_compare(Register str1, Register str2,
                      Register cnt1, Register cnt2, Register result,
                      XMMRegister vec1, XMMRegister vec2);

  // Compare char[] arrays.
  void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
                          Register limit, Register result, Register chr,
                          XMMRegister vec1, XMMRegister vec2);

#undef VIRTUAL

};

/**
 * class SkipIfEqual:
 *
 * Instantiating this class will result in assembly code being output that will
 * jump around any code emitted between the creation of the instance and it's
 * automatic destruction at the end of a scope block, depending on the value of
 * the flag passed to the constructor, which will be checked at run-time.
 */
class SkipIfEqual {
 private:
  MacroAssembler* _masm;
  Label _label;

 public:
   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
   ~SkipIfEqual();
};

#ifdef ASSERT
inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
#endif