/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
import java.util.concurrent.atomic.*;
import java.util.concurrent.locks.*;
import java.util.*;
/**
* An optionally-bounded {@linkplain BlockingQueue blocking queue} based on
* linked nodes.
* This queue orders elements FIFO (first-in-first-out).
* The <em>head</em> of the queue is that element that has been on the
* queue the longest time.
* The <em>tail</em> of the queue is that element that has been on the
* queue the shortest time. New elements
* are inserted at the tail of the queue, and the queue retrieval
* operations obtain elements at the head of the queue.
* Linked queues typically have higher throughput than array-based queues but
* less predictable performance in most concurrent applications.
*
* <p> The optional capacity bound constructor argument serves as a
* way to prevent excessive queue expansion. The capacity, if unspecified,
* is equal to {@link Integer#MAX_VALUE}. Linked nodes are
* dynamically created upon each insertion unless this would bring the
* queue above capacity.
*
* <p>This class and its iterator implement all of the
* <em>optional</em> methods of the {@link Collection} and {@link
* Iterator} interfaces.
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @since 1.5
* @author Doug Lea
* @param <E> the type of elements held in this collection
*
*/
public class LinkedBlockingQueue<E> extends AbstractQueue<E>
implements BlockingQueue<E>, java.io.Serializable {
private static final long serialVersionUID = -6903933977591709194L;
/*
* A variant of the "two lock queue" algorithm. The putLock gates
* entry to put (and offer), and has an associated condition for
* waiting puts. Similarly for the takeLock. The "count" field
* that they both rely on is maintained as an atomic to avoid
* needing to get both locks in most cases. Also, to minimize need
* for puts to get takeLock and vice-versa, cascading notifies are
* used. When a put notices that it has enabled at least one take,
* it signals taker. That taker in turn signals others if more
* items have been entered since the signal. And symmetrically for
* takes signalling puts. Operations such as remove(Object) and
* iterators acquire both locks.
*/
/**
* Linked list node class
*/
static class Node<E> {
/** The item, volatile to ensure barrier separating write and read */
volatile E item;
Node<E> next;
Node(E x) { item = x; }
}
/** The capacity bound, or Integer.MAX_VALUE if none */
private final int capacity;
/** Current number of elements */
private final AtomicInteger count = new AtomicInteger(0);
/** Head of linked list */
private transient Node<E> head;
/** Tail of linked list */
private transient Node<E> last;
/** Lock held by take, poll, etc */
private final ReentrantLock takeLock = new ReentrantLock();
/** Wait queue for waiting takes */
private final Condition notEmpty = takeLock.newCondition();
/** Lock held by put, offer, etc */
private final ReentrantLock putLock = new ReentrantLock();
/** Wait queue for waiting puts */
private final Condition notFull = putLock.newCondition();
/**
* Signals a waiting take. Called only from put/offer (which do not
* otherwise ordinarily lock takeLock.)
*/
private void signalNotEmpty() {
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
notEmpty.signal();
} finally {
takeLock.unlock();
}
}
/**
* Signals a waiting put. Called only from take/poll.
*/
private void signalNotFull() {
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
notFull.signal();
} finally {
putLock.unlock();
}
}
/**
* Creates a node and links it at end of queue.
* @param x the item
*/
private void insert(E x) {
last = last.next = new Node<E>(x);
}
/**
* Removes a node from head of queue,
* @return the node
*/
private E extract() {
Node<E> first = head.next;
head = first;
E x = first.item;
first.item = null;
return x;
}
/**
* Lock to prevent both puts and takes.
*/
private void fullyLock() {
putLock.lock();
takeLock.lock();
}
/**
* Unlock to allow both puts and takes.
*/
private void fullyUnlock() {
takeLock.unlock();
putLock.unlock();
}
/**
* Creates a <tt>LinkedBlockingQueue</tt> with a capacity of
* {@link Integer#MAX_VALUE}.
*/
public LinkedBlockingQueue() {
this(Integer.MAX_VALUE);
}
/**
* Creates a <tt>LinkedBlockingQueue</tt> with the given (fixed) capacity.
