8226366: Excessive ServiceThread wakeups for OopStorage cleanup
Summary: Drive wakes via safepoint cleanups with interval minimums.
Reviewed-by: coleenp, tschatzl
/*
* Copyright (c) 2006, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "logging/log.hpp"
#include "memory/allocation.hpp"
#include "memory/allocation.inline.hpp"
#include "runtime/os.hpp"
#include "vm_version_sparc.hpp"
#include <sys/auxv.h>
#include <sys/systeminfo.h>
#include <picl.h>
#include <dlfcn.h>
#include <link.h>
extern "C" static int PICL_visit_cpu_helper(picl_nodehdl_t nodeh, void *result);
// Functions from the library we need (signatures should match those in picl.h)
extern "C" {
typedef int (*picl_initialize_func_t)(void);
typedef int (*picl_shutdown_func_t)(void);
typedef int (*picl_get_root_func_t)(picl_nodehdl_t *nodehandle);
typedef int (*picl_walk_tree_by_class_func_t)(picl_nodehdl_t rooth,
const char *classname, void *c_args,
int (*callback_fn)(picl_nodehdl_t hdl, void *args));
typedef int (*picl_get_prop_by_name_func_t)(picl_nodehdl_t nodeh, const char *nm,
picl_prophdl_t *ph);
typedef int (*picl_get_propval_func_t)(picl_prophdl_t proph, void *valbuf, size_t sz);
typedef int (*picl_get_propinfo_func_t)(picl_prophdl_t proph, picl_propinfo_t *pi);
}
class PICL {
// Pointers to functions in the library
picl_initialize_func_t _picl_initialize;
picl_shutdown_func_t _picl_shutdown;
picl_get_root_func_t _picl_get_root;
picl_walk_tree_by_class_func_t _picl_walk_tree_by_class;
picl_get_prop_by_name_func_t _picl_get_prop_by_name;
picl_get_propval_func_t _picl_get_propval;
picl_get_propinfo_func_t _picl_get_propinfo;
// Handle to the library that is returned by dlopen
void *_dl_handle;
bool open_library();
void close_library();
template<typename FuncType> bool bind(FuncType& func, const char* name);
bool bind_library_functions();
// Get a value of the integer property. The value in the tree can be either 32 or 64 bit
// depending on the platform. The result is converted to int.
int get_int_property(picl_nodehdl_t nodeh, const char* name, int* result) {
picl_propinfo_t pinfo;
picl_prophdl_t proph;
if (_picl_get_prop_by_name(nodeh, name, &proph) != PICL_SUCCESS ||
_picl_get_propinfo(proph, &pinfo) != PICL_SUCCESS) {
return PICL_FAILURE;
}
if (pinfo.type != PICL_PTYPE_INT && pinfo.type != PICL_PTYPE_UNSIGNED_INT) {
assert(false, "Invalid property type");
return PICL_FAILURE;
}
if (pinfo.size == sizeof(int64_t)) {
int64_t val;
if (_picl_get_propval(proph, &val, sizeof(int64_t)) != PICL_SUCCESS) {
return PICL_FAILURE;
}
*result = static_cast<int>(val);
} else if (pinfo.size == sizeof(int32_t)) {
int32_t val;
if (_picl_get_propval(proph, &val, sizeof(int32_t)) != PICL_SUCCESS) {
return PICL_FAILURE;
}
*result = static_cast<int>(val);
} else {
assert(false, "Unexpected integer property size");
return PICL_FAILURE;
}
return PICL_SUCCESS;
}
// Visitor and a state machine that visits integer properties and verifies that the
// values are the same. Stores the unique value observed.
