8003854: PPC64 (part 115): Introduce PostallocExpand that expands nodes after register allocation
Summary: added ability in C2 to expand mach nodes to several mach nodes after register allocation
Reviewed-by: kvn
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_interface/collectedHeap.hpp"
#include "opto/machnode.hpp"
#include "opto/regalloc.hpp"
//=============================================================================
// Return the value requested
// result register lookup, corresponding to int_format
int MachOper::reg(PhaseRegAlloc *ra_, const Node *node) const {
return (int)ra_->get_encode(node);
}
// input register lookup, corresponding to ext_format
int MachOper::reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {
return (int)(ra_->get_encode(node->in(idx)));
}
intptr_t MachOper::constant() const { return 0x00; }
relocInfo::relocType MachOper::constant_reloc() const { return relocInfo::none; }
jdouble MachOper::constantD() const { ShouldNotReachHere(); return 0.0; }
jfloat MachOper::constantF() const { ShouldNotReachHere(); return 0.0; }
jlong MachOper::constantL() const { ShouldNotReachHere(); return CONST64(0) ; }
TypeOopPtr *MachOper::oop() const { return NULL; }
int MachOper::ccode() const { return 0x00; }
// A zero, default, indicates this value is not needed.
// May need to lookup the base register, as done in int_ and ext_format
int MachOper::base (PhaseRegAlloc *ra_, const Node *node, int idx) const { return 0x00; }
int MachOper::index(PhaseRegAlloc *ra_, const Node *node, int idx) const { return 0x00; }
int MachOper::scale() const { return 0x00; }
int MachOper::disp (PhaseRegAlloc *ra_, const Node *node, int idx) const { return 0x00; }
int MachOper::constant_disp() const { return 0; }
int MachOper::base_position() const { return -1; } // no base input
int MachOper::index_position() const { return -1; } // no index input
// Check for PC-Relative displacement
relocInfo::relocType MachOper::disp_reloc() const { return relocInfo::none; }
// Return the label
Label* MachOper::label() const { ShouldNotReachHere(); return 0; }
intptr_t MachOper::method() const { ShouldNotReachHere(); return 0; }
//------------------------------negate-----------------------------------------
// Negate conditional branches. Error for non-branch operands
void MachOper::negate() {
ShouldNotCallThis();
}
//-----------------------------type--------------------------------------------
const Type *MachOper::type() const {
return Type::BOTTOM;
}
//------------------------------in_RegMask-------------------------------------
const RegMask *MachOper::in_RegMask(int index) const {
ShouldNotReachHere();
return NULL;
}
//------------------------------dump_spec--------------------------------------
// Print any per-operand special info
#ifndef PRODUCT
void MachOper::dump_spec(outputStream *st) const { }
#endif
//------------------------------hash-------------------------------------------
// Print any per-operand special info
uint MachOper::hash() const {
ShouldNotCallThis();
return 5;
}
//------------------------------cmp--------------------------------------------
// Print any per-operand special info
uint MachOper::cmp( const MachOper &oper ) const {
ShouldNotCallThis();
return opcode() == oper.opcode();
}
//------------------------------hash-------------------------------------------
// Print any per-operand special info
uint labelOper::hash() const {
return _block_num;
}
//------------------------------cmp--------------------------------------------
// Print any per-operand special info
uint labelOper::cmp( const MachOper &oper ) const {
return (opcode() == oper.opcode()) && (_label == oper.label());
}
//------------------------------hash-------------------------------------------
// Print any per-operand special info
uint methodOper::hash() const {
return (uint)_method;
}
//------------------------------cmp--------------------------------------------
// Print any per-operand special info
uint methodOper::cmp( const MachOper &oper ) const {
return (opcode() == oper.opcode()) && (_method == oper.method());
}
//=============================================================================
//------------------------------MachNode---------------------------------------
//------------------------------emit-------------------------------------------
void MachNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
#ifdef ASSERT
tty->print("missing MachNode emit function: ");
dump();
#endif
ShouldNotCallThis();
}
//---------------------------postalloc_expand----------------------------------
// Expand node after register allocation.
void MachNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {}
//------------------------------size-------------------------------------------
// Size of instruction in bytes
uint MachNode::size(PhaseRegAlloc *ra_) const {
// If a virtual was not defined for this specific instruction,
// Call the helper which finds the size by emitting the bits.
return MachNode::emit_size(ra_);
}
//------------------------------size-------------------------------------------
// Helper function that computes size by emitting code
uint MachNode::emit_size(PhaseRegAlloc *ra_) const {
// Emit into a trash buffer and count bytes emitted.
assert(ra_ == ra_->C->regalloc(), "sanity");
return ra_->C->scratch_emit_size(this);
}
//------------------------------hash-------------------------------------------
uint MachNode::hash() const {
uint no = num_opnds();
uint sum = rule();
for( uint i=0; i<no; i++ )
sum += _opnds[i]->hash();
return sum+Node::hash();
}
//-----------------------------cmp---------------------------------------------
uint MachNode::cmp( const Node &node ) const {
MachNode& n = *((Node&)node).as_Mach();
uint no = num_opnds();
if( no != n.num_opnds() ) return 0;
if( rule() != n.rule() ) return 0;
for( uint i=0; i<no; i++ ) // All operands must match
if( !_opnds[i]->cmp( *n._opnds[i] ) )
return 0; // mis-matched operands
return 1; // match
}
// Return an equivalent instruction using memory for cisc_operand position
MachNode *MachNode::cisc_version(int offset, Compile* C) {
ShouldNotCallThis();
return NULL;
}
void MachNode::use_cisc_RegMask() {
ShouldNotReachHere();
}
//-----------------------------in_RegMask--------------------------------------
const RegMask &MachNode::in_RegMask( uint idx ) const {
uint numopnds = num_opnds(); // Virtual call for number of operands
uint skipped = oper_input_base(); // Sum of leaves skipped so far
if( idx < skipped ) {
assert( ideal_Opcode() == Op_AddP, "expected base ptr here" );
assert( idx == 1, "expected base ptr here" );
// debug info can be anywhere
return *Compile::current()->matcher()->idealreg2spillmask[Op_RegP];
}
uint opcnt = 1; // First operand
uint num_edges = _opnds[1]->num_edges(); // leaves for first operand
while( idx >= skipped+num_edges ) {
skipped += num_edges;
opcnt++; // Bump operand count
assert( opcnt < numopnds, "Accessing non-existent operand" );
num_edges = _opnds[opcnt]->num_edges(); // leaves for next operand
}
const RegMask *rm = cisc_RegMask();
if( rm == NULL || (int)opcnt != cisc_operand() ) {
rm = _opnds[opcnt]->in_RegMask(idx-skipped);
}
return *rm;
}
//-----------------------------memory_inputs--------------------------------
const MachOper* MachNode::memory_inputs(Node* &base, Node* &index) const {
const MachOper* oper = memory_operand();
if (oper == (MachOper*)-1) {
base = NodeSentinel;
index = NodeSentinel;
} else {
base = NULL;
index = NULL;
if (oper != NULL) {
// It has a unique memory operand. Find its index.
int oper_idx = num_opnds();
while (--oper_idx >= 0) {
if (_opnds[oper_idx] == oper) break;
}
int oper_pos = operand_index(oper_idx);
int base_pos = oper->base_position();
if (base_pos >= 0) {
base = _in[oper_pos+base_pos];
}
int index_pos = oper->index_position();
if (index_pos >= 0) {
index = _in[oper_pos+index_pos];
}
}
}
return oper;
}
//-----------------------------get_base_and_disp----------------------------
const Node* MachNode::get_base_and_disp(intptr_t &offset, const TypePtr* &adr_type) const {
// Find the memory inputs using our helper function
Node* base;
Node* index;
const MachOper* oper = memory_inputs(base, index);
if (oper == NULL) {
// Base has been set to NULL
offset = 0;
} else if (oper == (MachOper*)-1) {
// Base has been set to NodeSentinel
// There is not a unique memory use here. We will fall to AliasIdxBot.
offset = Type::OffsetBot;
} else {
// Base may be NULL, even if offset turns out to be != 0
intptr_t disp = oper->constant_disp();
int scale = oper->scale();
// Now we have collected every part of the ADLC MEMORY_INTER.