*
* @param capacity the capacity of this queue
* @throws IllegalArgumentException if <tt>capacity</tt> is not greater
* than zero
*/
public LinkedBlockingQueue(int capacity) {
if (capacity <= 0) throw new IllegalArgumentException();
this.capacity = capacity;
last = head = new Node<E>(null);
}
/**
* Creates a <tt>LinkedBlockingQueue</tt> with a capacity of
* {@link Integer#MAX_VALUE}, initially containing the elements of the
* given collection,
* added in traversal order of the collection's iterator.
*
* @param c the collection of elements to initially contain
* @throws NullPointerException if the specified collection or any
* of its elements are null
*/
public LinkedBlockingQueue(Collection<? extends E> c) {
this(Integer.MAX_VALUE);
for (E e : c)
add(e);
}
// this doc comment is overridden to remove the reference to collections
// greater in size than Integer.MAX_VALUE
/**
* Returns the number of elements in this queue.
*
* @return the number of elements in this queue
*/
public int size() {
return count.get();
}
// this doc comment is a modified copy of the inherited doc comment,
// without the reference to unlimited queues.
/**
* Returns the number of additional elements that this queue can ideally
* (in the absence of memory or resource constraints) accept without
* blocking. This is always equal to the initial capacity of this queue
* less the current <tt>size</tt> of this queue.
*
* <p>Note that you <em>cannot</em> always tell if an attempt to insert
* an element will succeed by inspecting <tt>remainingCapacity</tt>
* because it may be the case that another thread is about to
* insert or remove an element.
*/
public int remainingCapacity() {
return capacity - count.get();
}
/**
* Inserts the specified element at the tail of this queue, waiting if
* necessary for space to become available.
*
* @throws InterruptedException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public void put(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
// Note: convention in all put/take/etc is to preset
// local var holding count negative to indicate failure unless set.
int c = -1;
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
/*
* Note that count is used in wait guard even though it is
* not protected by lock. This works because count can
* only decrease at this point (all other puts are shut
* out by lock), and we (or some other waiting put) are
* signalled if it ever changes from
* capacity. Similarly for all other uses of count in
* other wait guards.
*/
try {
while (count.get() == capacity)
notFull.await();
} catch (InterruptedException ie) {
notFull.signal(); // propagate to a non-interrupted thread
throw ie;
}
insert(e);
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
} finally {
putLock.unlock();
}
if (c == 0)
signalNotEmpty();
}
/**
* Inserts the specified element at the tail of this queue, waiting if
* necessary up to the specified wait time for space to become available.
*
* @return <tt>true</tt> if successful, or <tt>false</tt> if
* the specified waiting time elapses before space is available.
* @throws InterruptedException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public boolean offer(E e, long timeout, TimeUnit unit)
throws InterruptedException {
if (e == null) throw new NullPointerException();
long nanos = unit.toNanos(timeout);
int c = -1;
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
for (;;) {
if (count.get() < capacity) {
insert(e);
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
break;
}
if (nanos <= 0)
return false;
try {
nanos = notFull.awaitNanos(nanos);
} catch (InterruptedException ie) {
notFull.signal(); // propagate to a non-interrupted thread
throw ie;
}
}
} finally {
putLock.unlock();
}
if (c == 0)
signalNotEmpty();
return true;
}
/**
* Inserts the specified element at the tail of this queue if it is
* possible to do so immediately without exceeding the queue's capacity,
* returning <tt>true</tt> upon success and <tt>false</tt> if this queue
* is full.
* When using a capacity-restricted queue, this method is generally
* preferable to method {@link BlockingQueue#add add}, which can fail to
* insert an element only by throwing an exception.
