hotspot/src/share/vm/gc/g1/heapRegion.cpp
author stefank
Mon, 04 Apr 2016 09:15:15 +0200
changeset 37242 91e5f98fff6f
parent 36394 fe27b66d3519
child 37243 34e1821bde93
permissions -rw-r--r--
8152632: Rename LogHandle(...) to Log(...) Reviewed-by: brutisso, mlarsson, rprotacio

/*
 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "code/nmethod.hpp"
#include "gc/g1/g1BlockOffsetTable.inline.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1HeapRegionTraceType.hpp"
#include "gc/g1/g1OopClosures.inline.hpp"
#include "gc/g1/heapRegion.inline.hpp"
#include "gc/g1/heapRegionBounds.inline.hpp"
#include "gc/g1/heapRegionManager.inline.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/g1/heapRegionTracer.hpp"
#include "gc/shared/genOopClosures.inline.hpp"
#include "gc/shared/liveRange.hpp"
#include "gc/shared/space.inline.hpp"
#include "logging/log.hpp"
#include "memory/iterator.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomic.inline.hpp"
#include "runtime/orderAccess.inline.hpp"

int    HeapRegion::LogOfHRGrainBytes = 0;
int    HeapRegion::LogOfHRGrainWords = 0;
size_t HeapRegion::GrainBytes        = 0;
size_t HeapRegion::GrainWords        = 0;
size_t HeapRegion::CardsPerRegion    = 0;

HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
                                 HeapRegion* hr,
                                 G1ParPushHeapRSClosure* cl,
                                 CardTableModRefBS::PrecisionStyle precision) :
  DirtyCardToOopClosure(hr, cl, precision, NULL),
  _hr(hr), _rs_scan(cl), _g1(g1) { }

FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
                                                   OopClosure* oc) :
  _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }

void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
                                      HeapWord* bottom,
                                      HeapWord* top) {
  G1CollectedHeap* g1h = _g1;
  size_t oop_size;
  HeapWord* cur = bottom;

  // Start filtering what we add to the remembered set. If the object is
  // not considered dead, either because it is marked (in the mark bitmap)
  // or it was allocated after marking finished, then we add it. Otherwise
  // we can safely ignore the object.
  if (!g1h->is_obj_dead(oop(cur))) {
    oop_size = oop(cur)->oop_iterate_size(_rs_scan, mr);
  } else {
    oop_size = _hr->block_size(cur);
  }

  cur += oop_size;

  if (cur < top) {
    oop cur_oop = oop(cur);
    oop_size = _hr->block_size(cur);
    HeapWord* next_obj = cur + oop_size;
    while (next_obj < top) {
      // Keep filtering the remembered set.
      if (!g1h->is_obj_dead(cur_oop)) {
        // Bottom lies entirely below top, so we can call the
        // non-memRegion version of oop_iterate below.
        cur_oop->oop_iterate(_rs_scan);
      }
      cur = next_obj;
      cur_oop = oop(cur);
      oop_size = _hr->block_size(cur);
      next_obj = cur + oop_size;
    }

    // Last object. Need to do dead-obj filtering here too.
    if (!g1h->is_obj_dead(oop(cur))) {
      oop(cur)->oop_iterate(_rs_scan, mr);
    }
  }
}

size_t HeapRegion::max_region_size() {
  return HeapRegionBounds::max_size();
}

size_t HeapRegion::min_region_size_in_words() {
  return HeapRegionBounds::min_size() >> LogHeapWordSize;
}

void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
  size_t region_size = G1HeapRegionSize;
  if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
    size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
    region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
                       HeapRegionBounds::min_size());
  }

  int region_size_log = log2_long((jlong) region_size);
  // Recalculate the region size to make sure it's a power of
  // 2. This means that region_size is the largest power of 2 that's
  // <= what we've calculated so far.
  region_size = ((size_t)1 << region_size_log);

  // Now make sure that we don't go over or under our limits.
  if (region_size < HeapRegionBounds::min_size()) {
    region_size = HeapRegionBounds::min_size();
  } else if (region_size > HeapRegionBounds::max_size()) {
    region_size = HeapRegionBounds::max_size();
  }

