8035647: PPC64: Support for elf v2 abi.
Summary: ELFv2 ABI used by the little endian PowerPC64 on Linux.
Reviewed-by: kvn
Contributed-by: asmundak@google.com
/*
* Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2013 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_PPC_VM_ASSEMBLER_PPC_HPP
#define CPU_PPC_VM_ASSEMBLER_PPC_HPP
#include "asm/register.hpp"
// Address is an abstraction used to represent a memory location
// as used in assembler instructions.
// PPC instructions grok either baseReg + indexReg or baseReg + disp.
// So far we do not use this as simplification by this class is low
// on PPC with its simple addressing mode. Use RegisterOrConstant to
// represent an offset.
class Address VALUE_OBJ_CLASS_SPEC {
};
class AddressLiteral VALUE_OBJ_CLASS_SPEC {
private:
address _address;
RelocationHolder _rspec;
RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
switch (rtype) {
case relocInfo::external_word_type:
return external_word_Relocation::spec(addr);
case relocInfo::internal_word_type:
return internal_word_Relocation::spec(addr);
case relocInfo::opt_virtual_call_type:
return opt_virtual_call_Relocation::spec();
case relocInfo::static_call_type:
return static_call_Relocation::spec();
case relocInfo::runtime_call_type:
return runtime_call_Relocation::spec();
case relocInfo::none:
return RelocationHolder();
default:
ShouldNotReachHere();
return RelocationHolder();
}
}
protected:
// creation
AddressLiteral() : _address(NULL), _rspec(NULL) {}
public:
AddressLiteral(address addr, RelocationHolder const& rspec)
: _address(addr),
_rspec(rspec) {}
AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
intptr_t value() const { return (intptr_t) _address; }
const RelocationHolder& rspec() const { return _rspec; }
};
// Argument is an abstraction used to represent an outgoing
// actual argument or an incoming formal parameter, whether
// it resides in memory or in a register, in a manner consistent
// with the PPC Application Binary Interface, or ABI. This is
// often referred to as the native or C calling convention.
class Argument VALUE_OBJ_CLASS_SPEC {
private:
int _number; // The number of the argument.
public:
enum {
// Only 8 registers may contain integer parameters.
n_register_parameters = 8,
// Can have up to 8 floating registers.
n_float_register_parameters = 8,
// PPC C calling conventions.
// The first eight arguments are passed in int regs if they are int.
n_int_register_parameters_c = 8,
// The first thirteen float arguments are passed in float regs.
n_float_register_parameters_c = 13,
// Only the first 8 parameters are not placed on the stack. Aix disassembly
// shows that xlC places all float args after argument 8 on the stack AND
// in a register. This is not documented, but we follow this convention, too.
n_regs_not_on_stack_c = 8,
};
// creation
Argument(int number) : _number(number) {}
int number() const { return _number; }
// Locating register-based arguments:
bool is_register() const { return _number < n_register_parameters; }
Register as_register() const {
assert(is_register(), "must be a register argument");
return as_Register(number() + R3_ARG1->encoding());
}
};
#if !defined(ABI_ELFv2)
// A ppc64 function descriptor.
struct FunctionDescriptor VALUE_OBJ_CLASS_SPEC {
private:
address _entry;
address _toc;
address _env;
public:
inline address entry() const { return _entry; }
inline address toc() const { return _toc; }
inline address env() const { return _env; }
inline void set_entry(address entry) { _entry = entry; }
inline void set_toc( address toc) { _toc = toc; }
inline void set_env( address env) { _env = env; }
inline static ByteSize entry_offset() { return byte_offset_of(FunctionDescriptor, _entry); }
inline static ByteSize toc_offset() { return byte_offset_of(FunctionDescriptor, _toc); }
inline static ByteSize env_offset() { return byte_offset_of(FunctionDescriptor, _env); }
// Friend functions can be called without loading toc and env.
enum {
friend_toc = 0xcafe,
friend_env = 0xc0de
};
inline bool is_friend_function() const {
return (toc() == (address) friend_toc) && (env() == (address) friend_env);
}
// Constructor for stack-allocated instances.
FunctionDescriptor() {
_entry = (address) 0xbad;
_toc = (address) 0xbad;
_env = (address) 0xbad;
}
};
#endif
class Assembler : public AbstractAssembler {
protected:
// Displacement routines
static void print_instruction(int inst);
static int patched_branch(int dest_pos, int inst, int inst_pos);
static int branch_destination(int inst, int pos);
friend class AbstractAssembler;
// Code patchers need various routines like inv_wdisp()
friend class NativeInstruction;
friend class NativeGeneralJump;
friend class Relocation;
public:
enum shifts {
XO_21_29_SHIFT = 2,
XO_21_30_SHIFT = 1,
XO_27_29_SHIFT = 2,
XO_30_31_SHIFT = 0,
SPR_5_9_SHIFT = 11u, // SPR_5_9 field in bits 11 -- 15
SPR_0_4_SHIFT = 16u, // SPR_0_4 field in bits 16 -- 20
RS_SHIFT = 21u, // RS field in bits 21 -- 25
OPCODE_SHIFT = 26u, // opcode in bits 26 -- 31
};
enum opcdxos_masks {
XL_FORM_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
ADDI_OPCODE_MASK = (63u << OPCODE_SHIFT),
ADDIS_OPCODE_MASK = (63u << OPCODE_SHIFT),
BXX_OPCODE_MASK = (63u << OPCODE_SHIFT),
BCXX_OPCODE_MASK = (63u << OPCODE_SHIFT),
// trap instructions
TDI_OPCODE_MASK = (63u << OPCODE_SHIFT),
TWI_OPCODE_MASK = (63u << OPCODE_SHIFT),
TD_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
TW_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
LD_OPCODE_MASK = (63u << OPCODE_SHIFT) | (3u << XO_30_31_SHIFT), // DS-FORM
STD_OPCODE_MASK = LD_OPCODE_MASK,
STDU_OPCODE_MASK = STD_OPCODE_MASK,
STDX_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
STDUX_OPCODE_MASK = STDX_OPCODE_MASK,
STW_OPCODE_MASK = (63u << OPCODE_SHIFT),
STWU_OPCODE_MASK = STW_OPCODE_MASK,
STWX_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
STWUX_OPCODE_MASK = STWX_OPCODE_MASK,
MTCTR_OPCODE_MASK = ~(31u << RS_SHIFT),
ORI_OPCODE_MASK = (63u << OPCODE_SHIFT),
ORIS_OPCODE_MASK = (63u << OPCODE_SHIFT),
RLDICR_OPCODE_MASK = (63u << OPCODE_SHIFT) | (7u << XO_27_29_SHIFT)
};
enum opcdxos {
ADD_OPCODE = (31u << OPCODE_SHIFT | 266u << 1),
ADDC_OPCODE = (31u << OPCODE_SHIFT | 10u << 1),
ADDI_OPCODE = (14u << OPCODE_SHIFT),
ADDIS_OPCODE = (15u << OPCODE_SHIFT),
ADDIC__OPCODE = (13u << OPCODE_SHIFT),
ADDE_OPCODE = (31u << OPCODE_SHIFT | 138u << 1),
SUBF_OPCODE = (31u << OPCODE_SHIFT | 40u << 1),
SUBFC_OPCODE = (31u << OPCODE_SHIFT | 8u << 1),
SUBFE_OPCODE = (31u << OPCODE_SHIFT | 136u << 1),
SUBFIC_OPCODE = (8u << OPCODE_SHIFT),
SUBFZE_OPCODE = (31u << OPCODE_SHIFT | 200u << 1),
DIVW_OPCODE = (31u << OPCODE_SHIFT | 491u << 1),
MULLW_OPCODE = (31u << OPCODE_SHIFT | 235u << 1),