*
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {
if (e == null) throw new NullPointerException();
final AtomicInteger count = this.count;
if (count.get() == capacity)
return false;
int c = -1;
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
if (count.get() < capacity) {
insert(e);
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
}
} finally {
putLock.unlock();
}
if (c == 0)
signalNotEmpty();
return c >= 0;
}
public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
try {
while (count.get() == 0)
notEmpty.await();
} catch (InterruptedException ie) {
notEmpty.signal(); // propagate to a non-interrupted thread
throw ie;
}
x = extract();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
E x = null;
int c = -1;
long nanos = unit.toNanos(timeout);
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
for (;;) {
if (count.get() > 0) {
x = extract();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
break;
}
if (nanos <= 0)
return null;
try {
nanos = notEmpty.awaitNanos(nanos);
} catch (InterruptedException ie) {
notEmpty.signal(); // propagate to a non-interrupted thread
throw ie;
}
}
} finally {
takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}
public E poll() {
final AtomicInteger count = this.count;
if (count.get() == 0)
return null;
E x = null;
int c = -1;
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
if (count.get() > 0) {
x = extract();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
}
} finally {
takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}
public E peek() {
if (count.get() == 0)
return null;
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
Node<E> first = head.next;
if (first == null)
return null;
else
return first.item;
} finally {
takeLock.unlock();
}
}
/**
* Removes a single instance of the specified element from this queue,
* if it is present. More formally, removes an element <tt>e</tt> such
* that <tt>o.equals(e)</tt>, if this queue contains one or more such
* elements.
* Returns <tt>true</tt> if this queue contained the specified element
* (or equivalently, if this queue changed as a result of the call).
*
* @param o element to be removed from this queue, if present
* @return <tt>true</tt> if this queue changed as a result of the call
*/
public boolean remove(Object o) {
if (o == null) return false;
boolean removed = false;
fullyLock();
try {
Node<E> trail = head;
Node<E> p = head.next;
while (p != null) {
if (o.equals(p.item)) {
removed = true;
break;
}
trail = p;
p = p.next;
}
if (removed) {
p.item = null;
trail.next = p.next;
if (last == p)
last = trail;
if (count.getAndDecrement() == capacity)
notFull.signalAll();
}
} finally {
fullyUnlock();
}
return removed;
}
/**
* Returns an array containing all of the elements in this queue, in
* proper sequence.
*
* <p>The returned array will be "safe" in that no references to it are
* maintained by this queue. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
* <p>This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this queue
*/
public Object[] toArray() {
fullyLock();
try {
int size = count.get();
Object[] a = new Object[size];
int k = 0;
for (Node<E> p = head.next; p != null; p = p.next)
a[k++] = p.item;
return a;
} finally {
fullyUnlock();
}
}
/**
* Returns an array containing all of the elements in this queue, in
* proper sequence; the runtime type of the returned array is that of
* the specified array. If the queue fits in the specified array, it
* is returned therein. Otherwise, a new array is allocated with the
* runtime type of the specified array and the size of this queue.
*
* <p>If this queue fits in the specified array with room to spare
* (i.e., the array has more elements than this queue), the element in
* the array immediately following the end of the queue is set to
* <tt>null</tt>.
*
* <p>Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
* <p>Suppose <tt>x</tt> is a queue known to contain only strings.
* The following code can be used to dump the queue into a newly
* allocated array of <tt>String</tt>:
*
* <pre>
* String[] y = x.toArray(new String[0]);</pre>
*
* Note that <tt>toArray(new Object[0])</tt> is identical in function to
* <tt>toArray()</tt>.
*
* @param a the array into which the elements of the queue are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose
* @return an array containing all of the elements in this queue
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this queue
* @throws NullPointerException if the specified array is null
*/
public <T> T[] toArray(T[] a) {
fullyLock();
try {
int size = count.get();
if (a.length < size)
a = (T[])java.lang.reflect.Array.newInstance
(a.getClass().getComponentType(), size);
int k = 0;
for (Node p = head.next; p != null; p = p.next)
a[k++] = (T)p.item;
if (a.length > k)
a[k] = null;
return a;
} finally {
fullyUnlock();
}
}
public String toString() {
fullyLock();
try {
return super.toString();
} finally {
fullyUnlock();
}
}
/**
* Atomically removes all of the elements from this queue.
* The queue will be empty after this call returns.