  // And recalculate the log.
  region_size_log = log2_long((jlong) region_size);

  // Now, set up the globals.
  guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
  LogOfHRGrainBytes = region_size_log;

  guarantee(LogOfHRGrainWords == 0, "we should only set it once");
  LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;

  guarantee(GrainBytes == 0, "we should only set it once");
  // The cast to int is safe, given that we've bounded region_size by
  // MIN_REGION_SIZE and MAX_REGION_SIZE.
  GrainBytes = region_size;
  log_info(gc, heap)("Heap region size: " SIZE_FORMAT "M", GrainBytes / M);

  guarantee(GrainWords == 0, "we should only set it once");
  GrainWords = GrainBytes >> LogHeapWordSize;
  guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");

  guarantee(CardsPerRegion == 0, "we should only set it once");
  CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
}

void HeapRegion::reset_after_compaction() {
  G1ContiguousSpace::reset_after_compaction();
  // After a compaction the mark bitmap is invalid, so we must
  // treat all objects as being inside the unmarked area.
  zero_marked_bytes();
  init_top_at_mark_start();
}

void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
  assert(_humongous_start_region == NULL,
         "we should have already filtered out humongous regions");
  assert(!in_collection_set(),
         "Should not clear heap region %u in the collection set", hrm_index());

  set_allocation_context(AllocationContext::system());
  set_young_index_in_cset(-1);
  uninstall_surv_rate_group();
  set_free();
  reset_pre_dummy_top();

  if (!par) {
    // If this is parallel, this will be done later.
    HeapRegionRemSet* hrrs = rem_set();
    if (locked) {
      hrrs->clear_locked();
    } else {
      hrrs->clear();
    }
  }
  zero_marked_bytes();

  init_top_at_mark_start();
  if (clear_space) clear(SpaceDecorator::Mangle);
}

void HeapRegion::par_clear() {
  assert(used() == 0, "the region should have been already cleared");
  assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
  HeapRegionRemSet* hrrs = rem_set();
  hrrs->clear();
  CardTableModRefBS* ct_bs =
    barrier_set_cast<CardTableModRefBS>(G1CollectedHeap::heap()->barrier_set());
  ct_bs->clear(MemRegion(bottom(), end()));
}

void HeapRegion::calc_gc_efficiency() {
  // GC efficiency is the ratio of how much space would be
  // reclaimed over how long we predict it would take to reclaim it.
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  // Retrieve a prediction of the elapsed time for this region for
  // a mixed gc because the region will only be evacuated during a
  // mixed gc.
  double region_elapsed_time_ms =
    g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
  _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
}

void HeapRegion::set_free() {
  report_region_type_change(G1HeapRegionTraceType::Free);
  _type.set_free();
}

void HeapRegion::set_eden() {
  report_region_type_change(G1HeapRegionTraceType::Eden);
  _type.set_eden();
}

void HeapRegion::set_eden_pre_gc() {
  report_region_type_change(G1HeapRegionTraceType::Eden);
  _type.set_eden_pre_gc();
}

void HeapRegion::set_survivor() {
  report_region_type_change(G1HeapRegionTraceType::Survivor);
  _type.set_survivor();
}

void HeapRegion::set_old() {
  report_region_type_change(G1HeapRegionTraceType::Old);
  _type.set_old();
}

void HeapRegion::set_archive() {
  report_region_type_change(G1HeapRegionTraceType::Archive);
  _type.set_archive();
}

void HeapRegion::set_starts_humongous(HeapWord* obj_top, size_t fill_size) {
  assert(!is_humongous(), "sanity / pre-condition");
  assert(top() == bottom(), "should be empty");

  report_region_type_change(G1HeapRegionTraceType::StartsHumongous);
  _type.set_starts_humongous();
  _humongous_start_region = this;