MULHW_OPCODE = (31u << OPCODE_SHIFT | 75u << 1),
MULHWU_OPCODE = (31u << OPCODE_SHIFT | 11u << 1),
MULLI_OPCODE = (7u << OPCODE_SHIFT),
AND_OPCODE = (31u << OPCODE_SHIFT | 28u << 1),
ANDI_OPCODE = (28u << OPCODE_SHIFT),
ANDIS_OPCODE = (29u << OPCODE_SHIFT),
ANDC_OPCODE = (31u << OPCODE_SHIFT | 60u << 1),
ORC_OPCODE = (31u << OPCODE_SHIFT | 412u << 1),
OR_OPCODE = (31u << OPCODE_SHIFT | 444u << 1),
ORI_OPCODE = (24u << OPCODE_SHIFT),
ORIS_OPCODE = (25u << OPCODE_SHIFT),
XOR_OPCODE = (31u << OPCODE_SHIFT | 316u << 1),
XORI_OPCODE = (26u << OPCODE_SHIFT),
XORIS_OPCODE = (27u << OPCODE_SHIFT),
NEG_OPCODE = (31u << OPCODE_SHIFT | 104u << 1),
RLWINM_OPCODE = (21u << OPCODE_SHIFT),
CLRRWI_OPCODE = RLWINM_OPCODE,
CLRLWI_OPCODE = RLWINM_OPCODE,
RLWIMI_OPCODE = (20u << OPCODE_SHIFT),
SLW_OPCODE = (31u << OPCODE_SHIFT | 24u << 1),
SLWI_OPCODE = RLWINM_OPCODE,
SRW_OPCODE = (31u << OPCODE_SHIFT | 536u << 1),
SRWI_OPCODE = RLWINM_OPCODE,
SRAW_OPCODE = (31u << OPCODE_SHIFT | 792u << 1),
SRAWI_OPCODE = (31u << OPCODE_SHIFT | 824u << 1),
CMP_OPCODE = (31u << OPCODE_SHIFT | 0u << 1),
CMPI_OPCODE = (11u << OPCODE_SHIFT),
CMPL_OPCODE = (31u << OPCODE_SHIFT | 32u << 1),
CMPLI_OPCODE = (10u << OPCODE_SHIFT),
ISEL_OPCODE = (31u << OPCODE_SHIFT | 15u << 1),
MTLR_OPCODE = (31u << OPCODE_SHIFT | 467u << 1 | 8 << SPR_0_4_SHIFT),
MFLR_OPCODE = (31u << OPCODE_SHIFT | 339u << 1 | 8 << SPR_0_4_SHIFT),
MTCRF_OPCODE = (31u << OPCODE_SHIFT | 144u << 1),
MFCR_OPCODE = (31u << OPCODE_SHIFT | 19u << 1),
MCRF_OPCODE = (19u << OPCODE_SHIFT | 0u << 1),
// condition register logic instructions
CRAND_OPCODE = (19u << OPCODE_SHIFT | 257u << 1),
CRNAND_OPCODE = (19u << OPCODE_SHIFT | 225u << 1),
CROR_OPCODE = (19u << OPCODE_SHIFT | 449u << 1),
CRXOR_OPCODE = (19u << OPCODE_SHIFT | 193u << 1),
CRNOR_OPCODE = (19u << OPCODE_SHIFT | 33u << 1),
CREQV_OPCODE = (19u << OPCODE_SHIFT | 289u << 1),
CRANDC_OPCODE = (19u << OPCODE_SHIFT | 129u << 1),
CRORC_OPCODE = (19u << OPCODE_SHIFT | 417u << 1),
BCLR_OPCODE = (19u << OPCODE_SHIFT | 16u << 1),
BXX_OPCODE = (18u << OPCODE_SHIFT),
BCXX_OPCODE = (16u << OPCODE_SHIFT),
// CTR-related opcodes
BCCTR_OPCODE = (19u << OPCODE_SHIFT | 528u << 1),
MTCTR_OPCODE = (31u << OPCODE_SHIFT | 467u << 1 | 9 << SPR_0_4_SHIFT),
MFCTR_OPCODE = (31u << OPCODE_SHIFT | 339u << 1 | 9 << SPR_0_4_SHIFT),
LWZ_OPCODE = (32u << OPCODE_SHIFT),
LWZX_OPCODE = (31u << OPCODE_SHIFT | 23u << 1),
LWZU_OPCODE = (33u << OPCODE_SHIFT),
LHA_OPCODE = (42u << OPCODE_SHIFT),
LHAX_OPCODE = (31u << OPCODE_SHIFT | 343u << 1),
LHAU_OPCODE = (43u << OPCODE_SHIFT),
LHZ_OPCODE = (40u << OPCODE_SHIFT),
LHZX_OPCODE = (31u << OPCODE_SHIFT | 279u << 1),
LHZU_OPCODE = (41u << OPCODE_SHIFT),
LBZ_OPCODE = (34u << OPCODE_SHIFT),
LBZX_OPCODE = (31u << OPCODE_SHIFT | 87u << 1),
LBZU_OPCODE = (35u << OPCODE_SHIFT),
STW_OPCODE = (36u << OPCODE_SHIFT),
STWX_OPCODE = (31u << OPCODE_SHIFT | 151u << 1),
STWU_OPCODE = (37u << OPCODE_SHIFT),
STWUX_OPCODE = (31u << OPCODE_SHIFT | 183u << 1),
STH_OPCODE = (44u << OPCODE_SHIFT),
STHX_OPCODE = (31u << OPCODE_SHIFT | 407u << 1),
STHU_OPCODE = (45u << OPCODE_SHIFT),
STB_OPCODE = (38u << OPCODE_SHIFT),
STBX_OPCODE = (31u << OPCODE_SHIFT | 215u << 1),
STBU_OPCODE = (39u << OPCODE_SHIFT),
EXTSB_OPCODE = (31u << OPCODE_SHIFT | 954u << 1),
EXTSH_OPCODE = (31u << OPCODE_SHIFT | 922u << 1),
EXTSW_OPCODE = (31u << OPCODE_SHIFT | 986u << 1), // X-FORM
// 32 bit opcode encodings
LWA_OPCODE = (58u << OPCODE_SHIFT | 2u << XO_30_31_SHIFT), // DS-FORM
LWAX_OPCODE = (31u << OPCODE_SHIFT | 341u << XO_21_30_SHIFT), // X-FORM
CNTLZW_OPCODE = (31u << OPCODE_SHIFT | 26u << XO_21_30_SHIFT), // X-FORM
// 64 bit opcode encodings
LD_OPCODE = (58u << OPCODE_SHIFT | 0u << XO_30_31_SHIFT), // DS-FORM
LDU_OPCODE = (58u << OPCODE_SHIFT | 1u << XO_30_31_SHIFT), // DS-FORM
LDX_OPCODE = (31u << OPCODE_SHIFT | 21u << XO_21_30_SHIFT), // X-FORM
STD_OPCODE = (62u << OPCODE_SHIFT | 0u << XO_30_31_SHIFT), // DS-FORM
STDU_OPCODE = (62u << OPCODE_SHIFT | 1u << XO_30_31_SHIFT), // DS-FORM
STDUX_OPCODE = (31u << OPCODE_SHIFT | 181u << 1), // X-FORM
STDX_OPCODE = (31u << OPCODE_SHIFT | 149u << XO_21_30_SHIFT), // X-FORM
RLDICR_OPCODE = (30u << OPCODE_SHIFT | 1u << XO_27_29_SHIFT), // MD-FORM
RLDICL_OPCODE = (30u << OPCODE_SHIFT | 0u << XO_27_29_SHIFT), // MD-FORM
RLDIC_OPCODE = (30u << OPCODE_SHIFT | 2u << XO_27_29_SHIFT), // MD-FORM
RLDIMI_OPCODE = (30u << OPCODE_SHIFT | 3u << XO_27_29_SHIFT), // MD-FORM
SRADI_OPCODE = (31u << OPCODE_SHIFT | 413u << XO_21_29_SHIFT), // XS-FORM
SLD_OPCODE = (31u << OPCODE_SHIFT | 27u << 1), // X-FORM
SRD_OPCODE = (31u << OPCODE_SHIFT | 539u << 1), // X-FORM
SRAD_OPCODE = (31u << OPCODE_SHIFT | 794u << 1), // X-FORM
MULLD_OPCODE = (31u << OPCODE_SHIFT | 233u << 1), // XO-FORM
MULHD_OPCODE = (31u << OPCODE_SHIFT | 73u << 1), // XO-FORM
MULHDU_OPCODE = (31u << OPCODE_SHIFT | 9u << 1), // XO-FORM
DIVD_OPCODE = (31u << OPCODE_SHIFT | 489u << 1), // XO-FORM
CNTLZD_OPCODE = (31u << OPCODE_SHIFT | 58u << XO_21_30_SHIFT), // X-FORM
NAND_OPCODE = (31u << OPCODE_SHIFT | 476u << XO_21_30_SHIFT), // X-FORM
NOR_OPCODE = (31u << OPCODE_SHIFT | 124u << XO_21_30_SHIFT), // X-FORM
// opcodes only used for floating arithmetic
FADD_OPCODE = (63u << OPCODE_SHIFT | 21u << 1),
FADDS_OPCODE = (59u << OPCODE_SHIFT | 21u << 1),
FCMPU_OPCODE = (63u << OPCODE_SHIFT | 00u << 1),
FDIV_OPCODE = (63u << OPCODE_SHIFT | 18u << 1),
FDIVS_OPCODE = (59u << OPCODE_SHIFT | 18u << 1),
FMR_OPCODE = (63u << OPCODE_SHIFT | 72u << 1),
// These are special Power6 opcodes, reused for "lfdepx" and "stfdepx"
// on Power7. Do not use.
// MFFGPR_OPCODE = (31u << OPCODE_SHIFT | 607u << 1),
// MFTGPR_OPCODE = (31u << OPCODE_SHIFT | 735u << 1),
CMPB_OPCODE = (31u << OPCODE_SHIFT | 508 << 1),
POPCNTB_OPCODE = (31u << OPCODE_SHIFT | 122 << 1),
POPCNTW_OPCODE = (31u << OPCODE_SHIFT | 378 << 1),
POPCNTD_OPCODE = (31u << OPCODE_SHIFT | 506 << 1),
FABS_OPCODE = (63u << OPCODE_SHIFT | 264u << 1),
FNABS_OPCODE = (63u << OPCODE_SHIFT | 136u << 1),
FMUL_OPCODE = (63u << OPCODE_SHIFT | 25u << 1),
FMULS_OPCODE = (59u << OPCODE_SHIFT | 25u << 1),
FNEG_OPCODE = (63u << OPCODE_SHIFT | 40u << 1),
FSUB_OPCODE = (63u << OPCODE_SHIFT | 20u << 1),
FSUBS_OPCODE = (59u << OPCODE_SHIFT | 20u << 1),
// PPC64-internal FPU conversion opcodes
FCFID_OPCODE = (63u << OPCODE_SHIFT | 846u << 1),
FCFIDS_OPCODE = (59u << OPCODE_SHIFT | 846u << 1),
FCTID_OPCODE = (63u << OPCODE_SHIFT | 814u << 1),
FCTIDZ_OPCODE = (63u << OPCODE_SHIFT | 815u << 1),
FCTIW_OPCODE = (63u << OPCODE_SHIFT | 14u << 1),
FCTIWZ_OPCODE = (63u << OPCODE_SHIFT | 15u << 1),
FRSP_OPCODE = (63u << OPCODE_SHIFT | 12u << 1),
// WARNING: using fmadd results in a non-compliant vm. Some floating
// point tck tests will fail.
