/*
* Copyright 1997-2002 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
package sun.security.x509;
import java.io.IOException;
import java.lang.Integer;
import java.net.InetAddress;
import java.util.Arrays;
import sun.misc.HexDumpEncoder;
import sun.security.util.BitArray;
import sun.security.util.DerOutputStream;
import sun.security.util.DerValue;
/**
* This class implements the IPAddressName as required by the GeneralNames
* ASN.1 object. Both IPv4 and IPv6 addresses are supported using the
* formats specified in IETF PKIX RFC2459.
* <p>
* [RFC2459 4.2.1.7 Subject Alternative Name]
* When the subjectAltName extension contains a iPAddress, the address
* MUST be stored in the octet string in "network byte order," as
* specified in RFC 791. The least significant bit (LSB) of
* each octet is the LSB of the corresponding byte in the network
* address. For IP Version 4, as specified in RFC 791, the octet string
* MUST contain exactly four octets. For IP Version 6, as specified in
* RFC 1883, the octet string MUST contain exactly sixteen octets.
* <p>
* [RFC2459 4.2.1.11 Name Constraints]
* The syntax of iPAddress MUST be as described in section 4.2.1.7 with
* the following additions specifically for Name Constraints. For IPv4
* addresses, the ipAddress field of generalName MUST contain eight (8)
* octets, encoded in the style of RFC 1519 (CIDR) to represent an
* address range.[RFC 1519] For IPv6 addresses, the ipAddress field
* MUST contain 32 octets similarly encoded. For example, a name
* constraint for "class C" subnet 10.9.8.0 shall be represented as the
* octets 0A 09 08 00 FF FF FF 00, representing the CIDR notation
* 10.9.8.0/255.255.255.0.
* <p>
* @see GeneralName
* @see GeneralNameInterface
* @see GeneralNames
*
*
* @author Amit Kapoor
* @author Hemma Prafullchandra
*/
public class IPAddressName implements GeneralNameInterface {
private byte[] address;
private boolean isIPv4;
private String name;
/**
* Create the IPAddressName object from the passed encoded Der value.
*
* @params derValue the encoded DER IPAddressName.
* @exception IOException on error.
*/
public IPAddressName(DerValue derValue) throws IOException {
this(derValue.getOctetString());
}
/**
* Create the IPAddressName object with the specified octets.
*
* @params address the IP address
* @throws IOException if address is not a valid IPv4 or IPv6 address
*/
public IPAddressName(byte[] address) throws IOException {
/*
* A valid address must consist of 4 bytes of address and
* optional 4 bytes of 4 bytes of mask, or 16 bytes of address
* and optional 16 bytes of mask.
*/
if (address.length == 4 || address.length == 8) {
isIPv4 = true;
} else if (address.length == 16 || address.length == 32) {
isIPv4 = false;
} else {
throw new IOException("Invalid IPAddressName");
}
this.address = address;
}
/**
* Create an IPAddressName from a String.
* [IETF RFC1338 Supernetting & IETF RFC1519 Classless Inter-Domain
* Routing (CIDR)] For IPv4 addresses, the forms are
* "b1.b2.b3.b4" or "b1.b2.b3.b4/m1.m2.m3.m4", where b1 - b4 are decimal
* byte values 0-255 and m1 - m4 are decimal mask values
* 0 - 255.
* <p>
* [IETF RFC2373 IP Version 6 Addressing Architecture]
* For IPv6 addresses, the forms are "a1:a2:...:a8" or "a1:a2:...:a8/n",
* where a1-a8 are hexadecimal values representing the eight 16-bit pieces
* of the address. If /n is used, n is a decimal number indicating how many
* of the leftmost contiguous bits of the address comprise the prefix for
* this subnet. Internally, a mask value is created using the prefix length.
* <p>
* @param name String form of IPAddressName
* @throws IOException if name can not be converted to a valid IPv4 or IPv6
* address
*/
public IPAddressName(String name) throws IOException {
if (name == null || name.length() == 0) {
throw new IOException("IPAddress cannot be null or empty");
}
if (name.charAt(name.length() - 1) == '/') {
throw new IOException("Invalid IPAddress: " + name);
}
if (name.indexOf(':') >= 0) {
// name is IPv6: uses colons as value separators
// Parse name into byte-value address components and optional
// prefix
parseIPv6(name);
isIPv4 = false;
} else if (name.indexOf('.') >= 0) {
//name is IPv4: uses dots as value separators
parseIPv4(name);
isIPv4 = true;
} else {
throw new IOException("Invalid IPAddress: " + name);
}
}
/**
* Parse an IPv4 address.
*
* @param name IPv4 address with optional mask values
* @throws IOException on error
*/
private void parseIPv4(String name) throws IOException {
// Parse name into byte-value address components
int slashNdx = name.indexOf('/');
if (slashNdx == -1) {
address = InetAddress.getByName(name).getAddress();
} else {
address = new byte[8];
// parse mask
byte[] mask = InetAddress.getByName
(name.substring(slashNdx+1)).getAddress();
// parse base address
byte[] host = InetAddress.getByName
(name.substring(0, slashNdx)).getAddress();
System.arraycopy(host, 0, address, 0, 4);
System.arraycopy(mask, 0, address, 4, 4);
}
}
/**
* Parse an IPv6 address.