  _bot_part.set_for_starts_humongous(obj_top, fill_size);
}

void HeapRegion::set_continues_humongous(HeapRegion* first_hr) {
  assert(!is_humongous(), "sanity / pre-condition");
  assert(top() == bottom(), "should be empty");
  assert(first_hr->is_starts_humongous(), "pre-condition");

  report_region_type_change(G1HeapRegionTraceType::ContinuesHumongous);
  _type.set_continues_humongous();
  _humongous_start_region = first_hr;
}

void HeapRegion::clear_humongous() {
  assert(is_humongous(), "pre-condition");

  assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
  _humongous_start_region = NULL;
}

HeapRegion::HeapRegion(uint hrm_index,
                       G1BlockOffsetTable* bot,
                       MemRegion mr) :
    G1ContiguousSpace(bot),
    _hrm_index(hrm_index),
    _allocation_context(AllocationContext::system()),
    _humongous_start_region(NULL),
    _next_in_special_set(NULL),
    _evacuation_failed(false),
    _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
    _next_young_region(NULL),
    _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
#ifdef ASSERT
    _containing_set(NULL),
#endif // ASSERT
     _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
    _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
    _predicted_bytes_to_copy(0)
{
  _rem_set = new HeapRegionRemSet(bot, this);

  initialize(mr);
}

void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
  assert(_rem_set->is_empty(), "Remembered set must be empty");

  G1ContiguousSpace::initialize(mr, clear_space, mangle_space);

  hr_clear(false /*par*/, false /*clear_space*/);
  set_top(bottom());
  record_timestamp();
}

void HeapRegion::report_region_type_change(G1HeapRegionTraceType::Type to) {
  HeapRegionTracer::send_region_type_change(_hrm_index,
                                            get_trace_type(),
                                            to,
                                            (uintptr_t)bottom(),
                                            used(),
                                            (uint)allocation_context());
}

CompactibleSpace* HeapRegion::next_compaction_space() const {
  return G1CollectedHeap::heap()->next_compaction_region(this);
}

void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
                                                    bool during_conc_mark) {
  // We always recreate the prev marking info and we'll explicitly
  // mark all objects we find to be self-forwarded on the prev
  // bitmap. So all objects need to be below PTAMS.
  _prev_marked_bytes = 0;

  if (during_initial_mark) {
    // During initial-mark, we'll also explicitly mark all objects
    // we find to be self-forwarded on the next bitmap. So all
    // objects need to be below NTAMS.
    _next_top_at_mark_start = top();
    _next_marked_bytes = 0;
  } else if (during_conc_mark) {
    // During concurrent mark, all objects in the CSet (including
    // the ones we find to be self-forwarded) are implicitly live.
    // So all objects need to be above NTAMS.
    _next_top_at_mark_start = bottom();
    _next_marked_bytes = 0;
  }
}

void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
                                                  bool during_conc_mark,
                                                  size_t marked_bytes) {
  assert(marked_bytes <= used(),
         "marked: " SIZE_FORMAT " used: " SIZE_FORMAT, marked_bytes, used());
  _prev_top_at_mark_start = top();
  _prev_marked_bytes = marked_bytes;
}

HeapWord*
HeapRegion::object_iterate_mem_careful(MemRegion mr,
                                                 ObjectClosure* cl) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  // We used to use "block_start_careful" here.  But we're actually happy
  // to update the BOT while we do this...
  HeapWord* cur = block_start(mr.start());
  mr = mr.intersection(used_region());
  if (mr.is_empty()) return NULL;
  // Otherwise, find the obj that extends onto mr.start().

  assert(cur <= mr.start()
         && (oop(cur)->klass_or_null() == NULL ||
             cur + oop(cur)->size() > mr.start()),
         "postcondition of block_start");
  oop obj;
  while (cur < mr.end()) {
    obj = oop(cur);
    if (obj->klass_or_null() == NULL) {
      // Ran into an unparseable point.
      return cur;
    } else if (!g1h->is_obj_dead(obj)) {
      cl->do_object(obj);
    }
    cur += block_size(cur);
  }
  return NULL;
}

HeapWord*
HeapRegion::
oops_on_card_seq_iterate_careful(MemRegion mr,
                                 FilterOutOfRegionClosure* cl,
                                 bool filter_young,
                                 jbyte* card_ptr) {
  // Currently, we should only have to clean the card if filter_young
  // is true and vice versa.
  if (filter_young) {
    assert(card_ptr != NULL, "pre-condition");
  } else {
    assert(card_ptr == NULL, "pre-condition");
  }
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If we're within a stop-world GC, then we might look at a card in a
  // GC alloc region that extends onto a GC LAB, which may not be
  // parseable.  Stop such at the "scan_top" of the region.
  if (g1h->is_gc_active()) {
    mr = mr.intersection(MemRegion(bottom(), scan_top()));
  } else {
    mr = mr.intersection(used_region());
  }
  if (mr.is_empty()) return NULL;
  // Otherwise, find the obj that extends onto mr.start().