class UniqueValueVisitor {
PICL *_picl;
enum {
INITIAL, // Start state, no assignments happened
ASSIGNED, // Assigned a value
INCONSISTENT // Inconsistent value seen
} _state;
int _value;
public:
UniqueValueVisitor(PICL* picl) : _picl(picl), _state(INITIAL) { }
int value() {
assert(_state == ASSIGNED, "Precondition");
return _value;
}
void set_value(int value) {
assert(_state == INITIAL, "Precondition");
_value = value;
_state = ASSIGNED;
}
bool is_initial() { return _state == INITIAL; }
bool is_assigned() { return _state == ASSIGNED; }
bool is_inconsistent() { return _state == INCONSISTENT; }
void set_inconsistent() { _state = INCONSISTENT; }
bool visit(picl_nodehdl_t nodeh, const char* name) {
assert(!is_inconsistent(), "Precondition");
int curr;
if (_picl->get_int_property(nodeh, name, &curr) == PICL_SUCCESS) {
if (!is_assigned()) { // first iteration
set_value(curr);
} else if (curr != value()) { // following iterations
set_inconsistent();
}
return true;
}
return false;
}
};
class CPUVisitor {
UniqueValueVisitor _l1_visitor;
UniqueValueVisitor _l2_visitor;
int _limit; // number of times visit() can be run
public:
CPUVisitor(PICL *picl, int limit) : _l1_visitor(picl), _l2_visitor(picl), _limit(limit) {}
static int visit(picl_nodehdl_t nodeh, void *arg) {
CPUVisitor *cpu_visitor = static_cast<CPUVisitor*>(arg);
UniqueValueVisitor* l1_visitor = cpu_visitor->l1_visitor();
UniqueValueVisitor* l2_visitor = cpu_visitor->l2_visitor();
if (!l1_visitor->is_inconsistent()) {
l1_visitor->visit(nodeh, "l1-dcache-line-size");
}
static const char* l2_data_cache_line_property_name = NULL;
// On the first visit determine the name of the l2 cache line size property and memoize it.
if (l2_data_cache_line_property_name == NULL) {
assert(!l2_visitor->is_inconsistent(), "First iteration cannot be inconsistent");
l2_data_cache_line_property_name = "l2-cache-line-size";
if (!l2_visitor->visit(nodeh, l2_data_cache_line_property_name)) {
l2_data_cache_line_property_name = "l2-dcache-line-size";
l2_visitor->visit(nodeh, l2_data_cache_line_property_name);
}
} else {
if (!l2_visitor->is_inconsistent()) {
l2_visitor->visit(nodeh, l2_data_cache_line_property_name);
}
}
if (l1_visitor->is_inconsistent() && l2_visitor->is_inconsistent()) {
return PICL_WALK_TERMINATE;
}
cpu_visitor->_limit--;
if (cpu_visitor->_limit <= 0) {
return PICL_WALK_TERMINATE;
}
return PICL_WALK_CONTINUE;
}
UniqueValueVisitor* l1_visitor() { return &_l1_visitor; }
UniqueValueVisitor* l2_visitor() { return &_l2_visitor; }
};
int _L1_data_cache_line_size;
int _L2_data_cache_line_size;
public:
static int visit_cpu(picl_nodehdl_t nodeh, void *state) {
return CPUVisitor::visit(nodeh, state);
}
PICL(bool is_fujitsu, bool is_sun4v) : _L1_data_cache_line_size(0), _L2_data_cache_line_size(0), _dl_handle(NULL) {
if (!open_library()) {
return;
}
if (_picl_initialize() == PICL_SUCCESS) {
picl_nodehdl_t rooth;
if (_picl_get_root(&rooth) == PICL_SUCCESS) {
const char* cpu_class = "cpu";
// If it's a Fujitsu machine, it's a "core"
if (is_fujitsu) {
cpu_class = "core";
}
CPUVisitor cpu_visitor(this, (is_sun4v && !is_fujitsu) ? 1 : os::processor_count());
_picl_walk_tree_by_class(rooth, cpu_class, &cpu_visitor, PICL_visit_cpu_helper);
if (cpu_visitor.l1_visitor()->is_assigned()) { // Is there a value?