// See if it adds up to a base + offset.
if (index != NULL) {
const Type* t_index = index->bottom_type();
if (t_index->isa_narrowoop() || t_index->isa_narrowklass()) { // EncodeN, LoadN, LoadConN, LoadNKlass,
// EncodeNKlass, LoadConNklass.
// Memory references through narrow oops have a
// funny base so grab the type from the index:
// [R12 + narrow_oop_reg<<3 + offset]
assert(base == NULL, "Memory references through narrow oops have no base");
offset = disp;
adr_type = t_index->make_ptr()->add_offset(offset);
return NULL;
} else if (!index->is_Con()) {
disp = Type::OffsetBot;
} else if (disp != Type::OffsetBot) {
const TypeX* ti = t_index->isa_intptr_t();
if (ti == NULL) {
disp = Type::OffsetBot; // a random constant??
} else {
disp += ti->get_con() << scale;
}
}
}
offset = disp;
// In i486.ad, indOffset32X uses base==RegI and disp==RegP,
// this will prevent alias analysis without the following support:
// Lookup the TypePtr used by indOffset32X, a compile-time constant oop,
// Add the offset determined by the "base", or use Type::OffsetBot.
if( adr_type == TYPE_PTR_SENTINAL ) {
const TypePtr *t_disp = oper->disp_as_type(); // only !NULL for indOffset32X
if (t_disp != NULL) {
offset = Type::OffsetBot;
const Type* t_base = base->bottom_type();
if (t_base->isa_intptr_t()) {
const TypeX *t_offset = t_base->is_intptr_t();
if( t_offset->is_con() ) {
offset = t_offset->get_con();
}
}
adr_type = t_disp->add_offset(offset);
} else if( base == NULL && offset != 0 && offset != Type::OffsetBot ) {
// Use ideal type if it is oop ptr.
const TypePtr *tp = oper->type()->isa_ptr();
if( tp != NULL) {
adr_type = tp;
}
}
}
}
return base;
}
//---------------------------------adr_type---------------------------------
const class TypePtr *MachNode::adr_type() const {
intptr_t offset = 0;
const TypePtr *adr_type = TYPE_PTR_SENTINAL; // attempt computing adr_type
const Node *base = get_base_and_disp(offset, adr_type);
if( adr_type != TYPE_PTR_SENTINAL ) {
return adr_type; // get_base_and_disp has the answer
}
// Direct addressing modes have no base node, simply an indirect
// offset, which is always to raw memory.
// %%%%% Someday we'd like to allow constant oop offsets which
// would let Intel load from static globals in 1 instruction.
// Currently Intel requires 2 instructions and a register temp.
if (base == NULL) {
// NULL base, zero offset means no memory at all (a null pointer!)
if (offset == 0) {
return NULL;
}
// NULL base, any offset means any pointer whatever
if (offset == Type::OffsetBot) {
return TypePtr::BOTTOM;
}
// %%% make offset be intptr_t
assert(!Universe::heap()->is_in_reserved(cast_to_oop(offset)), "must be a raw ptr");
return TypeRawPtr::BOTTOM;
}
// base of -1 with no particular offset means all of memory
if (base == NodeSentinel) return TypePtr::BOTTOM;
const Type* t = base->bottom_type();
if (t->isa_narrowoop() && Universe::narrow_oop_shift() == 0) {
// 32-bit unscaled narrow oop can be the base of any address expression
t = t->make_ptr();
}
if (t->isa_narrowklass() && Universe::narrow_klass_shift() == 0) {
// 32-bit unscaled narrow oop can be the base of any address expression
t = t->make_ptr();
}
if (t->isa_intptr_t() && offset != 0 && offset != Type::OffsetBot) {
// We cannot assert that the offset does not look oop-ish here.
// Depending on the heap layout the cardmark base could land
// inside some oopish region. It definitely does for Win2K.