  // The intersection of the incoming mr (for the card) and the
  // allocated part of the region is non-empty. This implies that
  // we have actually allocated into this region. The code in
  // G1CollectedHeap.cpp that allocates a new region sets the
  // is_young tag on the region before allocating. Thus we
  // safely know if this region is young.
  if (is_young() && filter_young) {
    return NULL;
  }

  assert(!is_young(), "check value of filter_young");

  // We can only clean the card here, after we make the decision that
  // the card is not young. And we only clean the card if we have been
  // asked to (i.e., card_ptr != NULL).
  if (card_ptr != NULL) {
    *card_ptr = CardTableModRefBS::clean_card_val();
    // We must complete this write before we do any of the reads below.
    OrderAccess::storeload();
  }

  // Cache the boundaries of the memory region in some const locals
  HeapWord* const start = mr.start();
  HeapWord* const end = mr.end();

  // We used to use "block_start_careful" here.  But we're actually happy
  // to update the BOT while we do this...
  HeapWord* cur = block_start(start);
  assert(cur <= start, "Postcondition");

  oop obj;

  HeapWord* next = cur;
  do {
    cur = next;
    obj = oop(cur);
    if (obj->klass_or_null() == NULL) {
      // Ran into an unparseable point.
      return cur;
    }
    // Otherwise...
    next = cur + block_size(cur);
  } while (next <= start);

  // If we finish the above loop...We have a parseable object that
  // begins on or before the start of the memory region, and ends
  // inside or spans the entire region.
  assert(cur <= start, "Loop postcondition");
  assert(obj->klass_or_null() != NULL, "Loop postcondition");

  do {
    obj = oop(cur);
    assert((cur + block_size(cur)) > (HeapWord*)obj, "Loop invariant");
    if (obj->klass_or_null() == NULL) {
      // Ran into an unparseable point.
      return cur;
    }

    // Advance the current pointer. "obj" still points to the object to iterate.
    cur = cur + block_size(cur);

    if (!g1h->is_obj_dead(obj)) {
      // Non-objArrays are sometimes marked imprecise at the object start. We
      // always need to iterate over them in full.
      // We only iterate over object arrays in full if they are completely contained
      // in the memory region.
      if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
        obj->oop_iterate(cl);
      } else {
        obj->oop_iterate(cl, mr);
      }
    }
  } while (cur < end);

  return NULL;
}

// Code roots support

void HeapRegion::add_strong_code_root(nmethod* nm) {
  HeapRegionRemSet* hrrs = rem_set();
  hrrs->add_strong_code_root(nm);
}

void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
  assert_locked_or_safepoint(CodeCache_lock);
  HeapRegionRemSet* hrrs = rem_set();
  hrrs->add_strong_code_root_locked(nm);
}

void HeapRegion::remove_strong_code_root(nmethod* nm) {
  HeapRegionRemSet* hrrs = rem_set();
  hrrs->remove_strong_code_root(nm);
}

void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
  HeapRegionRemSet* hrrs = rem_set();
  hrrs->strong_code_roots_do(blk);
}

class VerifyStrongCodeRootOopClosure: public OopClosure {
  const HeapRegion* _hr;
  nmethod* _nm;
  bool _failures;
  bool _has_oops_in_region;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);