FMADD_OPCODE = (59u << OPCODE_SHIFT | 29u << 1),
DMADD_OPCODE = (63u << OPCODE_SHIFT | 29u << 1),
FMSUB_OPCODE = (59u << OPCODE_SHIFT | 28u << 1),
DMSUB_OPCODE = (63u << OPCODE_SHIFT | 28u << 1),
FNMADD_OPCODE = (59u << OPCODE_SHIFT | 31u << 1),
DNMADD_OPCODE = (63u << OPCODE_SHIFT | 31u << 1),
FNMSUB_OPCODE = (59u << OPCODE_SHIFT | 30u << 1),
DNMSUB_OPCODE = (63u << OPCODE_SHIFT | 30u << 1),
LFD_OPCODE = (50u << OPCODE_SHIFT | 00u << 1),
LFDU_OPCODE = (51u << OPCODE_SHIFT | 00u << 1),
LFDX_OPCODE = (31u << OPCODE_SHIFT | 599u << 1),
LFS_OPCODE = (48u << OPCODE_SHIFT | 00u << 1),
LFSU_OPCODE = (49u << OPCODE_SHIFT | 00u << 1),
LFSX_OPCODE = (31u << OPCODE_SHIFT | 535u << 1),
STFD_OPCODE = (54u << OPCODE_SHIFT | 00u << 1),
STFDU_OPCODE = (55u << OPCODE_SHIFT | 00u << 1),
STFDX_OPCODE = (31u << OPCODE_SHIFT | 727u << 1),
STFS_OPCODE = (52u << OPCODE_SHIFT | 00u << 1),
STFSU_OPCODE = (53u << OPCODE_SHIFT | 00u << 1),
STFSX_OPCODE = (31u << OPCODE_SHIFT | 663u << 1),
FSQRT_OPCODE = (63u << OPCODE_SHIFT | 22u << 1), // A-FORM
FSQRTS_OPCODE = (59u << OPCODE_SHIFT | 22u << 1), // A-FORM
// Vector instruction support for >= Power6
// Vector Storage Access
LVEBX_OPCODE = (31u << OPCODE_SHIFT | 7u << 1),
LVEHX_OPCODE = (31u << OPCODE_SHIFT | 39u << 1),
LVEWX_OPCODE = (31u << OPCODE_SHIFT | 71u << 1),
LVX_OPCODE = (31u << OPCODE_SHIFT | 103u << 1),
LVXL_OPCODE = (31u << OPCODE_SHIFT | 359u << 1),
STVEBX_OPCODE = (31u << OPCODE_SHIFT | 135u << 1),
STVEHX_OPCODE = (31u << OPCODE_SHIFT | 167u << 1),
STVEWX_OPCODE = (31u << OPCODE_SHIFT | 199u << 1),
STVX_OPCODE = (31u << OPCODE_SHIFT | 231u << 1),
STVXL_OPCODE = (31u << OPCODE_SHIFT | 487u << 1),
LVSL_OPCODE = (31u << OPCODE_SHIFT | 6u << 1),
LVSR_OPCODE = (31u << OPCODE_SHIFT | 38u << 1),
// Vector Permute and Formatting
VPKPX_OPCODE = (4u << OPCODE_SHIFT | 782u ),
VPKSHSS_OPCODE = (4u << OPCODE_SHIFT | 398u ),
VPKSWSS_OPCODE = (4u << OPCODE_SHIFT | 462u ),
VPKSHUS_OPCODE = (4u << OPCODE_SHIFT | 270u ),
VPKSWUS_OPCODE = (4u << OPCODE_SHIFT | 334u ),
VPKUHUM_OPCODE = (4u << OPCODE_SHIFT | 14u ),
VPKUWUM_OPCODE = (4u << OPCODE_SHIFT | 78u ),
VPKUHUS_OPCODE = (4u << OPCODE_SHIFT | 142u ),
VPKUWUS_OPCODE = (4u << OPCODE_SHIFT | 206u ),
VUPKHPX_OPCODE = (4u << OPCODE_SHIFT | 846u ),
VUPKHSB_OPCODE = (4u << OPCODE_SHIFT | 526u ),
VUPKHSH_OPCODE = (4u << OPCODE_SHIFT | 590u ),
VUPKLPX_OPCODE = (4u << OPCODE_SHIFT | 974u ),
VUPKLSB_OPCODE = (4u << OPCODE_SHIFT | 654u ),
VUPKLSH_OPCODE = (4u << OPCODE_SHIFT | 718u ),
VMRGHB_OPCODE = (4u << OPCODE_SHIFT | 12u ),
VMRGHW_OPCODE = (4u << OPCODE_SHIFT | 140u ),
VMRGHH_OPCODE = (4u << OPCODE_SHIFT | 76u ),
VMRGLB_OPCODE = (4u << OPCODE_SHIFT | 268u ),
VMRGLW_OPCODE = (4u << OPCODE_SHIFT | 396u ),
VMRGLH_OPCODE = (4u << OPCODE_SHIFT | 332u ),
VSPLT_OPCODE = (4u << OPCODE_SHIFT | 524u ),
VSPLTH_OPCODE = (4u << OPCODE_SHIFT | 588u ),
VSPLTW_OPCODE = (4u << OPCODE_SHIFT | 652u ),
VSPLTISB_OPCODE= (4u << OPCODE_SHIFT | 780u ),
VSPLTISH_OPCODE= (4u << OPCODE_SHIFT | 844u ),
VSPLTISW_OPCODE= (4u << OPCODE_SHIFT | 908u ),
VPERM_OPCODE = (4u << OPCODE_SHIFT | 43u ),
VSEL_OPCODE = (4u << OPCODE_SHIFT | 42u ),
VSL_OPCODE = (4u << OPCODE_SHIFT | 452u ),
VSLDOI_OPCODE = (4u << OPCODE_SHIFT | 44u ),
VSLO_OPCODE = (4u << OPCODE_SHIFT | 1036u ),
VSR_OPCODE = (4u << OPCODE_SHIFT | 708u ),
VSRO_OPCODE = (4u << OPCODE_SHIFT | 1100u ),
// Vector Integer
VADDCUW_OPCODE = (4u << OPCODE_SHIFT | 384u ),
VADDSHS_OPCODE = (4u << OPCODE_SHIFT | 832u ),
VADDSBS_OPCODE = (4u << OPCODE_SHIFT | 768u ),
VADDSWS_OPCODE = (4u << OPCODE_SHIFT | 896u ),
VADDUBM_OPCODE = (4u << OPCODE_SHIFT | 0u ),
VADDUWM_OPCODE = (4u << OPCODE_SHIFT | 128u ),
VADDUHM_OPCODE = (4u << OPCODE_SHIFT | 64u ),
VADDUBS_OPCODE = (4u << OPCODE_SHIFT | 512u ),
VADDUWS_OPCODE = (4u << OPCODE_SHIFT | 640u ),
VADDUHS_OPCODE = (4u << OPCODE_SHIFT | 576u ),
VSUBCUW_OPCODE = (4u << OPCODE_SHIFT | 1408u ),
VSUBSHS_OPCODE = (4u << OPCODE_SHIFT | 1856u ),
VSUBSBS_OPCODE = (4u << OPCODE_SHIFT | 1792u ),
VSUBSWS_OPCODE = (4u << OPCODE_SHIFT | 1920u ),
VSUBUBM_OPCODE = (4u << OPCODE_SHIFT | 1024u ),
VSUBUWM_OPCODE = (4u << OPCODE_SHIFT | 1152u ),
VSUBUHM_OPCODE = (4u << OPCODE_SHIFT | 1088u ),
VSUBUBS_OPCODE = (4u << OPCODE_SHIFT | 1536u ),
VSUBUWS_OPCODE = (4u << OPCODE_SHIFT | 1664u ),
VSUBUHS_OPCODE = (4u << OPCODE_SHIFT | 1600u ),
VMULESB_OPCODE = (4u << OPCODE_SHIFT | 776u ),
VMULEUB_OPCODE = (4u << OPCODE_SHIFT | 520u ),
VMULESH_OPCODE = (4u << OPCODE_SHIFT | 840u ),
VMULEUH_OPCODE = (4u << OPCODE_SHIFT | 584u ),
VMULOSB_OPCODE = (4u << OPCODE_SHIFT | 264u ),
VMULOUB_OPCODE = (4u << OPCODE_SHIFT | 8u ),
VMULOSH_OPCODE = (4u << OPCODE_SHIFT | 328u ),
VMULOUH_OPCODE = (4u << OPCODE_SHIFT | 72u ),
VMHADDSHS_OPCODE=(4u << OPCODE_SHIFT | 32u ),
VMHRADDSHS_OPCODE=(4u << OPCODE_SHIFT | 33u ),
VMLADDUHM_OPCODE=(4u << OPCODE_SHIFT | 34u ),
VMSUBUHM_OPCODE= (4u << OPCODE_SHIFT | 36u ),
VMSUMMBM_OPCODE= (4u << OPCODE_SHIFT | 37u ),
VMSUMSHM_OPCODE= (4u << OPCODE_SHIFT | 40u ),
VMSUMSHS_OPCODE= (4u << OPCODE_SHIFT | 41u ),
VMSUMUHM_OPCODE= (4u << OPCODE_SHIFT | 38u ),
VMSUMUHS_OPCODE= (4u << OPCODE_SHIFT | 39u ),
VSUMSWS_OPCODE = (4u << OPCODE_SHIFT | 1928u ),
VSUM2SWS_OPCODE= (4u << OPCODE_SHIFT | 1672u ),
VSUM4SBS_OPCODE= (4u << OPCODE_SHIFT | 1800u ),
VSUM4UBS_OPCODE= (4u << OPCODE_SHIFT | 1544u ),
VSUM4SHS_OPCODE= (4u << OPCODE_SHIFT | 1608u ),
VAVGSB_OPCODE = (4u << OPCODE_SHIFT | 1282u ),
VAVGSW_OPCODE = (4u << OPCODE_SHIFT | 1410u ),
VAVGSH_OPCODE = (4u << OPCODE_SHIFT | 1346u ),
VAVGUB_OPCODE = (4u << OPCODE_SHIFT | 1026u ),
VAVGUW_OPCODE = (4u << OPCODE_SHIFT | 1154u ),
VAVGUH_OPCODE = (4u << OPCODE_SHIFT | 1090u ),
VMAXSB_OPCODE = (4u << OPCODE_SHIFT | 258u ),
VMAXSW_OPCODE = (4u << OPCODE_SHIFT | 386u ),
VMAXSH_OPCODE = (4u << OPCODE_SHIFT | 322u ),
VMAXUB_OPCODE = (4u << OPCODE_SHIFT | 2u ),
VMAXUW_OPCODE = (4u << OPCODE_SHIFT | 130u ),
VMAXUH_OPCODE = (4u << OPCODE_SHIFT | 66u ),
VMINSB_OPCODE = (4u << OPCODE_SHIFT | 770u ),
VMINSW_OPCODE = (4u << OPCODE_SHIFT | 898u ),
VMINSH_OPCODE = (4u << OPCODE_SHIFT | 834u ),
VMINUB_OPCODE = (4u << OPCODE_SHIFT | 514u ),
VMINUW_OPCODE = (4u << OPCODE_SHIFT | 642u ),
VMINUH_OPCODE = (4u << OPCODE_SHIFT | 578u ),
VCMPEQUB_OPCODE= (4u << OPCODE_SHIFT | 6u ),
VCMPEQUH_OPCODE= (4u << OPCODE_SHIFT | 70u ),
VCMPEQUW_OPCODE= (4u << OPCODE_SHIFT | 134u ),
VCMPGTSH_OPCODE= (4u << OPCODE_SHIFT | 838u ),
VCMPGTSB_OPCODE= (4u << OPCODE_SHIFT | 774u ),
VCMPGTSW_OPCODE= (4u << OPCODE_SHIFT | 902u ),
VCMPGTUB_OPCODE= (4u << OPCODE_SHIFT | 518u ),
VCMPGTUH_OPCODE= (4u << OPCODE_SHIFT | 582u ),
VCMPGTUW_OPCODE= (4u << OPCODE_SHIFT | 646u ),
VAND_OPCODE = (4u << OPCODE_SHIFT | 1028u ),
VANDC_OPCODE = (4u << OPCODE_SHIFT | 1092u ),
VNOR_OPCODE = (4u << OPCODE_SHIFT | 1284u ),
VOR_OPCODE = (4u << OPCODE_SHIFT | 1156u ),
VXOR_OPCODE = (4u << OPCODE_SHIFT | 1220u ),
VRLB_OPCODE = (4u << OPCODE_SHIFT | 4u ),
VRLW_OPCODE = (4u << OPCODE_SHIFT | 132u ),
VRLH_OPCODE = (4u << OPCODE_SHIFT | 68u ),
VSLB_OPCODE = (4u << OPCODE_SHIFT | 260u ),
VSKW_OPCODE = (4u << OPCODE_SHIFT | 388u ),
VSLH_OPCODE = (4u << OPCODE_SHIFT | 324u ),
VSRB_OPCODE = (4u << OPCODE_SHIFT | 516u ),
VSRW_OPCODE = (4u << OPCODE_SHIFT | 644u ),
VSRH_OPCODE = (4u << OPCODE_SHIFT | 580u ),
VSRAB_OPCODE = (4u << OPCODE_SHIFT | 772u ),
VSRAW_OPCODE = (4u << OPCODE_SHIFT | 900u ),
VSRAH_OPCODE = (4u << OPCODE_SHIFT | 836u ),
// Vector Floating-Point
// not implemented yet
// Vector Status and Control
MTVSCR_OPCODE = (4u << OPCODE_SHIFT | 1604u ),
MFVSCR_OPCODE = (4u << OPCODE_SHIFT | 1540u ),
// Icache and dcache related instructions
DCBA_OPCODE = (31u << OPCODE_SHIFT | 758u << 1),
DCBZ_OPCODE = (31u << OPCODE_SHIFT | 1014u << 1),
DCBST_OPCODE = (31u << OPCODE_SHIFT | 54u << 1),
DCBF_OPCODE = (31u << OPCODE_SHIFT | 86u << 1),
DCBT_OPCODE = (31u << OPCODE_SHIFT | 278u << 1),
DCBTST_OPCODE = (31u << OPCODE_SHIFT | 246u << 1),
ICBI_OPCODE = (31u << OPCODE_SHIFT | 982u << 1),
// Instruction synchronization
ISYNC_OPCODE = (19u << OPCODE_SHIFT | 150u << 1),
// Memory barriers
SYNC_OPCODE = (31u << OPCODE_SHIFT | 598u << 1),
EIEIO_OPCODE = (31u << OPCODE_SHIFT | 854u << 1),
// Trap instructions
TDI_OPCODE = (2u << OPCODE_SHIFT),
TWI_OPCODE = (3u << OPCODE_SHIFT),
TD_OPCODE = (31u << OPCODE_SHIFT | 68u << 1),
TW_OPCODE = (31u << OPCODE_SHIFT | 4u << 1),
// Atomics.