*
* @param name String IPv6 address with optional /<prefix length>
* If /<prefix length> is present, address[] array will
* be 32 bytes long, otherwise 16.
* @throws IOException on error
*/
private final static int MASKSIZE = 16;
private void parseIPv6(String name) throws IOException {
int slashNdx = name.indexOf('/');
if (slashNdx == -1) {
address = InetAddress.getByName(name).getAddress();
} else {
address = new byte[32];
byte[] base = InetAddress.getByName
(name.substring(0, slashNdx)).getAddress();
System.arraycopy(base, 0, address, 0, 16);
// append a mask corresponding to the num of prefix bits specified
int prefixLen = Integer.parseInt(name.substring(slashNdx+1));
if (prefixLen > 128)
throw new IOException("IPv6Address prefix is longer than 128");
// create new bit array initialized to zeros
BitArray bitArray = new BitArray(MASKSIZE * 8);
// set all most significant bits up to prefix length
for (int i = 0; i < prefixLen; i++)
bitArray.set(i, true);
byte[] maskArray = bitArray.toByteArray();
// copy mask bytes into mask portion of address
for (int i = 0; i < MASKSIZE; i++)
address[MASKSIZE+i] = maskArray[i];
}
}
/**
* Return the type of the GeneralName.
*/
public int getType() {
return NAME_IP;
}
/**
* Encode the IPAddress name into the DerOutputStream.
*
* @params out the DER stream to encode the IPAddressName to.
* @exception IOException on encoding errors.
*/
public void encode(DerOutputStream out) throws IOException {
out.putOctetString(address);
}
/**
* Return a printable string of IPaddress
*/
public String toString() {
try {
return "IPAddress: " + getName();
} catch (IOException ioe) {
// dump out hex rep for debugging purposes
HexDumpEncoder enc = new HexDumpEncoder();
return "IPAddress: " + enc.encodeBuffer(address);
}
}
/**
* Return a standard String representation of IPAddress.
* See IPAddressName(String) for the formats used for IPv4
* and IPv6 addresses.
*
* @throws IOException if the IPAddress cannot be converted to a String
*/
public String getName() throws IOException {
if (name != null)
return name;
if (isIPv4) {
//IPv4 address or subdomain
byte[] host = new byte[4];
System.arraycopy(address, 0, host, 0, 4);
name = InetAddress.getByAddress(host).getHostAddress();
if (address.length == 8) {
byte[] mask = new byte[4];
System.arraycopy(address, 4, mask, 0, 4);
name = name + "/" +
InetAddress.getByAddress(mask).getHostAddress();
}
} else {
//IPv6 address or subdomain
byte[] host = new byte[16];
System.arraycopy(address, 0, host, 0, 16);
name = InetAddress.getByAddress(host).getHostAddress();
if (address.length == 32) {
// IPv6 subdomain: display prefix length
// copy subdomain into new array and convert to BitArray
byte[] maskBytes = new byte[16];
for (int i=16; i < 32; i++)
maskBytes[i-16] = address[i];
BitArray ba = new BitArray(16*8, maskBytes);
// Find first zero bit
int i=0;
for (; i < 16*8; i++) {
if (!ba.get(i))
break;
}
name = name + "/" + i;
// Verify remaining bits 0
for (; i < 16*8; i++) {
if (ba.get(i)) {
throw new IOException("Invalid IPv6 subdomain - set " +
"bit " + i + " not contiguous");
}
}
}
}
return name;
}
/**
* Returns this IPAddress name as a byte array.
*/
public byte[] getBytes() {
return address.clone();
}
/**
* Compares this name with another, for equality.
*
* @return true iff the names are identical.
*/
public boolean equals(Object obj) {
if (this == obj)
return true;
if (!(obj instanceof IPAddressName))
return false;
byte[] other = ((IPAddressName)obj).getBytes();
if (other.length != address.length)
return false;
if (address.length == 8 || address.length == 32) {
// Two subnet addresses
// Mask each and compare masked values
int maskLen = address.length/2;
byte[] maskedThis = new byte[maskLen];
byte[] maskedOther = new byte[maskLen];
for (int i=0; i < maskLen; i++) {
maskedThis[i] = (byte)(address[i] & address[i+maskLen]);
maskedOther[i] = (byte)(other[i] & other[i+maskLen]);
if (maskedThis[i] != maskedOther[i]) {
return false;
}
}
// Now compare masks
for (int i=maskLen; i < address.length; i++)
if (address[i] != other[i])
return false;
return true;
} else {
// Two IPv4 host addresses or two IPv6 host addresses
// Compare bytes
return Arrays.equals(other, address);
}
}
/**
* Returns the hash code value for this object.
*
* @return a hash code value for this object.
*/
public int hashCode() {
int retval = 0;
for (int i=0; i<address.length; i++)
retval += address[i] * i;
return retval;
}
/**
* Return type of constraint inputName places on this name:<ul>
* <li>NAME_DIFF_TYPE = -1: input name is different type from name
* (i.e. does not constrain).