      // Note: not all the oops embedded in the nmethod are in the
      // current region. We only look at those which are.
      if (_hr->is_in(obj)) {
        // Object is in the region. Check that its less than top
        if (_hr->top() <= (HeapWord*)obj) {
          // Object is above top
          log_error(gc, verify)("Object " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ") is above top " PTR_FORMAT,
                               p2i(obj), p2i(_hr->bottom()), p2i(_hr->end()), p2i(_hr->top()));
          _failures = true;
          return;
        }
        // Nmethod has at least one oop in the current region
        _has_oops_in_region = true;
      }
    }
  }

public:
  VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
    _hr(hr), _failures(false), _has_oops_in_region(false) {}

  void do_oop(narrowOop* p) { do_oop_work(p); }
  void do_oop(oop* p)       { do_oop_work(p); }

  bool failures()           { return _failures; }
  bool has_oops_in_region() { return _has_oops_in_region; }
};

class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
  const HeapRegion* _hr;
  bool _failures;
public:
  VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
    _hr(hr), _failures(false) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
    if (nm != NULL) {
      // Verify that the nemthod is live
      if (!nm->is_alive()) {
        log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod " PTR_FORMAT " in its strong code roots",
                              p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
        _failures = true;
      } else {
        VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
        nm->oops_do(&oop_cl);
        if (!oop_cl.has_oops_in_region()) {
          log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod " PTR_FORMAT " in its strong code roots with no pointers into region",
                                p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
          _failures = true;
        } else if (oop_cl.failures()) {
          log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has other failures for nmethod " PTR_FORMAT,
                                p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
          _failures = true;
        }
      }
    }
  }

  bool failures()       { return _failures; }
};

void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
  if (!G1VerifyHeapRegionCodeRoots) {
    // We're not verifying code roots.
    return;
  }
  if (vo == VerifyOption_G1UseMarkWord) {
    // Marking verification during a full GC is performed after class
    // unloading, code cache unloading, etc so the strong code roots
    // attached to each heap region are in an inconsistent state. They won't
    // be consistent until the strong code roots are rebuilt after the
    // actual GC. Skip verifying the strong code roots in this particular
    // time.
    assert(VerifyDuringGC, "only way to get here");
    return;
  }

  HeapRegionRemSet* hrrs = rem_set();
  size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();

  // if this region is empty then there should be no entries
  // on its strong code root list
  if (is_empty()) {
    if (strong_code_roots_length > 0) {
      log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] is empty but has " SIZE_FORMAT " code root entries",
                            p2i(bottom()), p2i(end()), strong_code_roots_length);
      *failures = true;
    }
    return;
  }

  if (is_continues_humongous()) {
    if (strong_code_roots_length > 0) {
      log_error(gc, verify)("region " HR_FORMAT " is a continuation of a humongous region but has " SIZE_FORMAT " code root entries",
                            HR_FORMAT_PARAMS(this), strong_code_roots_length);
      *failures = true;
    }
    return;
  }

  VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
  strong_code_roots_do(&cb_cl);

  if (cb_cl.failures()) {
    *failures = true;
  }
}

void HeapRegion::print() const { print_on(tty); }
void HeapRegion::print_on(outputStream* st) const {
  st->print("|%4u", this->_hrm_index);
  st->print("|" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT,
            p2i(bottom()), p2i(top()), p2i(end()));
  st->print("|%3d%%", (int) ((double) used() * 100 / capacity()));
  st->print("|%2s", get_short_type_str());
  if (in_collection_set()) {
    st->print("|CS");
  } else {
    st->print("|  ");
  }
  st->print("|TS%3u", _gc_time_stamp);
  st->print("|AC%3u", allocation_context());
  st->print_cr("|TAMS " PTR_FORMAT ", " PTR_FORMAT "|",
               p2i(prev_top_at_mark_start()), p2i(next_top_at_mark_start()));
}

class G1VerificationClosure : public OopClosure {
protected:
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _bs;
  oop _containing_obj;
  bool _failures;
  int _n_failures;
  VerifyOption _vo;
public:
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) :
    _g1h(g1h), _bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
    _containing_obj(NULL), _failures(false), _n_failures(0), _vo(vo) {
  }

  void set_containing_obj(oop obj) {
    _containing_obj = obj;
  }

  bool failures() { return _failures; }
  int n_failures() { return _n_failures; }

  void print_object(outputStream* out, oop obj) {
#ifdef PRODUCT
    Klass* k = obj->klass();
    const char* class_name = k->external_name();
    out->print_cr("class name %s", class_name);
#else // PRODUCT
    obj->print_on(out);
#endif // PRODUCT
  }
};