LWARX_OPCODE = (31u << OPCODE_SHIFT | 20u << 1),
LDARX_OPCODE = (31u << OPCODE_SHIFT | 84u << 1),
STWCX_OPCODE = (31u << OPCODE_SHIFT | 150u << 1),
STDCX_OPCODE = (31u << OPCODE_SHIFT | 214u << 1)
};
// Trap instructions TO bits
enum trap_to_bits {
// single bits
traptoLessThanSigned = 1 << 4, // 0, left end
traptoGreaterThanSigned = 1 << 3,
traptoEqual = 1 << 2,
traptoLessThanUnsigned = 1 << 1,
traptoGreaterThanUnsigned = 1 << 0, // 4, right end
// compound ones
traptoUnconditional = (traptoLessThanSigned |
traptoGreaterThanSigned |
traptoEqual |
traptoLessThanUnsigned |
traptoGreaterThanUnsigned)
};
// Branch hints BH field
enum branch_hint_bh {
// bclr cases:
bhintbhBCLRisReturn = 0,
bhintbhBCLRisNotReturnButSame = 1,
bhintbhBCLRisNotPredictable = 3,
// bcctr cases:
bhintbhBCCTRisNotReturnButSame = 0,
bhintbhBCCTRisNotPredictable = 3
};
// Branch prediction hints AT field
enum branch_hint_at {
bhintatNoHint = 0, // at=00
bhintatIsNotTaken = 2, // at=10
bhintatIsTaken = 3 // at=11
};
// Branch prediction hints
enum branch_hint_concept {
// Use the same encoding as branch_hint_at to simply code.
bhintNoHint = bhintatNoHint,
bhintIsNotTaken = bhintatIsNotTaken,
bhintIsTaken = bhintatIsTaken
};
// Used in BO field of branch instruction.
enum branch_condition {
bcondCRbiIs0 = 4, // bo=001at
bcondCRbiIs1 = 12, // bo=011at
bcondAlways = 20 // bo=10100
};
// Branch condition with combined prediction hints.
enum branch_condition_with_hint {
bcondCRbiIs0_bhintNoHint = bcondCRbiIs0 | bhintatNoHint,
bcondCRbiIs0_bhintIsNotTaken = bcondCRbiIs0 | bhintatIsNotTaken,
bcondCRbiIs0_bhintIsTaken = bcondCRbiIs0 | bhintatIsTaken,
bcondCRbiIs1_bhintNoHint = bcondCRbiIs1 | bhintatNoHint,
bcondCRbiIs1_bhintIsNotTaken = bcondCRbiIs1 | bhintatIsNotTaken,
bcondCRbiIs1_bhintIsTaken = bcondCRbiIs1 | bhintatIsTaken,
};
// Elemental Memory Barriers (>=Power 8)
enum Elemental_Membar_mask_bits {
StoreStore = 1 << 0,
StoreLoad = 1 << 1,
LoadStore = 1 << 2,
LoadLoad = 1 << 3
};
// Branch prediction hints.
inline static int add_bhint_to_boint(const int bhint, const int boint) {
switch (boint) {
case bcondCRbiIs0:
case bcondCRbiIs1:
// branch_hint and branch_hint_at have same encodings
assert( (int)bhintNoHint == (int)bhintatNoHint
&& (int)bhintIsNotTaken == (int)bhintatIsNotTaken
&& (int)bhintIsTaken == (int)bhintatIsTaken,
"wrong encodings");
assert((bhint & 0x03) == bhint, "wrong encodings");
return (boint & ~0x03) | bhint;
case bcondAlways:
// no branch_hint
return boint;
default:
ShouldNotReachHere();
return 0;
}
}
// Extract bcond from boint.
inline static int inv_boint_bcond(const int boint) {
int r_bcond = boint & ~0x03;
assert(r_bcond == bcondCRbiIs0 ||
r_bcond == bcondCRbiIs1 ||
r_bcond == bcondAlways,
"bad branch condition");
return r_bcond;
}
// Extract bhint from boint.
inline static int inv_boint_bhint(const int boint) {
int r_bhint = boint & 0x03;
assert(r_bhint == bhintatNoHint ||
r_bhint == bhintatIsNotTaken ||
r_bhint == bhintatIsTaken,
"bad branch hint");
return r_bhint;
}
// Calculate opposite of given bcond.
inline static int opposite_bcond(const int bcond) {
switch (bcond) {
case bcondCRbiIs0:
return bcondCRbiIs1;
case bcondCRbiIs1:
return bcondCRbiIs0;
default:
ShouldNotReachHere();
return 0;
}
}
// Calculate opposite of given bhint.
inline static int opposite_bhint(const int bhint) {
switch (bhint) {
case bhintatNoHint:
return bhintatNoHint;
case bhintatIsNotTaken:
return bhintatIsTaken;
case bhintatIsTaken:
return bhintatIsNotTaken;
default:
ShouldNotReachHere();
return 0;
}
}
// PPC branch instructions
enum ppcops {
b_op = 18,
bc_op = 16,
bcr_op = 19
};
enum Condition {
negative = 0,
less = 0,
positive = 1,
greater = 1,
zero = 2,
equal = 2,
summary_overflow = 3,
};
public:
// Helper functions for groups of instructions
enum Predict { pt = 1, pn = 0 }; // pt = predict taken
// instruction must start at passed address
static int instr_len(unsigned char *instr) { return BytesPerInstWord; }
// instruction must be left-justified in argument
static int instr_len(unsigned long instr) { return BytesPerInstWord; }
// longest instructions
static int instr_maxlen() { return BytesPerInstWord; }
// Test if x is within signed immediate range for nbits.
static bool is_simm(int x, unsigned int nbits) {
assert(0 < nbits && nbits < 32, "out of bounds");
const int min = -( ((int)1) << nbits-1 );
const int maxplus1 = ( ((int)1) << nbits-1 );
return min <= x && x < maxplus1;
}
static bool is_simm(jlong x, unsigned int nbits) {
assert(0 < nbits && nbits < 64, "out of bounds");
const jlong min = -( ((jlong)1) << nbits-1 );
const jlong maxplus1 = ( ((jlong)1) << nbits-1 );
return min <= x && x < maxplus1;
}
// Test if x is within unsigned immediate range for nbits
static bool is_uimm(int x, unsigned int nbits) {
assert(0 < nbits && nbits < 32, "out of bounds");
const int maxplus1 = ( ((int)1) << nbits );
return 0 <= x && x < maxplus1;
}
static bool is_uimm(jlong x, unsigned int nbits) {
assert(0 < nbits && nbits < 64, "out of bounds");
const jlong maxplus1 = ( ((jlong)1) << nbits );
return 0 <= x && x < maxplus1;
}
protected:
// helpers
// X is supposed to fit in a field "nbits" wide
// and be sign-extended. Check the range.
static void assert_signed_range(intptr_t x, int nbits) {
assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
"value out of range");
}
static void assert_signed_word_disp_range(intptr_t x, int nbits) {
assert((x & 3) == 0, "not word aligned");
assert_signed_range(x, nbits + 2);
}
static void assert_unsigned_const(int x, int nbits) {
assert(juint(x) < juint(1 << nbits), "unsigned constant out of range");
}
static int fmask(juint hi_bit, juint lo_bit) {
assert(hi_bit >= lo_bit && hi_bit < 32, "bad bits");
return (1 << ( hi_bit-lo_bit + 1 )) - 1;
}
// inverse of u_field
static int inv_u_field(int x, int hi_bit, int lo_bit) {
juint r = juint(x) >> lo_bit;
r &= fmask(hi_bit, lo_bit);
return int(r);
}
// signed version: extract from field and sign-extend
static int inv_s_field_ppc(int x, int hi_bit, int lo_bit) {
x = x << (31-hi_bit);
x = x >> (31-hi_bit+lo_bit);
return x;
}
static int u_field(int x, int hi_bit, int lo_bit) {
assert((x & ~fmask(hi_bit, lo_bit)) == 0, "value out of range");
int r = x << lo_bit;
assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
return r;
}
// Same as u_field for signed values
static int s_field(int x, int hi_bit, int lo_bit) {
int nbits = hi_bit - lo_bit + 1;
assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
"value out of range");
x &= fmask(hi_bit, lo_bit);
int r = x << lo_bit;
return r;
}
// inv_op for ppc instructions
static int inv_op_ppc(int x) { return inv_u_field(x, 31, 26); }
// Determine target address from li, bd field of branch instruction.
static intptr_t inv_li_field(int x) {
intptr_t r = inv_s_field_ppc(x, 25, 2);
r = (r << 2);
return r;
}
static intptr_t inv_bd_field(int x, intptr_t pos) {
intptr_t r = inv_s_field_ppc(x, 15, 2);
r = (r << 2) + pos;
return r;
}
#define inv_opp_u_field(x, hi_bit, lo_bit) inv_u_field(x, 31-(lo_bit), 31-(hi_bit))
#define inv_opp_s_field(x, hi_bit, lo_bit) inv_s_field_ppc(x, 31-(lo_bit), 31-(hi_bit))
// Extract instruction fields from instruction words.
public:
static int inv_ra_field(int x) { return inv_opp_u_field(x, 15, 11); }
static int inv_rb_field(int x) { return inv_opp_u_field(x, 20, 16); }
static int inv_rt_field(int x) { return inv_opp_u_field(x, 10, 6); }
static int inv_rta_field(int x) { return inv_opp_u_field(x, 15, 11); }
static int inv_rs_field(int x) { return inv_opp_u_field(x, 10, 6); }
// Ds uses opp_s_field(x, 31, 16), but lowest 2 bits must be 0.