// The sum of cardmark-base plus shift-by-9-oop lands outside
// the oop-ish area but we can't assert for that statically.
return TypeRawPtr::BOTTOM;
}
const TypePtr *tp = t->isa_ptr();
// be conservative if we do not recognize the type
if (tp == NULL) {
assert(false, "this path may produce not optimal code");
return TypePtr::BOTTOM;
}
assert(tp->base() != Type::AnyPtr, "not a bare pointer");
return tp->add_offset(offset);
}
//-----------------------------operand_index---------------------------------
int MachNode::operand_index( uint operand ) const {
if( operand < 1 ) return -1;
assert(operand < num_opnds(), "oob");
if( _opnds[operand]->num_edges() == 0 ) return -1;
uint skipped = oper_input_base(); // Sum of leaves skipped so far
for (uint opcnt = 1; opcnt < operand; opcnt++) {
uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand
skipped += num_edges;
}
return skipped;
}
//------------------------------peephole---------------------------------------
// Apply peephole rule(s) to this instruction
MachNode *MachNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {
return NULL;
}
//------------------------------add_case_label---------------------------------
// Adds the label for the case
void MachNode::add_case_label( int index_num, Label* blockLabel) {
ShouldNotCallThis();
}
//------------------------------method_set-------------------------------------
// Set the absolute address of a method
void MachNode::method_set( intptr_t addr ) {
ShouldNotCallThis();
}
//------------------------------rematerialize----------------------------------
bool MachNode::rematerialize() const {
// Temps are always rematerializable
if (is_MachTemp()) return true;
uint r = rule(); // Match rule
if( r < Matcher::_begin_rematerialize ||
r >= Matcher::_end_rematerialize )
return false;
// For 2-address instructions, the input live range is also the output
// live range. Remateralizing does not make progress on the that live range.
if( two_adr() ) return false;
// Check for rematerializing float constants, or not
if( !Matcher::rematerialize_float_constants ) {
int op = ideal_Opcode();
if( op == Op_ConF || op == Op_ConD )
return false;
}
// Defining flags - can't spill these! Must remateralize.
if( ideal_reg() == Op_RegFlags )
return true;
// Stretching lots of inputs - don't do it.
if( req() > 2 )
return false;
// Don't remateralize somebody with bound inputs - it stretches a
// fixed register lifetime.
uint idx = oper_input_base();
if (req() > idx) {
const RegMask &rm = in_RegMask(idx);
if (rm.is_bound(ideal_reg()))
return false;
}
return true;
}
#ifndef PRODUCT
//------------------------------dump_spec--------------------------------------
// Print any per-operand special info
void MachNode::dump_spec(outputStream *st) const {
uint cnt = num_opnds();
for( uint i=0; i<cnt; i++ )
_opnds[i]->dump_spec(st);
const TypePtr *t = adr_type();
if( t ) {
Compile* C = Compile::current();
if( C->alias_type(t)->is_volatile() )
st->print(" Volatile!");
}
}
//------------------------------dump_format------------------------------------
// access to virtual
void MachNode::dump_format(PhaseRegAlloc *ra, outputStream *st) const {
format(ra, st); // access to virtual
}
#endif
//=============================================================================
#ifndef PRODUCT
void MachTypeNode::dump_spec(outputStream *st) const {
_bottom_type->dump_on(st);
}
#endif
//=============================================================================
int MachConstantNode::constant_offset() {
// Bind the offset lazily.
if (_constant.offset() == -1) {
Compile::ConstantTable& constant_table = Compile::current()->constant_table();
int offset = constant_table.find_offset(_constant);
// If called from Compile::scratch_emit_size return the
// pre-calculated offset.
// NOTE: If the AD file does some table base offset optimizations
// later the AD file needs to take care of this fact.