class VerifyLiveClosure : public G1VerificationClosure {
public:
  VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(oop* p) { do_oop_work(p); }

  template <class T>
  void do_oop_work(T* p) {
    assert(_containing_obj != NULL, "Precondition");
    assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
      "Precondition");
    verify_liveness(p);
  }

  template <class T>
  void verify_liveness(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    Log(gc, verify) log;
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      bool failed = false;
      if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
        MutexLockerEx x(ParGCRareEvent_lock,
          Mutex::_no_safepoint_check_flag);

        if (!_failures) {
          log.error("----------");
        }
        ResourceMark rm;
        if (!_g1h->is_in_closed_subset(obj)) {
          HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
          log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
            p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end()));
          print_object(log.error_stream(), _containing_obj);
          log.error("points to obj " PTR_FORMAT " not in the heap", p2i(obj));
        } else {
          HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
          HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj);
          log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
            p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end()));
          print_object(log.error_stream(), _containing_obj);
          log.error("points to dead obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
            p2i(obj), p2i(to->bottom()), p2i(to->end()));
          print_object(log.error_stream(), obj);
        }
        log.error("----------");
        _failures = true;
        failed = true;
        _n_failures++;
      }
    }
  }
};

class VerifyRemSetClosure : public G1VerificationClosure {
public:
  VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(oop* p) { do_oop_work(p); }

  template <class T>
  void do_oop_work(T* p) {
    assert(_containing_obj != NULL, "Precondition");
    assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
      "Precondition");
    verify_remembered_set(p);
  }

  template <class T>
  void verify_remembered_set(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    Log(gc, verify) log;
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      bool failed = false;
      HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
      HeapRegion* to = _g1h->heap_region_containing(obj);
      if (from != NULL && to != NULL &&
        from != to &&
        !to->is_pinned()) {
        jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
        jbyte cv_field = *_bs->byte_for_const(p);
        const jbyte dirty = CardTableModRefBS::dirty_card_val();

        bool is_bad = !(from->is_young()
          || to->rem_set()->contains_reference(p)
          || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
          (_containing_obj->is_objArray() ?
          cv_field == dirty
          : cv_obj == dirty || cv_field == dirty));
        if (is_bad) {
          MutexLockerEx x(ParGCRareEvent_lock,
            Mutex::_no_safepoint_check_flag);

          if (!_failures) {
            log.error("----------");
          }
          log.error("Missing rem set entry:");
          log.error("Field " PTR_FORMAT " of obj " PTR_FORMAT ", in region " HR_FORMAT,
            p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from));
          ResourceMark rm;
          _containing_obj->print_on(log.error_stream());
          log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT, p2i(obj), HR_FORMAT_PARAMS(to));
          if (obj->is_oop()) {
            obj->print_on(log.error_stream());
          }
          log.error("Obj head CTE = %d, field CTE = %d.", cv_obj, cv_field);
          log.error("----------");
          _failures = true;
          if (!failed) _n_failures++;
        }
      }
    }
  }
};

// This really ought to be commoned up into OffsetTableContigSpace somehow.
// We would need a mechanism to make that code skip dead objects.

void HeapRegion::verify(VerifyOption vo,
                        bool* failures) const {
  G1CollectedHeap* g1 = G1CollectedHeap::heap();
  *failures = false;
  HeapWord* p = bottom();
  HeapWord* prev_p = NULL;
  VerifyLiveClosure vl_cl(g1, vo);
  VerifyRemSetClosure vr_cl(g1, vo);
  bool is_region_humongous = is_humongous();
  size_t object_num = 0;
  while (p < top()) {
    oop obj = oop(p);
    size_t obj_size = block_size(p);
    object_num += 1;