// Inv_ds_field uses range (x, 29, 16) but shifts by 2 to ensure that lowest bits are 0.
static int inv_ds_field(int x) { return inv_opp_s_field(x, 29, 16) << 2; }
static int inv_d1_field(int x) { return inv_opp_s_field(x, 31, 16); }
static int inv_si_field(int x) { return inv_opp_s_field(x, 31, 16); }
static int inv_to_field(int x) { return inv_opp_u_field(x, 10, 6); }
static int inv_lk_field(int x) { return inv_opp_u_field(x, 31, 31); }
static int inv_bo_field(int x) { return inv_opp_u_field(x, 10, 6); }
static int inv_bi_field(int x) { return inv_opp_u_field(x, 15, 11); }
#define opp_u_field(x, hi_bit, lo_bit) u_field(x, 31-(lo_bit), 31-(hi_bit))
#define opp_s_field(x, hi_bit, lo_bit) s_field(x, 31-(lo_bit), 31-(hi_bit))
// instruction fields
static int aa( int x) { return opp_u_field(x, 30, 30); }
static int ba( int x) { return opp_u_field(x, 15, 11); }
static int bb( int x) { return opp_u_field(x, 20, 16); }
static int bc( int x) { return opp_u_field(x, 25, 21); }
static int bd( int x) { return opp_s_field(x, 29, 16); }
static int bf( ConditionRegister cr) { return bf(cr->encoding()); }
static int bf( int x) { return opp_u_field(x, 8, 6); }
static int bfa(ConditionRegister cr) { return bfa(cr->encoding()); }
static int bfa( int x) { return opp_u_field(x, 13, 11); }
static int bh( int x) { return opp_u_field(x, 20, 19); }
static int bi( int x) { return opp_u_field(x, 15, 11); }
static int bi0(ConditionRegister cr, Condition c) { return (cr->encoding() << 2) | c; }
static int bo( int x) { return opp_u_field(x, 10, 6); }
static int bt( int x) { return opp_u_field(x, 10, 6); }
static int d1( int x) { return opp_s_field(x, 31, 16); }
static int ds( int x) { assert((x & 0x3) == 0, "unaligned offset"); return opp_s_field(x, 31, 16); }
static int eh( int x) { return opp_u_field(x, 31, 31); }
static int flm( int x) { return opp_u_field(x, 14, 7); }
static int fra( FloatRegister r) { return fra(r->encoding());}
static int frb( FloatRegister r) { return frb(r->encoding());}
static int frc( FloatRegister r) { return frc(r->encoding());}
static int frs( FloatRegister r) { return frs(r->encoding());}
static int frt( FloatRegister r) { return frt(r->encoding());}
static int fra( int x) { return opp_u_field(x, 15, 11); }
static int frb( int x) { return opp_u_field(x, 20, 16); }
static int frc( int x) { return opp_u_field(x, 25, 21); }
static int frs( int x) { return opp_u_field(x, 10, 6); }
static int frt( int x) { return opp_u_field(x, 10, 6); }
static int fxm( int x) { return opp_u_field(x, 19, 12); }
static int l10( int x) { return opp_u_field(x, 10, 10); }
static int l15( int x) { return opp_u_field(x, 15, 15); }
static int l910( int x) { return opp_u_field(x, 10, 9); }
static int e1215( int x) { return opp_u_field(x, 15, 12); }
static int lev( int x) { return opp_u_field(x, 26, 20); }
static int li( int x) { return opp_s_field(x, 29, 6); }
static int lk( int x) { return opp_u_field(x, 31, 31); }
static int mb2125( int x) { return opp_u_field(x, 25, 21); }
static int me2630( int x) { return opp_u_field(x, 30, 26); }
static int mb2126( int x) { return opp_u_field(((x & 0x1f) << 1) | ((x & 0x20) >> 5), 26, 21); }
static int me2126( int x) { return mb2126(x); }
static int nb( int x) { return opp_u_field(x, 20, 16); }
//static int opcd( int x) { return opp_u_field(x, 5, 0); } // is contained in our opcodes
static int oe( int x) { return opp_u_field(x, 21, 21); }
static int ra( Register r) { return ra(r->encoding()); }
static int ra( int x) { return opp_u_field(x, 15, 11); }
static int rb( Register r) { return rb(r->encoding()); }
static int rb( int x) { return opp_u_field(x, 20, 16); }
static int rc( int x) { return opp_u_field(x, 31, 31); }
static int rs( Register r) { return rs(r->encoding()); }
static int rs( int x) { return opp_u_field(x, 10, 6); }
// we don't want to use R0 in memory accesses, because it has value `0' then
static int ra0mem( Register r) { assert(r != R0, "cannot use register R0 in memory access"); return ra(r); }
static int ra0mem( int x) { assert(x != 0, "cannot use register 0 in memory access"); return ra(x); }
// register r is target
static int rt( Register r) { return rs(r); }
static int rt( int x) { return rs(x); }
static int rta( Register r) { return ra(r); }
static int rta0mem( Register r) { rta(r); return ra0mem(r); }
static int sh1620( int x) { return opp_u_field(x, 20, 16); }
static int sh30( int x) { return opp_u_field(x, 30, 30); }
static int sh162030( int x) { return sh1620(x & 0x1f) | sh30((x & 0x20) >> 5); }
static int si( int x) { return opp_s_field(x, 31, 16); }
static int spr( int x) { return opp_u_field(x, 20, 11); }
static int sr( int x) { return opp_u_field(x, 15, 12); }
static int tbr( int x) { return opp_u_field(x, 20, 11); }
static int th( int x) { return opp_u_field(x, 10, 7); }
static int thct( int x) { assert((x&8) == 0, "must be valid cache specification"); return th(x); }
static int thds( int x) { assert((x&8) == 8, "must be valid stream specification"); return th(x); }
static int to( int x) { return opp_u_field(x, 10, 6); }
static int u( int x) { return opp_u_field(x, 19, 16); }
static int ui( int x) { return opp_u_field(x, 31, 16); }
// Support vector instructions for >= Power6.
static int vra( int x) { return opp_u_field(x, 15, 11); }
static int vrb( int x) { return opp_u_field(x, 20, 16); }
static int vrc( int x) { return opp_u_field(x, 25, 21); }
static int vrs( int x) { return opp_u_field(x, 10, 6); }
static int vrt( int x) { return opp_u_field(x, 10, 6); }
static int vra( VectorRegister r) { return vra(r->encoding());}
static int vrb( VectorRegister r) { return vrb(r->encoding());}
static int vrc( VectorRegister r) { return vrc(r->encoding());}
static int vrs( VectorRegister r) { return vrs(r->encoding());}
static int vrt( VectorRegister r) { return vrt(r->encoding());}
static int vsplt_uim( int x) { return opp_u_field(x, 15, 12); } // for vsplt* instructions
static int vsplti_sim(int x) { return opp_u_field(x, 15, 11); } // for vsplti* instructions
static int vsldoi_shb(int x) { return opp_u_field(x, 25, 22); } // for vsldoi instruction
static int vcmp_rc( int x) { return opp_u_field(x, 21, 21); } // for vcmp* instructions
//static int xo1( int x) { return opp_u_field(x, 29, 21); }// is contained in our opcodes
//static int xo2( int x) { return opp_u_field(x, 30, 21); }// is contained in our opcodes
//static int xo3( int x) { return opp_u_field(x, 30, 22); }// is contained in our opcodes
//static int xo4( int x) { return opp_u_field(x, 30, 26); }// is contained in our opcodes
//static int xo5( int x) { return opp_u_field(x, 29, 27); }// is contained in our opcodes
//static int xo6( int x) { return opp_u_field(x, 30, 27); }// is contained in our opcodes
//static int xo7( int x) { return opp_u_field(x, 31, 30); }// is contained in our opcodes
protected:
// Compute relative address for branch.
static intptr_t disp(intptr_t x, intptr_t off) {
int xx = x - off;
xx = xx >> 2;
return xx;
}
public:
// signed immediate, in low bits, nbits long
static int simm(int x, int nbits) {
assert_signed_range(x, nbits);
return x & ((1 << nbits) - 1);
}
// unsigned immediate, in low bits, nbits long
static int uimm(int x, int nbits) {
assert_unsigned_const(x, nbits);
return x & ((1 << nbits) - 1);
}
static void set_imm(int* instr, short s) {
short* p = ((short *)instr) + 1;
*p = s;
}
static int get_imm(address a, int instruction_number) {
short imm;
short *p =((short *)a)+2*instruction_number+1;
imm = *p;
return (int)imm;
}
static inline int hi16_signed( int x) { return (int)(int16_t)(x >> 16); }
static inline int lo16_unsigned(int x) { return x & 0xffff; }
protected:
// Extract the top 32 bits in a 64 bit word.
static int32_t hi32(int64_t x) {
int32_t r = int32_t((uint64_t)x >> 32);
return r;
}
public:
static inline unsigned int align_addr(unsigned int addr, unsigned int a) {
return ((addr + (a - 1)) & ~(a - 1));
}
static inline bool is_aligned(unsigned int addr, unsigned int a) {
return (0 == addr % a);
}
void flush() {
AbstractAssembler::flush();
}
inline void emit_int32(int); // shadows AbstractAssembler::emit_int32
inline void emit_data(int);
inline void emit_data(int, RelocationHolder const&);
inline void emit_data(int, relocInfo::relocType rtype);
// Emit an address.
inline address emit_addr(const address addr = NULL);
#if !defined(ABI_ELFv2)
// Emit a function descriptor with the specified entry point, TOC,
// and ENV. If the entry point is NULL, the descriptor will point
// just past the descriptor.
// Use values from friend functions as defaults.
inline address emit_fd(address entry = NULL,
address toc = (address) FunctionDescriptor::friend_toc,
address env = (address) FunctionDescriptor::friend_env);
#endif
/////////////////////////////////////////////////////////////////////////////////////
// PPC instructions
/////////////////////////////////////////////////////////////////////////////////////
// Memory instructions use r0 as hard coded 0, e.g. to simulate loading
// immediates. The normal instruction encoders enforce that r0 is not
// passed to them. Use either extended mnemonics encoders or the special ra0
// versions.
// Issue an illegal instruction.
inline void illtrap();
static inline bool is_illtrap(int x);
// PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
inline void addi( Register d, Register a, int si16);
inline void addis(Register d, Register a, int si16);
private:
inline void addi_r0ok( Register d, Register a, int si16);
inline void addis_r0ok(Register d, Register a, int si16);
public:
inline void addic_( Register d, Register a, int si16);
inline void subfic( Register d, Register a, int si16);
inline void add( Register d, Register a, Register b);
inline void add_( Register d, Register a, Register b);
inline void subf( Register d, Register a, Register b); // d = b - a "Sub_from", as in ppc spec.
inline void sub( Register d, Register a, Register b); // d = a - b Swap operands of subf for readability.