if (Compile::current()->in_scratch_emit_size()) {
return constant_table.calculate_table_base_offset() + offset;
}
_constant.set_offset(constant_table.table_base_offset() + offset);
}
return _constant.offset();
}
//=============================================================================
#ifndef PRODUCT
void MachNullCheckNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
int reg = ra_->get_reg_first(in(1)->in(_vidx));
st->print("%s %s", Name(), Matcher::regName[reg]);
}
#endif
void MachNullCheckNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
// only emits entries in the null-pointer exception handler table
}
void MachNullCheckNode::label_set(Label* label, uint block_num) {
// Nothing to emit
}
void MachNullCheckNode::save_label( Label** label, uint* block_num ) {
// Nothing to emit
}
const RegMask &MachNullCheckNode::in_RegMask( uint idx ) const {
if( idx == 0 ) return RegMask::Empty;
else return in(1)->as_Mach()->out_RegMask();
}
//=============================================================================
const Type *MachProjNode::bottom_type() const {
if( _ideal_reg == fat_proj ) return Type::BOTTOM;
// Try the normal mechanism first
const Type *t = in(0)->bottom_type();
if( t->base() == Type::Tuple ) {
const TypeTuple *tt = t->is_tuple();
if (_con < tt->cnt())
return tt->field_at(_con);
}
// Else use generic type from ideal register set
assert((uint)_ideal_reg < (uint)_last_machine_leaf && Type::mreg2type[_ideal_reg], "in bounds");
return Type::mreg2type[_ideal_reg];
}
const TypePtr *MachProjNode::adr_type() const {
if (bottom_type() == Type::MEMORY) {
// in(0) might be a narrow MemBar; otherwise we will report TypePtr::BOTTOM
const TypePtr* adr_type = in(0)->adr_type();
#ifdef ASSERT
if (!is_error_reported() && !Node::in_dump())
assert(adr_type != NULL, "source must have adr_type");
#endif
return adr_type;
}
assert(bottom_type()->base() != Type::Memory, "no other memories?");
return NULL;
}
#ifndef PRODUCT
void MachProjNode::dump_spec(outputStream *st) const {
ProjNode::dump_spec(st);
switch (_ideal_reg) {
case unmatched_proj: st->print("/unmatched"); break;
case fat_proj: st->print("/fat"); if (WizardMode) _rout.dump(); break;
}
}
#endif
//=============================================================================
#ifndef PRODUCT
void MachIfNode::dump_spec(outputStream *st) const {
st->print("P=%f, C=%f",_prob, _fcnt);
}
#endif
//=============================================================================
uint MachReturnNode::size_of() const { return sizeof(*this); }
//------------------------------Registers--------------------------------------
const RegMask &MachReturnNode::in_RegMask( uint idx ) const {
return _in_rms[idx];
}
const TypePtr *MachReturnNode::adr_type() const {
// most returns and calls are assumed to consume & modify all of memory
// the matcher will copy non-wide adr_types from ideal originals
return _adr_type;
}
//=============================================================================
const Type *MachSafePointNode::bottom_type() const { return TypeTuple::MEMBAR; }
//------------------------------Registers--------------------------------------
const RegMask &MachSafePointNode::in_RegMask( uint idx ) const {
// Values in the domain use the users calling convention, embodied in the
// _in_rms array of RegMasks.
if( idx < TypeFunc::Parms ) return _in_rms[idx];
if (SafePointNode::needs_polling_address_input() &&
idx == TypeFunc::Parms &&
ideal_Opcode() == Op_SafePoint) {
return MachNode::in_RegMask(idx);
}
// Values outside the domain represent debug info
return *Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()];
}
//=============================================================================
uint MachCallNode::cmp( const Node &n ) const
{ return _tf == ((MachCallNode&)n)._tf; }
const Type *MachCallNode::bottom_type() const { return tf()->range(); }
const Type *MachCallNode::Value(PhaseTransform *phase) const { return tf()->range(); }
#ifndef PRODUCT
void MachCallNode::dump_spec(outputStream *st) const {
st->print("# ");
tf()->dump_on(st);
if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt);
if (jvms() != NULL) jvms()->dump_spec(st);
}
#endif
bool MachCallNode::return_value_is_used() const {
if (tf()->range()->cnt() == TypeFunc::Parms) {
// void return
return false;
}
// find the projection corresponding to the return value
for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
Node *use = fast_out(i);
if (!use->is_Proj()) continue;
if (use->as_Proj()->_con == TypeFunc::Parms) {
return true;
}
}
return false;
}
//------------------------------Registers--------------------------------------
const RegMask &MachCallNode::in_RegMask( uint idx ) const {
// Values in the domain use the users calling convention, embodied in the
// _in_rms array of RegMasks.