    if (!g1->is_obj_dead_cond(obj, this, vo)) {
      if (obj->is_oop()) {
        Klass* klass = obj->klass();
        bool is_metaspace_object = Metaspace::contains(klass) ||
                                   (vo == VerifyOption_G1UsePrevMarking &&
                                   ClassLoaderDataGraph::unload_list_contains(klass));
        if (!is_metaspace_object) {
          log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
                                "not metadata", p2i(klass), p2i(obj));
          *failures = true;
          return;
        } else if (!klass->is_klass()) {
          log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
                                "not a klass", p2i(klass), p2i(obj));
          *failures = true;
          return;
        } else {
          vl_cl.set_containing_obj(obj);
          if (!g1->collector_state()->full_collection() || G1VerifyRSetsDuringFullGC) {
            // verify liveness and rem_set
            vr_cl.set_containing_obj(obj);
            G1Mux2Closure mux(&vl_cl, &vr_cl);
            obj->oop_iterate_no_header(&mux);

            if (vr_cl.failures()) {
              *failures = true;
            }
            if (G1MaxVerifyFailures >= 0 &&
              vr_cl.n_failures() >= G1MaxVerifyFailures) {
              return;
            }
          } else {
            // verify only liveness
            obj->oop_iterate_no_header(&vl_cl);
          }
          if (vl_cl.failures()) {
            *failures = true;
          }
          if (G1MaxVerifyFailures >= 0 &&
              vl_cl.n_failures() >= G1MaxVerifyFailures) {
            return;
          }
        }
      } else {
        log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
        *failures = true;
        return;
      }
    }
    prev_p = p;
    p += obj_size;
  }

  if (!is_young() && !is_empty()) {
    _bot_part.verify();
  }

  if (is_region_humongous) {
    oop obj = oop(this->humongous_start_region()->bottom());
    if ((HeapWord*)obj > bottom() || (HeapWord*)obj + obj->size() < bottom()) {
      log_error(gc, verify)("this humongous region is not part of its' humongous object " PTR_FORMAT, p2i(obj));
      *failures = true;
      return;
    }
  }

  if (!is_region_humongous && p != top()) {
    log_error(gc, verify)("end of last object " PTR_FORMAT " "
                          "does not match top " PTR_FORMAT, p2i(p), p2i(top()));
    *failures = true;
    return;
  }

  HeapWord* the_end = end();
  // Do some extra BOT consistency checking for addresses in the
  // range [top, end). BOT look-ups in this range should yield
  // top. No point in doing that if top == end (there's nothing there).
  if (p < the_end) {
    // Look up top
    HeapWord* addr_1 = p;
    HeapWord* b_start_1 = _bot_part.block_start_const(addr_1);
    if (b_start_1 != p) {
      log_error(gc, verify)("BOT look up for top: " PTR_FORMAT " "
                            " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
                            p2i(addr_1), p2i(b_start_1), p2i(p));
      *failures = true;
      return;
    }

    // Look up top + 1
    HeapWord* addr_2 = p + 1;
    if (addr_2 < the_end) {
      HeapWord* b_start_2 = _bot_part.block_start_const(addr_2);
      if (b_start_2 != p) {
        log_error(gc, verify)("BOT look up for top + 1: " PTR_FORMAT " "
                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
                              p2i(addr_2), p2i(b_start_2), p2i(p));
        *failures = true;
        return;
      }
    }

    // Look up an address between top and end
    size_t diff = pointer_delta(the_end, p) / 2;
    HeapWord* addr_3 = p + diff;
    if (addr_3 < the_end) {
      HeapWord* b_start_3 = _bot_part.block_start_const(addr_3);
      if (b_start_3 != p) {
        log_error(gc, verify)("BOT look up for top + diff: " PTR_FORMAT " "
                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
                              p2i(addr_3), p2i(b_start_3), p2i(p));
        *failures = true;
        return;
      }
    }