inline void subf_( Register d, Register a, Register b);
inline void addc( Register d, Register a, Register b);
inline void addc_( Register d, Register a, Register b);
inline void subfc( Register d, Register a, Register b);
inline void subfc_( Register d, Register a, Register b);
inline void adde( Register d, Register a, Register b);
inline void adde_( Register d, Register a, Register b);
inline void subfe( Register d, Register a, Register b);
inline void subfe_( Register d, Register a, Register b);
inline void neg( Register d, Register a);
inline void neg_( Register d, Register a);
inline void mulli( Register d, Register a, int si16);
inline void mulld( Register d, Register a, Register b);
inline void mulld_( Register d, Register a, Register b);
inline void mullw( Register d, Register a, Register b);
inline void mullw_( Register d, Register a, Register b);
inline void mulhw( Register d, Register a, Register b);
inline void mulhw_( Register d, Register a, Register b);
inline void mulhd( Register d, Register a, Register b);
inline void mulhd_( Register d, Register a, Register b);
inline void mulhdu( Register d, Register a, Register b);
inline void mulhdu_(Register d, Register a, Register b);
inline void divd( Register d, Register a, Register b);
inline void divd_( Register d, Register a, Register b);
inline void divw( Register d, Register a, Register b);
inline void divw_( Register d, Register a, Register b);
// extended mnemonics
inline void li( Register d, int si16);
inline void lis( Register d, int si16);
inline void addir(Register d, int si16, Register a);
static bool is_addi(int x) {
return ADDI_OPCODE == (x & ADDI_OPCODE_MASK);
}
static bool is_addis(int x) {
return ADDIS_OPCODE == (x & ADDIS_OPCODE_MASK);
}
static bool is_bxx(int x) {
return BXX_OPCODE == (x & BXX_OPCODE_MASK);
}
static bool is_b(int x) {
return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 0;
}
static bool is_bl(int x) {
return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 1;
}
static bool is_bcxx(int x) {
return BCXX_OPCODE == (x & BCXX_OPCODE_MASK);
}
static bool is_bxx_or_bcxx(int x) {
return is_bxx(x) || is_bcxx(x);
}
static bool is_bctrl(int x) {
return x == 0x4e800421;
}
static bool is_bctr(int x) {
return x == 0x4e800420;
}
static bool is_bclr(int x) {
return BCLR_OPCODE == (x & XL_FORM_OPCODE_MASK);
}
static bool is_li(int x) {
return is_addi(x) && inv_ra_field(x)==0;
}
static bool is_lis(int x) {
return is_addis(x) && inv_ra_field(x)==0;
}
static bool is_mtctr(int x) {
return MTCTR_OPCODE == (x & MTCTR_OPCODE_MASK);
}
static bool is_ld(int x) {
return LD_OPCODE == (x & LD_OPCODE_MASK);
}
static bool is_std(int x) {
return STD_OPCODE == (x & STD_OPCODE_MASK);
}
static bool is_stdu(int x) {
return STDU_OPCODE == (x & STDU_OPCODE_MASK);
}
static bool is_stdx(int x) {
return STDX_OPCODE == (x & STDX_OPCODE_MASK);
}
static bool is_stdux(int x) {
return STDUX_OPCODE == (x & STDUX_OPCODE_MASK);
}
static bool is_stwx(int x) {
return STWX_OPCODE == (x & STWX_OPCODE_MASK);
}
static bool is_stwux(int x) {
return STWUX_OPCODE == (x & STWUX_OPCODE_MASK);
}
static bool is_stw(int x) {
return STW_OPCODE == (x & STW_OPCODE_MASK);
}
static bool is_stwu(int x) {
return STWU_OPCODE == (x & STWU_OPCODE_MASK);
}
static bool is_ori(int x) {
return ORI_OPCODE == (x & ORI_OPCODE_MASK);
};
static bool is_oris(int x) {
return ORIS_OPCODE == (x & ORIS_OPCODE_MASK);
};
static bool is_rldicr(int x) {
return (RLDICR_OPCODE == (x & RLDICR_OPCODE_MASK));
};
static bool is_nop(int x) {
return x == 0x60000000;
}
// endgroup opcode for Power6
static bool is_endgroup(int x) {
return is_ori(x) && inv_ra_field(x) == 1 && inv_rs_field(x) == 1 && inv_d1_field(x) == 0;
}
private:
// PPC 1, section 3.3.9, Fixed-Point Compare Instructions
inline void cmpi( ConditionRegister bf, int l, Register a, int si16);
inline void cmp( ConditionRegister bf, int l, Register a, Register b);
inline void cmpli(ConditionRegister bf, int l, Register a, int ui16);
inline void cmpl( ConditionRegister bf, int l, Register a, Register b);
public:
// extended mnemonics of Compare Instructions
inline void cmpwi( ConditionRegister crx, Register a, int si16);
inline void cmpdi( ConditionRegister crx, Register a, int si16);
inline void cmpw( ConditionRegister crx, Register a, Register b);
inline void cmpd( ConditionRegister crx, Register a, Register b);
inline void cmplwi(ConditionRegister crx, Register a, int ui16);
inline void cmpldi(ConditionRegister crx, Register a, int ui16);
inline void cmplw( ConditionRegister crx, Register a, Register b);
inline void cmpld( ConditionRegister crx, Register a, Register b);
inline void isel( Register d, Register a, Register b, int bc);
// Convenient version which takes: Condition register, Condition code and invert flag. Omit b to keep old value.
inline void isel( Register d, ConditionRegister cr, Condition cc, bool inv, Register a, Register b = noreg);
// Set d = 0 if (cr.cc) equals 1, otherwise b.
inline void isel_0( Register d, ConditionRegister cr, Condition cc, Register b = noreg);
// PPC 1, section 3.3.11, Fixed-Point Logical Instructions
void andi( Register a, Register s, int ui16); // optimized version
inline void andi_( Register a, Register s, int ui16);
inline void andis_( Register a, Register s, int ui16);
inline void ori( Register a, Register s, int ui16);
inline void oris( Register a, Register s, int ui16);
inline void xori( Register a, Register s, int ui16);
inline void xoris( Register a, Register s, int ui16);
inline void andr( Register a, Register s, Register b); // suffixed by 'r' as 'and' is C++ keyword
inline void and_( Register a, Register s, Register b);
// Turn or0(rx,rx,rx) into a nop and avoid that we accidently emit a
// SMT-priority change instruction (see SMT instructions below).
inline void or_unchecked(Register a, Register s, Register b);
inline void orr( Register a, Register s, Register b); // suffixed by 'r' as 'or' is C++ keyword
inline void or_( Register a, Register s, Register b);
inline void xorr( Register a, Register s, Register b); // suffixed by 'r' as 'xor' is C++ keyword
inline void xor_( Register a, Register s, Register b);
inline void nand( Register a, Register s, Register b);
inline void nand_( Register a, Register s, Register b);
inline void nor( Register a, Register s, Register b);
inline void nor_( Register a, Register s, Register b);
inline void andc( Register a, Register s, Register b);
inline void andc_( Register a, Register s, Register b);
inline void orc( Register a, Register s, Register b);
inline void orc_( Register a, Register s, Register b);
inline void extsb( Register a, Register s);
inline void extsh( Register a, Register s);
inline void extsw( Register a, Register s);
// extended mnemonics
inline void nop();
// NOP for FP and BR units (different versions to allow them to be in one group)
inline void fpnop0();
inline void fpnop1();
inline void brnop0();
inline void brnop1();
inline void brnop2();
inline void mr( Register d, Register s);
inline void ori_opt( Register d, int ui16);
inline void oris_opt(Register d, int ui16);
// endgroup opcode for Power6
inline void endgroup();
// count instructions
inline void cntlzw( Register a, Register s);
inline void cntlzw_( Register a, Register s);
inline void cntlzd( Register a, Register s);
inline void cntlzd_( Register a, Register s);
// PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
inline void sld( Register a, Register s, Register b);
inline void sld_( Register a, Register s, Register b);
inline void slw( Register a, Register s, Register b);
inline void slw_( Register a, Register s, Register b);
inline void srd( Register a, Register s, Register b);
inline void srd_( Register a, Register s, Register b);
inline void srw( Register a, Register s, Register b);
inline void srw_( Register a, Register s, Register b);
inline void srad( Register a, Register s, Register b);
inline void srad_( Register a, Register s, Register b);
inline void sraw( Register a, Register s, Register b);
inline void sraw_( Register a, Register s, Register b);
inline void sradi( Register a, Register s, int sh6);
inline void sradi_( Register a, Register s, int sh6);
inline void srawi( Register a, Register s, int sh5);
inline void srawi_( Register a, Register s, int sh5);
// extended mnemonics for Shift Instructions
inline void sldi( Register a, Register s, int sh6);
inline void sldi_( Register a, Register s, int sh6);
inline void slwi( Register a, Register s, int sh5);
inline void slwi_( Register a, Register s, int sh5);
inline void srdi( Register a, Register s, int sh6);
inline void srdi_( Register a, Register s, int sh6);
inline void srwi( Register a, Register s, int sh5);
inline void srwi_( Register a, Register s, int sh5);
inline void clrrdi( Register a, Register s, int ui6);
inline void clrrdi_( Register a, Register s, int ui6);
inline void clrldi( Register a, Register s, int ui6);
inline void clrldi_( Register a, Register s, int ui6);
inline void clrlsldi(Register a, Register s, int clrl6, int shl6);
inline void clrlsldi_(Register a, Register s, int clrl6, int shl6);
inline void extrdi( Register a, Register s, int n, int b);
// testbit with condition register
inline void testbitdi(ConditionRegister cr, Register a, Register s, int ui6);
// rotate instructions
inline void rotldi( Register a, Register s, int n);
inline void rotrdi( Register a, Register s, int n);
inline void rotlwi( Register a, Register s, int n);
inline void rotrwi( Register a, Register s, int n);
// Rotate Instructions
inline void rldic( Register a, Register s, int sh6, int mb6);
inline void rldic_( Register a, Register s, int sh6, int mb6);
inline void rldicr( Register a, Register s, int sh6, int mb6);
inline void rldicr_( Register a, Register s, int sh6, int mb6);
inline void rldicl( Register a, Register s, int sh6, int mb6);
inline void rldicl_( Register a, Register s, int sh6, int mb6);
inline void rlwinm( Register a, Register s, int sh5, int mb5, int me5);
inline void rlwinm_( Register a, Register s, int sh5, int mb5, int me5);
inline void rldimi( Register a, Register s, int sh6, int mb6);
inline void rldimi_( Register a, Register s, int sh6, int mb6);
inline void rlwimi( Register a, Register s, int sh5, int mb5, int me5);
inline void insrdi( Register a, Register s, int n, int b);
inline void insrwi( Register a, Register s, int n, int b);
// PPC 1, section 3.3.2 Fixed-Point Load Instructions
// 4 bytes
inline void lwzx( Register d, Register s1, Register s2);
inline void lwz( Register d, int si16, Register s1);
inline void lwzu( Register d, int si16, Register s1);
// 4 bytes
inline void lwax( Register d, Register s1, Register s2);
inline void lwa( Register d, int si16, Register s1);
// 2 bytes
inline void lhzx( Register d, Register s1, Register s2);
inline void lhz( Register d, int si16, Register s1);
inline void lhzu( Register d, int si16, Register s1);
// 2 bytes
inline void lhax( Register d, Register s1, Register s2);
inline void lha( Register d, int si16, Register s1);
inline void lhau( Register d, int si16, Register s1);
// 1 byte
inline void lbzx( Register d, Register s1, Register s2);
inline void lbz( Register d, int si16, Register s1);
inline void lbzu( Register d, int si16, Register s1);
// 8 bytes
inline void ldx( Register d, Register s1, Register s2);
inline void ld( Register d, int si16, Register s1);
inline void ldu( Register d, int si16, Register s1);
// PPC 1, section 3.3.3 Fixed-Point Store Instructions
inline void stwx( Register d, Register s1, Register s2);
inline void stw( Register d, int si16, Register s1);
inline void stwu( Register d, int si16, Register s1);
inline void sthx( Register d, Register s1, Register s2);
inline void sth( Register d, int si16, Register s1);
inline void sthu( Register d, int si16, Register s1);
inline void stbx( Register d, Register s1, Register s2);
inline void stb( Register d, int si16, Register s1);
inline void stbu( Register d, int si16, Register s1);
inline void stdx( Register d, Register s1, Register s2);
inline void std( Register d, int si16, Register s1);
inline void stdu( Register d, int si16, Register s1);
inline void stdux(Register s, Register a, Register b);
// PPC 1, section 3.3.13 Move To/From System Register Instructions
inline void mtlr( Register s1);
inline void mflr( Register d);
inline void mtctr(Register s1);
inline void mfctr(Register d);
inline void mtcrf(int fxm, Register s);
inline void mfcr( Register d);
inline void mcrf( ConditionRegister crd, ConditionRegister cra);
inline void mtcr( Register s);
// PPC 1, section 2.4.1 Branch Instructions
inline void b( address a, relocInfo::relocType rt = relocInfo::none);
inline void b( Label& L);
inline void bl( address a, relocInfo::relocType rt = relocInfo::none);
inline void bl( Label& L);
inline void bc( int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
inline void bc( int boint, int biint, Label& L);
inline void bcl(int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
inline void bcl(int boint, int biint, Label& L);
inline void bclr( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
inline void bclrl( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
inline void bcctr( int boint, int biint, int bhint = bhintbhBCCTRisNotReturnButSame,
relocInfo::relocType rt = relocInfo::none);
inline void bcctrl(int boint, int biint, int bhint = bhintbhBCLRisReturn,
relocInfo::relocType rt = relocInfo::none);
// helper function for b, bcxx
inline bool is_within_range_of_b(address a, address pc);
inline bool is_within_range_of_bcxx(address a, address pc);
// get the destination of a bxx branch (b, bl, ba, bla)
static inline address bxx_destination(address baddr);
static inline address bxx_destination(int instr, address pc);
static inline intptr_t bxx_destination_offset(int instr, intptr_t bxx_pos);
// extended mnemonics for branch instructions
inline void blt(ConditionRegister crx, Label& L);
inline void bgt(ConditionRegister crx, Label& L);
inline void beq(ConditionRegister crx, Label& L);
inline void bso(ConditionRegister crx, Label& L);
inline void bge(ConditionRegister crx, Label& L);
inline void ble(ConditionRegister crx, Label& L);
inline void bne(ConditionRegister crx, Label& L);
inline void bns(ConditionRegister crx, Label& L);
// Branch instructions with static prediction hints.