_L1_data_cache_line_size = cpu_visitor.l1_visitor()->value();
}
if (cpu_visitor.l2_visitor()->is_assigned()) {
_L2_data_cache_line_size = cpu_visitor.l2_visitor()->value();
}
}
_picl_shutdown();
}
close_library();
}
unsigned int L1_data_cache_line_size() const { return _L1_data_cache_line_size; }
unsigned int L2_data_cache_line_size() const { return _L2_data_cache_line_size; }
};
extern "C" static int PICL_visit_cpu_helper(picl_nodehdl_t nodeh, void *result) {
return PICL::visit_cpu(nodeh, result);
}
template<typename FuncType>
bool PICL::bind(FuncType& func, const char* name) {
func = reinterpret_cast<FuncType>(dlsym(_dl_handle, name));
return func != NULL;
}
bool PICL::bind_library_functions() {
assert(_dl_handle != NULL, "library should be open");
return bind(_picl_initialize, "picl_initialize" ) &&
bind(_picl_shutdown, "picl_shutdown" ) &&
bind(_picl_get_root, "picl_get_root" ) &&
bind(_picl_walk_tree_by_class, "picl_walk_tree_by_class") &&
bind(_picl_get_prop_by_name, "picl_get_prop_by_name" ) &&
bind(_picl_get_propval, "picl_get_propval" ) &&
bind(_picl_get_propinfo, "picl_get_propinfo" );
}
bool PICL::open_library() {
_dl_handle = dlopen("libpicl.so.1", RTLD_LAZY);
if (_dl_handle == NULL) {
return false;
}
if (!bind_library_functions()) {
assert(false, "unexpected PICL API change");
close_library();
return false;
}
return true;
}
void PICL::close_library() {
assert(_dl_handle != NULL, "library should be open");
dlclose(_dl_handle);
_dl_handle = NULL;
}
class Sysinfo {
char* _string;
public:
Sysinfo(int si) : _string(NULL) {
char tmp;
size_t bufsize = sysinfo(si, &tmp, 1);
if (bufsize != -1) {
char* buf = (char*) os::malloc(bufsize, mtInternal);
if (buf != NULL) {
if (sysinfo(si, buf, bufsize) == bufsize) {
_string = buf;
} else {
os::free(buf);
}
}
}
}
~Sysinfo() {
if (_string != NULL) {
os::free(_string);
}
}
const char* value() const {
return _string;
}
bool valid() const {
return _string != NULL;
}
bool match(const char* s) const {
return valid() ? strcmp(_string, s) == 0 : false;
}
bool match_substring(const char* s) const {
return valid() ? strstr(_string, s) != NULL : false;
}
};
class Sysconf {
int _value;
public:
Sysconf(int sc) : _value(-1) {
_value = sysconf(sc);
}
bool valid() const {
return _value != -1;
}
int value() const {
return _value;
}
};
#ifndef _SC_DCACHE_LINESZ
#define _SC_DCACHE_LINESZ 508 /* Data cache line size */
#endif
#ifndef _SC_L2CACHE_LINESZ
#define _SC_L2CACHE_LINESZ 527 /* Size of L2 cache line */
#endif
void VM_Version::platform_features() {
uint64_t features = ISA_v9_msk; // Basic SPARC-V9 required (V8 not supported).
assert(Sysinfo(SI_ARCHITECTURE_64).match("sparcv9"), "must be");
// Extract valid instruction set extensions.
uint32_t avs[AV_HW2_IDX + 1];
uint_t avn = getisax(avs, AV_HW2_IDX + 1);
assert(avn <= 2, "should return two or less av's");
log_info(os, cpu)("getisax(2) returned %d words:", avn);
for (int i = 0; i < avn; i++) {
log_info(os, cpu)(" word %d: " PTR32_FORMAT, i, avs[i]);
}
uint32_t av = avs[AV_HW1_IDX];
// Obsolete and 32b legacy mode capabilites NOT probed here, despite being
// set by Solaris 11.4 (onward) also on V9; AV_SPARC_MUL32, AV_SPARC_DIV32
// and AV_SPARC_FSMULD (and AV_SPARC_V8PLUS).