    // Look up end - 1
    HeapWord* addr_4 = the_end - 1;
    HeapWord* b_start_4 = _bot_part.block_start_const(addr_4);
    if (b_start_4 != p) {
      log_error(gc, verify)("BOT look up for end - 1: " PTR_FORMAT " "
                            " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
                            p2i(addr_4), p2i(b_start_4), p2i(p));
      *failures = true;
      return;
    }
  }

  verify_strong_code_roots(vo, failures);
}

void HeapRegion::verify() const {
  bool dummy = false;
  verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
}

void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const {
  G1CollectedHeap* g1 = G1CollectedHeap::heap();
  *failures = false;
  HeapWord* p = bottom();
  HeapWord* prev_p = NULL;
  VerifyRemSetClosure vr_cl(g1, vo);
  while (p < top()) {
    oop obj = oop(p);
    size_t obj_size = block_size(p);

    if (!g1->is_obj_dead_cond(obj, this, vo)) {
      if (obj->is_oop()) {
        vr_cl.set_containing_obj(obj);
        obj->oop_iterate_no_header(&vr_cl);

        if (vr_cl.failures()) {
          *failures = true;
        }
        if (G1MaxVerifyFailures >= 0 &&
          vr_cl.n_failures() >= G1MaxVerifyFailures) {
          return;
        }
      } else {
        log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
        *failures = true;
        return;
      }
    }

    prev_p = p;
    p += obj_size;
  }
}

void HeapRegion::verify_rem_set() const {
  bool failures = false;
  verify_rem_set(VerifyOption_G1UsePrevMarking, &failures);
  guarantee(!failures, "HeapRegion RemSet verification failed");
}

void HeapRegion::prepare_for_compaction(CompactPoint* cp) {
  scan_and_forward(this, cp);
}

// G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
// away eventually.

void G1ContiguousSpace::clear(bool mangle_space) {
  set_top(bottom());
  _scan_top = bottom();
  CompactibleSpace::clear(mangle_space);
  reset_bot();
}

#ifndef PRODUCT
void G1ContiguousSpace::mangle_unused_area() {
  mangle_unused_area_complete();
}

void G1ContiguousSpace::mangle_unused_area_complete() {
  SpaceMangler::mangle_region(MemRegion(top(), end()));
}
#endif

void G1ContiguousSpace::print() const {
  print_short();
  tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
                INTPTR_FORMAT ", " INTPTR_FORMAT ")",
                p2i(bottom()), p2i(top()), p2i(_bot_part.threshold()), p2i(end()));
}

HeapWord* G1ContiguousSpace::initialize_threshold() {
  return _bot_part.initialize_threshold();
}

HeapWord* G1ContiguousSpace::cross_threshold(HeapWord* start,
                                                    HeapWord* end) {
  _bot_part.alloc_block(start, end);
  return _bot_part.threshold();
}

HeapWord* G1ContiguousSpace::scan_top() const {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  HeapWord* local_top = top();
  OrderAccess::loadload();
  const unsigned local_time_stamp = _gc_time_stamp;
  assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
  if (local_time_stamp < g1h->get_gc_time_stamp()) {
    return local_top;
  } else {
    return _scan_top;
  }
}

void G1ContiguousSpace::record_timestamp() {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();

  if (_gc_time_stamp < curr_gc_time_stamp) {
    // Setting the time stamp here tells concurrent readers to look at
    // scan_top to know the maximum allowed address to look at.

    // scan_top should be bottom for all regions except for the
    // retained old alloc region which should have scan_top == top
    HeapWord* st = _scan_top;
    guarantee(st == _bottom || st == _top, "invariant");

    _gc_time_stamp = curr_gc_time_stamp;
  }
}

void G1ContiguousSpace::record_retained_region() {
  // scan_top is the maximum address where it's safe for the next gc to
  // scan this region.
  _scan_top = top();
}

void G1ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
  object_iterate(blk);
}

void G1ContiguousSpace::object_iterate(ObjectClosure* blk) {
  HeapWord* p = bottom();
  while (p < top()) {
    if (block_is_obj(p)) {
      blk->do_object(oop(p));
    }
    p += block_size(p);
  }
}

G1ContiguousSpace::G1ContiguousSpace(G1BlockOffsetTable* bot) :
  _bot_part(bot, this),
  _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  _gc_time_stamp(0)
{
}

void G1ContiguousSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
  CompactibleSpace::initialize(mr, clear_space, mangle_space);
  _top = bottom();
  _scan_top = bottom();
  set_saved_mark_word(NULL);
  reset_bot();
}