inline void blt_predict_taken( ConditionRegister crx, Label& L);
inline void bgt_predict_taken( ConditionRegister crx, Label& L);
inline void beq_predict_taken( ConditionRegister crx, Label& L);
inline void bso_predict_taken( ConditionRegister crx, Label& L);
inline void bge_predict_taken( ConditionRegister crx, Label& L);
inline void ble_predict_taken( ConditionRegister crx, Label& L);
inline void bne_predict_taken( ConditionRegister crx, Label& L);
inline void bns_predict_taken( ConditionRegister crx, Label& L);
inline void blt_predict_not_taken(ConditionRegister crx, Label& L);
inline void bgt_predict_not_taken(ConditionRegister crx, Label& L);
inline void beq_predict_not_taken(ConditionRegister crx, Label& L);
inline void bso_predict_not_taken(ConditionRegister crx, Label& L);
inline void bge_predict_not_taken(ConditionRegister crx, Label& L);
inline void ble_predict_not_taken(ConditionRegister crx, Label& L);
inline void bne_predict_not_taken(ConditionRegister crx, Label& L);
inline void bns_predict_not_taken(ConditionRegister crx, Label& L);
// for use in conjunction with testbitdi:
inline void btrue( ConditionRegister crx, Label& L);
inline void bfalse(ConditionRegister crx, Label& L);
inline void bltl(ConditionRegister crx, Label& L);
inline void bgtl(ConditionRegister crx, Label& L);
inline void beql(ConditionRegister crx, Label& L);
inline void bsol(ConditionRegister crx, Label& L);
inline void bgel(ConditionRegister crx, Label& L);
inline void blel(ConditionRegister crx, Label& L);
inline void bnel(ConditionRegister crx, Label& L);
inline void bnsl(ConditionRegister crx, Label& L);
// extended mnemonics for Branch Instructions via LR
// We use `blr' for returns.
inline void blr(relocInfo::relocType rt = relocInfo::none);
// extended mnemonics for Branch Instructions with CTR
// bdnz means `decrement CTR and jump to L if CTR is not zero'
inline void bdnz(Label& L);
// Decrement and branch if result is zero.
inline void bdz(Label& L);
// we use `bctr[l]' for jumps/calls in function descriptor glue
// code, e.g. calls to runtime functions
inline void bctr( relocInfo::relocType rt = relocInfo::none);
inline void bctrl(relocInfo::relocType rt = relocInfo::none);
// conditional jumps/branches via CTR
inline void beqctr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
inline void beqctrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
inline void bnectr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
inline void bnectrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
// condition register logic instructions
inline void crand( int d, int s1, int s2);
inline void crnand(int d, int s1, int s2);
inline void cror( int d, int s1, int s2);
inline void crxor( int d, int s1, int s2);
inline void crnor( int d, int s1, int s2);
inline void creqv( int d, int s1, int s2);
inline void crandc(int d, int s1, int s2);
inline void crorc( int d, int s1, int s2);
// icache and dcache related instructions
inline void icbi( Register s1, Register s2);
//inline void dcba(Register s1, Register s2); // Instruction for embedded processor only.
inline void dcbz( Register s1, Register s2);
inline void dcbst( Register s1, Register s2);
inline void dcbf( Register s1, Register s2);
enum ct_cache_specification {
ct_primary_cache = 0,
ct_secondary_cache = 2
};
// dcache read hint
inline void dcbt( Register s1, Register s2);
inline void dcbtct( Register s1, Register s2, int ct);
inline void dcbtds( Register s1, Register s2, int ds);
// dcache write hint
inline void dcbtst( Register s1, Register s2);
inline void dcbtstct(Register s1, Register s2, int ct);
// machine barrier instructions:
//
// - sync two-way memory barrier, aka fence
// - lwsync orders Store|Store,
// Load|Store,
// Load|Load,
// but not Store|Load
// - eieio orders memory accesses for device memory (only)
// - isync invalidates speculatively executed instructions
// From the Power ISA 2.06 documentation:
// "[...] an isync instruction prevents the execution of
// instructions following the isync until instructions
// preceding the isync have completed, [...]"
// From IBM's AIX assembler reference:
// "The isync [...] instructions causes the processor to
// refetch any instructions that might have been fetched
// prior to the isync instruction. The instruction isync
// causes the processor to wait for all previous instructions
// to complete. Then any instructions already fetched are
// discarded and instruction processing continues in the
// environment established by the previous instructions."
//
// semantic barrier instructions:
// (as defined in orderAccess.hpp)
//
// - release orders Store|Store, (maps to lwsync)
// Load|Store
// - acquire orders Load|Store, (maps to lwsync)
// Load|Load
// - fence orders Store|Store, (maps to sync)
// Load|Store,
// Load|Load,
// Store|Load
//
private:
inline void sync(int l);
public:
inline void sync();
inline void lwsync();
inline void ptesync();
inline void eieio();
inline void isync();
inline void elemental_membar(int e); // Elemental Memory Barriers (>=Power 8)
// atomics
inline void lwarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
inline void ldarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
inline bool lxarx_hint_exclusive_access();
inline void lwarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
inline void ldarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
inline void stwcx_( Register s, Register a, Register b);
inline void stdcx_( Register s, Register a, Register b);
// Instructions for adjusting thread priority for simultaneous
// multithreading (SMT) on Power5.
private:
inline void smt_prio_very_low();
inline void smt_prio_medium_high();
inline void smt_prio_high();
public:
inline void smt_prio_low();
inline void smt_prio_medium_low();
inline void smt_prio_medium();
// trap instructions
inline void twi_0(Register a); // for load with acquire semantics use load+twi_0+isync (trap can't occur)
// NOT FOR DIRECT USE!!
protected:
inline void tdi_unchecked(int tobits, Register a, int si16);
inline void twi_unchecked(int tobits, Register a, int si16);
inline void tdi( int tobits, Register a, int si16); // asserts UseSIGTRAP
inline void twi( int tobits, Register a, int si16); // asserts UseSIGTRAP
inline void td( int tobits, Register a, Register b); // asserts UseSIGTRAP
inline void tw( int tobits, Register a, Register b); // asserts UseSIGTRAP
static bool is_tdi(int x, int tobits, int ra, int si16) {
return (TDI_OPCODE == (x & TDI_OPCODE_MASK))
&& (tobits == inv_to_field(x))
&& (ra == -1/*any reg*/ || ra == inv_ra_field(x))
&& (si16 == inv_si_field(x));
}
static bool is_twi(int x, int tobits, int ra, int si16) {
return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
&& (tobits == inv_to_field(x))
&& (ra == -1/*any reg*/ || ra == inv_ra_field(x))
&& (si16 == inv_si_field(x));
}
static bool is_twi(int x, int tobits, int ra) {
return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
&& (tobits == inv_to_field(x))
&& (ra == -1/*any reg*/ || ra == inv_ra_field(x));
}
static bool is_td(int x, int tobits, int ra, int rb) {
return (TD_OPCODE == (x & TD_OPCODE_MASK))
&& (tobits == inv_to_field(x))
&& (ra == -1/*any reg*/ || ra == inv_ra_field(x))
&& (rb == -1/*any reg*/ || rb == inv_rb_field(x));
}
static bool is_tw(int x, int tobits, int ra, int rb) {
return (TW_OPCODE == (x & TW_OPCODE_MASK))
&& (tobits == inv_to_field(x))
&& (ra == -1/*any reg*/ || ra == inv_ra_field(x))
&& (rb == -1/*any reg*/ || rb == inv_rb_field(x));
}
public:
// PPC floating point instructions
// PPC 1, section 4.6.2 Floating-Point Load Instructions
inline void lfs( FloatRegister d, int si16, Register a);
inline void lfsu( FloatRegister d, int si16, Register a);
inline void lfsx( FloatRegister d, Register a, Register b);
inline void lfd( FloatRegister d, int si16, Register a);
inline void lfdu( FloatRegister d, int si16, Register a);
inline void lfdx( FloatRegister d, Register a, Register b);
// PPC 1, section 4.6.3 Floating-Point Store Instructions
inline void stfs( FloatRegister s, int si16, Register a);
inline void stfsu( FloatRegister s, int si16, Register a);
inline void stfsx( FloatRegister s, Register a, Register b);
inline void stfd( FloatRegister s, int si16, Register a);
inline void stfdu( FloatRegister s, int si16, Register a);
inline void stfdx( FloatRegister s, Register a, Register b);
// PPC 1, section 4.6.4 Floating-Point Move Instructions
inline void fmr( FloatRegister d, FloatRegister b);
inline void fmr_( FloatRegister d, FloatRegister b);
// inline void mffgpr( FloatRegister d, Register b);
// inline void mftgpr( Register d, FloatRegister b);
inline void cmpb( Register a, Register s, Register b);
inline void popcntb(Register a, Register s);
inline void popcntw(Register a, Register s);
inline void popcntd(Register a, Register s);
inline void fneg( FloatRegister d, FloatRegister b);
inline void fneg_( FloatRegister d, FloatRegister b);
inline void fabs( FloatRegister d, FloatRegister b);
inline void fabs_( FloatRegister d, FloatRegister b);
inline void fnabs( FloatRegister d, FloatRegister b);
inline void fnabs_(FloatRegister d, FloatRegister b);
// PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions
inline void fadd( FloatRegister d, FloatRegister a, FloatRegister b);
inline void fadd_( FloatRegister d, FloatRegister a, FloatRegister b);
inline void fadds( FloatRegister d, FloatRegister a, FloatRegister b);
inline void fadds_(FloatRegister d, FloatRegister a, FloatRegister b);
inline void fsub( FloatRegister d, FloatRegister a, FloatRegister b);
inline void fsub_( FloatRegister d, FloatRegister a, FloatRegister b);
inline void fsubs( FloatRegister d, FloatRegister a, FloatRegister b);
inline void fsubs_(FloatRegister d, FloatRegister a, FloatRegister b);
inline void fmul( FloatRegister d, FloatRegister a, FloatRegister c);
inline void fmul_( FloatRegister d, FloatRegister a, FloatRegister c);
inline void fmuls( FloatRegister d, FloatRegister a, FloatRegister c);
inline void fmuls_(FloatRegister d, FloatRegister a, FloatRegister c);
inline void fdiv( FloatRegister d, FloatRegister a, FloatRegister b);
inline void fdiv_( FloatRegister d, FloatRegister a, FloatRegister b);
inline void fdivs( FloatRegister d, FloatRegister a, FloatRegister b);
inline void fdivs_(FloatRegister d, FloatRegister a, FloatRegister b);
// PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions
inline void frsp( FloatRegister d, FloatRegister b);
inline void fctid( FloatRegister d, FloatRegister b);
inline void fctidz(FloatRegister d, FloatRegister b);
inline void fctiw( FloatRegister d, FloatRegister b);
inline void fctiwz(FloatRegister d, FloatRegister b);
inline void fcfid( FloatRegister d, FloatRegister b);
inline void fcfids(FloatRegister d, FloatRegister b);
// PPC 1, section 4.6.7 Floating-Point Compare Instructions
inline void fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b);
inline void fsqrt( FloatRegister d, FloatRegister b);
inline void fsqrts(FloatRegister d, FloatRegister b);
// Vector instructions for >= Power6.