* <li>NAME_MATCH = 0: input name matches name.
* <li>NAME_NARROWS = 1: input name narrows name (is lower in the naming
* subtree)
* <li>NAME_WIDENS = 2: input name widens name (is higher in the naming
* subtree)
* <li>NAME_SAME_TYPE = 3: input name does not match or narrow name, but
* is same type.
* </ul>. These results are used in checking NameConstraints during
* certification path verification.
* <p>
* [RFC2459] The syntax of iPAddress MUST be as described in section
* 4.2.1.7 with the following additions specifically for Name Constraints.
* For IPv4 addresses, the ipAddress field of generalName MUST contain
* eight (8) octets, encoded in the style of RFC 1519 (CIDR) to represent an
* address range.[RFC 1519] For IPv6 addresses, the ipAddress field
* MUST contain 32 octets similarly encoded. For example, a name
* constraint for "class C" subnet 10.9.8.0 shall be represented as the
* octets 0A 09 08 00 FF FF FF 00, representing the CIDR notation
* 10.9.8.0/255.255.255.0.
* <p>
* @param inputName to be checked for being constrained
* @returns constraint type above
* @throws UnsupportedOperationException if name is not exact match, but
* narrowing and widening are not supported for this name type.
*/
public int constrains(GeneralNameInterface inputName)
throws UnsupportedOperationException {
int constraintType;
if (inputName == null)
constraintType = NAME_DIFF_TYPE;
else if (inputName.getType() != NAME_IP)
constraintType = NAME_DIFF_TYPE;
else if (((IPAddressName)inputName).equals(this))
constraintType = NAME_MATCH;
else {
byte[] otherAddress = ((IPAddressName)inputName).getBytes();
if (otherAddress.length == 4 && address.length == 4)
// Two host addresses
constraintType = NAME_SAME_TYPE;
else if ((otherAddress.length == 8 && address.length == 8) ||
(otherAddress.length == 32 && address.length == 32)) {
// Two subnet addresses
// See if one address fully encloses the other address
boolean otherSubsetOfThis = true;
boolean thisSubsetOfOther = true;
boolean thisEmpty = false;
boolean otherEmpty = false;
int maskOffset = address.length/2;
for (int i=0; i < maskOffset; i++) {
if ((byte)(address[i] & address[i+maskOffset]) != address[i])
thisEmpty=true;
if ((byte)(otherAddress[i] & otherAddress[i+maskOffset]) != otherAddress[i])
otherEmpty=true;
if (!(((byte)(address[i+maskOffset] & otherAddress[i+maskOffset]) == address[i+maskOffset]) &&
((byte)(address[i] & address[i+maskOffset]) == (byte)(otherAddress[i] & address[i+maskOffset])))) {
otherSubsetOfThis = false;
}
if (!(((byte)(otherAddress[i+maskOffset] & address[i+maskOffset]) == otherAddress[i+maskOffset]) &&
((byte)(otherAddress[i] & otherAddress[i+maskOffset]) == (byte)(address[i] & otherAddress[i+maskOffset])))) {
thisSubsetOfOther = false;
}
}
if (thisEmpty || otherEmpty) {
if (thisEmpty && otherEmpty)
constraintType = NAME_MATCH;
else if (thisEmpty)
constraintType = NAME_WIDENS;
else
constraintType = NAME_NARROWS;
} else if (otherSubsetOfThis)
constraintType = NAME_NARROWS;
else if (thisSubsetOfOther)
constraintType = NAME_WIDENS;
else
constraintType = NAME_SAME_TYPE;
} else if (otherAddress.length == 8 || otherAddress.length == 32) {
//Other is a subnet, this is a host address
int i = 0;
int maskOffset = otherAddress.length/2;
for (; i < maskOffset; i++) {
// Mask this address by other address mask and compare to other address
// If all match, then this address is in other address subnet
if ((address[i] & otherAddress[i+maskOffset]) != otherAddress[i])
break;
}
if (i == maskOffset)
constraintType = NAME_WIDENS;
else
constraintType = NAME_SAME_TYPE;
} else if (address.length == 8 || address.length == 32) {
//This is a subnet, other is a host address
int i = 0;
int maskOffset = address.length/2;
for (; i < maskOffset; i++) {
// Mask other address by this address mask and compare to this address
if ((otherAddress[i] & address[i+maskOffset]) != address[i])
break;
}
if (i == maskOffset)
constraintType = NAME_NARROWS;
else
constraintType = NAME_SAME_TYPE;
} else {
constraintType = NAME_SAME_TYPE;
}
}
return constraintType;
}
/**
* Return subtree depth of this name for purposes of determining
* NameConstraints minimum and maximum bounds and for calculating
* path lengths in name subtrees.
*
* @returns distance of name from root
* @throws UnsupportedOperationException if not supported for this name type
*/
public int subtreeDepth() throws UnsupportedOperationException {
throw new UnsupportedOperationException
("subtreeDepth() not defined for IPAddressName");
}
}