if (av & AV_SPARC_POPC) features |= ISA_popc_msk;
if (av & AV_SPARC_VIS) features |= ISA_vis1_msk;
if (av & AV_SPARC_VIS2) features |= ISA_vis2_msk;
// Hardware capability defines introduced after Solaris 11.1:
#ifndef AV_SPARC_FMAF
#define AV_SPARC_FMAF 0x00000100 // Fused Multiply-Add
#endif
if (av & AV_SPARC_ASI_BLK_INIT) features |= ISA_blk_init_msk;
if (av & AV_SPARC_FMAF) features |= ISA_fmaf_msk;
if (av & AV_SPARC_VIS3) features |= ISA_vis3_msk;
if (av & AV_SPARC_HPC) features |= ISA_hpc_msk;
if (av & AV_SPARC_IMA) features |= ISA_ima_msk;
if (av & AV_SPARC_AES) features |= ISA_aes_msk;
if (av & AV_SPARC_DES) features |= ISA_des_msk;
if (av & AV_SPARC_KASUMI) features |= ISA_kasumi_msk;
if (av & AV_SPARC_CAMELLIA) features |= ISA_camellia_msk;
if (av & AV_SPARC_MD5) features |= ISA_md5_msk;
if (av & AV_SPARC_SHA1) features |= ISA_sha1_msk;
if (av & AV_SPARC_SHA256) features |= ISA_sha256_msk;
if (av & AV_SPARC_SHA512) features |= ISA_sha512_msk;
if (av & AV_SPARC_MPMUL) features |= ISA_mpmul_msk;
if (av & AV_SPARC_MONT) features |= ISA_mont_msk;
if (av & AV_SPARC_PAUSE) features |= ISA_pause_msk;
if (av & AV_SPARC_CBCOND) features |= ISA_cbcond_msk;
if (av & AV_SPARC_CRC32C) features |= ISA_crc32c_msk;
#ifndef AV2_SPARC_FJATHPLUS
#define AV2_SPARC_FJATHPLUS 0x00000001 // Fujitsu Athena+ insns
#endif
#ifndef AV2_SPARC_VIS3B
#define AV2_SPARC_VIS3B 0x00000002 // VIS3 present on multiple chips
#endif
#ifndef AV2_SPARC_ADI
#define AV2_SPARC_ADI 0x00000004 // Application Data Integrity
#endif
#ifndef AV2_SPARC_SPARC5
#define AV2_SPARC_SPARC5 0x00000008 // The 29 new fp and sub instructions
#endif
#ifndef AV2_SPARC_MWAIT
#define AV2_SPARC_MWAIT 0x00000010 // mwait instruction and load/monitor ASIs
#endif
#ifndef AV2_SPARC_XMPMUL
#define AV2_SPARC_XMPMUL 0x00000020 // XOR multiple precision multiply
#endif
#ifndef AV2_SPARC_XMONT
#define AV2_SPARC_XMONT 0x00000040 // XOR Montgomery mult/sqr instructions
#endif
#ifndef AV2_SPARC_PAUSE_NSEC
#define AV2_SPARC_PAUSE_NSEC 0x00000080 // pause instruction with support for nsec timings
#endif
#ifndef AV2_SPARC_VAMASK
#define AV2_SPARC_VAMASK 0x00000100 // Virtual Address masking
#endif
#ifndef AV2_SPARC_SPARC6
#define AV2_SPARC_SPARC6 0x00000200 // REVB*, FPSLL*, RDENTROPY, LDM* and STM*
#endif
#ifndef AV2_SPARC_DICTUNP
#define AV2_SPARC_DICTUNP 0x00002000 // Dictionary unpack instruction
#endif
#ifndef AV2_SPARC_FPCMPSHL
#define AV2_SPARC_FPCMPSHL 0x00004000 // Partition compare with shifted result
#endif
#ifndef AV2_SPARC_RLE
#define AV2_SPARC_RLE 0x00008000 // Run-length encoded burst and length
#endif
#ifndef AV2_SPARC_SHA3
#define AV2_SPARC_SHA3 0x00010000 // SHA3 instructions
#endif
#ifndef AV2_SPARC_FJATHPLUS2
#define AV2_SPARC_FJATHPLUS2 0x00020000 // Fujitsu Athena++ insns
#endif
#ifndef AV2_SPARC_VIS3C
#define AV2_SPARC_VIS3C 0x00040000 // Subset of VIS3 insns provided by Athena++
#endif
#ifndef AV2_SPARC_SPARC5B
#define AV2_SPARC_SPARC5B 0x00080000 // subset of SPARC5 insns (fpadd8, fpsub8)
#endif