inline void lvebx( VectorRegister d, Register s1, Register s2);
inline void lvehx( VectorRegister d, Register s1, Register s2);
inline void lvewx( VectorRegister d, Register s1, Register s2);
inline void lvx( VectorRegister d, Register s1, Register s2);
inline void lvxl( VectorRegister d, Register s1, Register s2);
inline void stvebx( VectorRegister d, Register s1, Register s2);
inline void stvehx( VectorRegister d, Register s1, Register s2);
inline void stvewx( VectorRegister d, Register s1, Register s2);
inline void stvx( VectorRegister d, Register s1, Register s2);
inline void stvxl( VectorRegister d, Register s1, Register s2);
inline void lvsl( VectorRegister d, Register s1, Register s2);
inline void lvsr( VectorRegister d, Register s1, Register s2);
inline void vpkpx( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vpkshss( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vpkswss( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vpkshus( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vpkswus( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vpkuhum( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vpkuwum( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vpkuhus( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vpkuwus( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vupkhpx( VectorRegister d, VectorRegister b);
inline void vupkhsb( VectorRegister d, VectorRegister b);
inline void vupkhsh( VectorRegister d, VectorRegister b);
inline void vupklpx( VectorRegister d, VectorRegister b);
inline void vupklsb( VectorRegister d, VectorRegister b);
inline void vupklsh( VectorRegister d, VectorRegister b);
inline void vmrghb( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmrghw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmrghh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmrglb( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmrglw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmrglh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsplt( VectorRegister d, int ui4, VectorRegister b);
inline void vsplth( VectorRegister d, int ui3, VectorRegister b);
inline void vspltw( VectorRegister d, int ui2, VectorRegister b);
inline void vspltisb( VectorRegister d, int si5);
inline void vspltish( VectorRegister d, int si5);
inline void vspltisw( VectorRegister d, int si5);
inline void vperm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
inline void vsel( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
inline void vsl( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsldoi( VectorRegister d, VectorRegister a, VectorRegister b, int si4);
inline void vslo( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsr( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsro( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vaddcuw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vaddshs( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vaddsbs( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vaddsws( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vaddubm( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vadduwm( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vadduhm( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vaddubs( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vadduws( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vadduhs( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsubcuw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsubshs( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsubsbs( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsubsws( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsububm( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsubuwm( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsubuhm( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsububs( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsubuws( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsubuhs( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmulesb( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmuleub( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmulesh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmuleuh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmulosb( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmuloub( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmulosh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmulouh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmhaddshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
inline void vmhraddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c);
inline void vmladduhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
inline void vmsubuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
inline void vmsummbm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
inline void vmsumshm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
inline void vmsumshs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
inline void vmsumuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
inline void vmsumuhs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
inline void vsumsws( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsum2sws( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsum4sbs( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsum4ubs( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsum4shs( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vavgsb( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vavgsw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vavgsh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vavgub( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vavguw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vavguh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmaxsb( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmaxsw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmaxsh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmaxub( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmaxuw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vmaxuh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vminsb( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vminsw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vminsh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vminub( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vminuw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vminuh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpequb( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpequh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpequw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpgtsh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpgtsb( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpgtsw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpgtub( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpgtuh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpgtuw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpequb_(VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpequh_(VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpequw_(VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpgtsh_(VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpgtsb_(VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpgtsw_(VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpgtub_(VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpgtuh_(VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcmpgtuw_(VectorRegister d, VectorRegister a, VectorRegister b);
inline void vand( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vandc( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vnor( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vor( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vxor( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vrlb( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vrlw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vrlh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vslb( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vskw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vslh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsrb( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsrw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsrh( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsrab( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsraw( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vsrah( VectorRegister d, VectorRegister a, VectorRegister b);
// Vector Floating-Point not implemented yet
inline void mtvscr( VectorRegister b);
inline void mfvscr( VectorRegister d);
// The following encoders use r0 as second operand. These instructions
// read r0 as '0'.
inline void lwzx( Register d, Register s2);
inline void lwz( Register d, int si16);
inline void lwax( Register d, Register s2);
inline void lwa( Register d, int si16);
inline void lhzx( Register d, Register s2);
inline void lhz( Register d, int si16);
inline void lhax( Register d, Register s2);
inline void lha( Register d, int si16);
inline void lbzx( Register d, Register s2);
inline void lbz( Register d, int si16);
inline void ldx( Register d, Register s2);
inline void ld( Register d, int si16);
inline void stwx( Register d, Register s2);
inline void stw( Register d, int si16);
inline void sthx( Register d, Register s2);
inline void sth( Register d, int si16);
inline void stbx( Register d, Register s2);
inline void stb( Register d, int si16);
inline void stdx( Register d, Register s2);
inline void std( Register d, int si16);
// PPC 2, section 3.2.1 Instruction Cache Instructions
inline void icbi( Register s2);
// PPC 2, section 3.2.2 Data Cache Instructions
//inlinevoid dcba( Register s2); // Instruction for embedded processor only.
inline void dcbz( Register s2);
inline void dcbst( Register s2);
inline void dcbf( Register s2);
// dcache read hint
inline void dcbt( Register s2);
inline void dcbtct( Register s2, int ct);
inline void dcbtds( Register s2, int ds);
// dcache write hint
inline void dcbtst( Register s2);
inline void dcbtstct(Register s2, int ct);
// Atomics: use ra0mem to disallow R0 as base.
inline void lwarx_unchecked(Register d, Register b, int eh1);
inline void ldarx_unchecked(Register d, Register b, int eh1);
inline void lwarx( Register d, Register b, bool hint_exclusive_access);
inline void ldarx( Register d, Register b, bool hint_exclusive_access);
inline void stwcx_(Register s, Register b);
inline void stdcx_(Register s, Register b);
inline void lfs( FloatRegister d, int si16);
inline void lfsx( FloatRegister d, Register b);
inline void lfd( FloatRegister d, int si16);
inline void lfdx( FloatRegister d, Register b);
inline void stfs( FloatRegister s, int si16);
inline void stfsx( FloatRegister s, Register b);
inline void stfd( FloatRegister s, int si16);
inline void stfdx( FloatRegister s, Register b);
inline void lvebx( VectorRegister d, Register s2);
inline void lvehx( VectorRegister d, Register s2);
inline void lvewx( VectorRegister d, Register s2);
inline void lvx( VectorRegister d, Register s2);
inline void lvxl( VectorRegister d, Register s2);
inline void stvebx(VectorRegister d, Register s2);
inline void stvehx(VectorRegister d, Register s2);
inline void stvewx(VectorRegister d, Register s2);
inline void stvx( VectorRegister d, Register s2);
inline void stvxl( VectorRegister d, Register s2);
inline void lvsl( VectorRegister d, Register s2);
inline void lvsr( VectorRegister d, Register s2);
// RegisterOrConstant versions.
// These emitters choose between the versions using two registers and
// those with register and immediate, depending on the content of roc.
// If the constant is not encodable as immediate, instructions to
// load the constant are emitted beforehand. Store instructions need a
// tmp reg if the constant is not encodable as immediate.
// Size unpredictable.
void ld( Register d, RegisterOrConstant roc, Register s1 = noreg);
void lwa( Register d, RegisterOrConstant roc, Register s1 = noreg);
void lwz( Register d, RegisterOrConstant roc, Register s1 = noreg);
void lha( Register d, RegisterOrConstant roc, Register s1 = noreg);
void lhz( Register d, RegisterOrConstant roc, Register s1 = noreg);
void lbz( Register d, RegisterOrConstant roc, Register s1 = noreg);
void std( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
void stw( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
void sth( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
void stb( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
void add( Register d, RegisterOrConstant roc, Register s1);
void subf(Register d, RegisterOrConstant roc, Register s1);
void cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1);
// Emit several instructions to load a 64 bit constant. This issues a fixed
// instruction pattern so that the constant can be patched later on.
enum {
load_const_size = 5 * BytesPerInstWord
};
void load_const(Register d, long a, Register tmp = noreg);
inline void load_const(Register d, void* a, Register tmp = noreg);
inline void load_const(Register d, Label& L, Register tmp = noreg);
inline void load_const(Register d, AddressLiteral& a, Register tmp = noreg);
// Load a 64 bit constant, optimized, not identifyable.
// Tmp can be used to increase ILP. Set return_simm16_rest = true to get a
// 16 bit immediate offset. This is useful if the offset can be encoded in
// a succeeding instruction.
int load_const_optimized(Register d, long a, Register tmp = noreg, bool return_simm16_rest = false);
inline int load_const_optimized(Register d, void* a, Register tmp = noreg, bool return_simm16_rest = false) {
return load_const_optimized(d, (long)(unsigned long)a, tmp, return_simm16_rest);
}
// Creation
Assembler(CodeBuffer* code) : AbstractAssembler(code) {
#ifdef CHECK_DELAY
delay_state = no_delay;
#endif
}
// Testing
#ifndef PRODUCT
void test_asm();
#endif
};
#endif // CPU_PPC_VM_ASSEMBLER_PPC_HPP