*/
public void clear() {
fullyLock();
try {
head.next = null;
assert head.item == null;
last = head;
if (count.getAndSet(0) == capacity)
notFull.signalAll();
} finally {
fullyUnlock();
}
}
/**
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public int drainTo(Collection<? super E> c) {
if (c == null)
throw new NullPointerException();
if (c == this)
throw new IllegalArgumentException();
Node<E> first;
fullyLock();
try {
first = head.next;
head.next = null;
assert head.item == null;
last = head;
if (count.getAndSet(0) == capacity)
notFull.signalAll();
} finally {
fullyUnlock();
}
// Transfer the elements outside of locks
int n = 0;
for (Node<E> p = first; p != null; p = p.next) {
c.add(p.item);
p.item = null;
++n;
}
return n;
}
/**
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public int drainTo(Collection<? super E> c, int maxElements) {
if (c == null)
throw new NullPointerException();
if (c == this)
throw new IllegalArgumentException();
fullyLock();
try {
int n = 0;
Node<E> p = head.next;
while (p != null && n < maxElements) {
c.add(p.item);
p.item = null;
p = p.next;
++n;
}
if (n != 0) {
head.next = p;
assert head.item == null;
if (p == null)
last = head;
if (count.getAndAdd(-n) == capacity)
notFull.signalAll();
}
return n;
} finally {
fullyUnlock();
}
}
/**
* Returns an iterator over the elements in this queue in proper sequence.
* The returned <tt>Iterator</tt> is a "weakly consistent" iterator that
* will never throw {@link ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
* reflect any modifications subsequent to construction.
*
* @return an iterator over the elements in this queue in proper sequence
*/
public Iterator<E> iterator() {
return new Itr();
}
private class Itr implements Iterator<E> {
/*
* Basic weak-consistent iterator. At all times hold the next
* item to hand out so that if hasNext() reports true, we will
* still have it to return even if lost race with a take etc.
*/
private Node<E> current;
private Node<E> lastRet;
private E currentElement;
Itr() {
final ReentrantLock putLock = LinkedBlockingQueue.this.putLock;
final ReentrantLock takeLock = LinkedBlockingQueue.this.takeLock;
putLock.lock();
takeLock.lock();
try {
current = head.next;
if (current != null)
currentElement = current.item;
} finally {
takeLock.unlock();
putLock.unlock();
}
}
public boolean hasNext() {
return current != null;
}
public E next() {
final ReentrantLock putLock = LinkedBlockingQueue.this.putLock;
final ReentrantLock takeLock = LinkedBlockingQueue.this.takeLock;
putLock.lock();
takeLock.lock();
try {
if (current == null)
throw new NoSuchElementException();
E x = currentElement;
lastRet = current;
current = current.next;
if (current != null)
currentElement = current.item;
return x;
} finally {
takeLock.unlock();
putLock.unlock();
}
}
public void remove() {
if (lastRet == null)
throw new IllegalStateException();
final ReentrantLock putLock = LinkedBlockingQueue.this.putLock;
final ReentrantLock takeLock = LinkedBlockingQueue.this.takeLock;
putLock.lock();
takeLock.lock();
try {
Node<E> node = lastRet;
lastRet = null;
Node<E> trail = head;
Node<E> p = head.next;
while (p != null && p != node) {
trail = p;
p = p.next;
}
if (p == node) {
p.item = null;
trail.next = p.next;
if (last == p)
last = trail;
int c = count.getAndDecrement();
if (c == capacity)
notFull.signalAll();
}
} finally {
takeLock.unlock();
putLock.unlock();
}
}
}
/**
* Save the state to a stream (that is, serialize it).
*
* @serialData The capacity is emitted (int), followed by all of
* its elements (each an <tt>Object</tt>) in the proper order,
* followed by a null
* @param s the stream
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
fullyLock();
try {
// Write out any hidden stuff, plus capacity
s.defaultWriteObject();
// Write out all elements in the proper order.
for (Node<E> p = head.next; p != null; p = p.next)
s.writeObject(p.item);
// Use trailing null as sentinel
s.writeObject(null);
} finally {
fullyUnlock();
}
}
/**
* Reconstitute this queue instance from a stream (that is,
* deserialize it).
* @param s the stream
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in capacity, and any hidden stuff
s.defaultReadObject();
count.set(0);
last = head = new Node<E>(null);
// Read in all elements and place in queue
for (;;) {
E item = (E)s.readObject();
if (item == null)
break;
add(item);
}
}
}