#ifndef AV2_SPARC_MME
#define AV2_SPARC_MME 0x00100000 // Misaligned Mitigation Enable
#endif
if (avn > 1) {
uint32_t av2 = avs[AV_HW2_IDX];
if (av2 & AV2_SPARC_FJATHPLUS) features |= ISA_fjathplus_msk;
if (av2 & AV2_SPARC_VIS3B) features |= ISA_vis3b_msk;
if (av2 & AV2_SPARC_ADI) features |= ISA_adi_msk;
if (av2 & AV2_SPARC_SPARC5) features |= ISA_sparc5_msk;
if (av2 & AV2_SPARC_MWAIT) features |= ISA_mwait_msk;
if (av2 & AV2_SPARC_XMPMUL) features |= ISA_xmpmul_msk;
if (av2 & AV2_SPARC_XMONT) features |= ISA_xmont_msk;
if (av2 & AV2_SPARC_PAUSE_NSEC) features |= ISA_pause_nsec_msk;
if (av2 & AV2_SPARC_VAMASK) features |= ISA_vamask_msk;
if (av2 & AV2_SPARC_SPARC6) features |= ISA_sparc6_msk;
if (av2 & AV2_SPARC_DICTUNP) features |= ISA_dictunp_msk;
if (av2 & AV2_SPARC_FPCMPSHL) features |= ISA_fpcmpshl_msk;
if (av2 & AV2_SPARC_RLE) features |= ISA_rle_msk;
if (av2 & AV2_SPARC_SHA3) features |= ISA_sha3_msk;
if (av2 & AV2_SPARC_FJATHPLUS2) features |= ISA_fjathplus2_msk;
if (av2 & AV2_SPARC_VIS3C) features |= ISA_vis3c_msk;
if (av2 & AV2_SPARC_SPARC5B) features |= ISA_sparc5b_msk;
if (av2 & AV2_SPARC_MME) features |= ISA_mme_msk;
}
_features = features; // ISA feature set completed, update state.
Sysinfo machine(SI_MACHINE);
bool is_sun4v = machine.match("sun4v"); // All Oracle SPARC + Fujitsu Athena+/++
bool is_sun4u = machine.match("sun4u"); // All other Fujitsu
// Handle Athena+/++ conservatively (simply because we are lacking info.).
bool an_athena = has_athena_plus() || has_athena_plus2();
bool do_sun4v = is_sun4v && !an_athena;
bool do_sun4u = is_sun4u || an_athena;
uint64_t synthetic = 0;
if (do_sun4v) {
// Indirect and direct branches are equally fast.
synthetic = CPU_fast_ind_br_msk;
// Fast IDIV, BIS and LD available on Niagara Plus.
if (has_vis2()) {
synthetic |= (CPU_fast_idiv_msk | CPU_fast_ld_msk);
// ...on Core C4 however, we prefer not to use BIS.
if (!has_sparc5()) {
synthetic |= CPU_fast_bis_msk;
}
}
// SPARC Core C3 supports fast RDPC and block zeroing.
if (has_ima()) {
synthetic |= (CPU_fast_rdpc_msk | CPU_blk_zeroing_msk);
}
// SPARC Core C3 and C4 have slow CMOVE.
if (!has_ima()) {
synthetic |= CPU_fast_cmove_msk;
}
} else if (do_sun4u) {
// SPARC64 only have fast IDIV and RDPC.
synthetic |= (CPU_fast_idiv_msk | CPU_fast_rdpc_msk);
} else {
log_info(os, cpu)("Unable to derive CPU features: %s", machine.value());
}
_features += synthetic; // Including CPU derived/synthetic features.
Sysconf l1_dcache_line_size(_SC_DCACHE_LINESZ);
Sysconf l2_dcache_line_size(_SC_L2CACHE_LINESZ);
// Require both Sysconf requests to be valid or use fall-back.
if (l1_dcache_line_size.valid() &&
l2_dcache_line_size.valid()) {
_L1_data_cache_line_size = l1_dcache_line_size.value();
_L2_data_cache_line_size = l2_dcache_line_size.value();
} else {
// Otherwise figure out the cache line sizes using PICL.
PICL picl(is_sun4u, is_sun4v);
_L1_data_cache_line_size = picl.L1_data_cache_line_size();
_L2_data_cache_line_size = picl.L2_data_cache_line_size();
}
}