if (idx < tf()->domain()->cnt()) return _in_rms[idx];
// Values outside the domain represent debug info
return *Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()];
}
//=============================================================================
uint MachCallJavaNode::size_of() const { return sizeof(*this); }
uint MachCallJavaNode::cmp( const Node &n ) const {
MachCallJavaNode &call = (MachCallJavaNode&)n;
return MachCallNode::cmp(call) && _method->equals(call._method);
}
#ifndef PRODUCT
void MachCallJavaNode::dump_spec(outputStream *st) const {
if (_method_handle_invoke)
st->print("MethodHandle ");
if (_method) {
_method->print_short_name(st);
st->print(" ");
}
MachCallNode::dump_spec(st);
}
#endif
//------------------------------Registers--------------------------------------
const RegMask &MachCallJavaNode::in_RegMask(uint idx) const {
// Values in the domain use the users calling convention, embodied in the
// _in_rms array of RegMasks.
if (idx < tf()->domain()->cnt()) return _in_rms[idx];
// Values outside the domain represent debug info
Matcher* m = Compile::current()->matcher();
// If this call is a MethodHandle invoke we have to use a different
// debugmask which does not include the register we use to save the
// SP over MH invokes.
RegMask** debugmask = _method_handle_invoke ? m->idealreg2mhdebugmask : m->idealreg2debugmask;
return *debugmask[in(idx)->ideal_reg()];
}
//=============================================================================
uint MachCallStaticJavaNode::size_of() const { return sizeof(*this); }
uint MachCallStaticJavaNode::cmp( const Node &n ) const {
MachCallStaticJavaNode &call = (MachCallStaticJavaNode&)n;
return MachCallJavaNode::cmp(call) && _name == call._name;
}
//----------------------------uncommon_trap_request----------------------------
// If this is an uncommon trap, return the request code, else zero.
int MachCallStaticJavaNode::uncommon_trap_request() const {
if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
return CallStaticJavaNode::extract_uncommon_trap_request(this);
}
return 0;
}
#ifndef PRODUCT
// Helper for summarizing uncommon_trap arguments.
void MachCallStaticJavaNode::dump_trap_args(outputStream *st) const {
int trap_req = uncommon_trap_request();
if (trap_req != 0) {
char buf[100];
st->print("(%s)",
Deoptimization::format_trap_request(buf, sizeof(buf),
trap_req));
}
}
void MachCallStaticJavaNode::dump_spec(outputStream *st) const {
st->print("Static ");
if (_name != NULL) {
st->print("wrapper for: %s", _name );
dump_trap_args(st);
st->print(" ");
}
MachCallJavaNode::dump_spec(st);
}
#endif
//=============================================================================
#ifndef PRODUCT
void MachCallDynamicJavaNode::dump_spec(outputStream *st) const {
st->print("Dynamic ");
MachCallJavaNode::dump_spec(st);
}
#endif
//=============================================================================
uint MachCallRuntimeNode::size_of() const { return sizeof(*this); }
uint MachCallRuntimeNode::cmp( const Node &n ) const {
MachCallRuntimeNode &call = (MachCallRuntimeNode&)n;
return MachCallNode::cmp(call) && !strcmp(_name,call._name);
}
#ifndef PRODUCT
void MachCallRuntimeNode::dump_spec(outputStream *st) const {
st->print("%s ",_name);
MachCallNode::dump_spec(st);
}
#endif
//=============================================================================
// A shared JVMState for all HaltNodes. Indicates the start of debug info
// is at TypeFunc::Parms. Only required for SOE register spill handling -
// to indicate where the stack-slot-only debug info inputs begin.
// There is no other JVM state needed here.
JVMState jvms_for_throw(0);
JVMState *MachHaltNode::jvms() const {
return &jvms_for_throw;
}
//=============================================================================
#ifndef PRODUCT
void labelOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {
st->print("B%d", _block_num);
}
#endif // PRODUCT
//=============================================================================
#ifndef PRODUCT
void methodOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {
st->print(INTPTR_FORMAT, _method);
}
#endif // PRODUCT