/*
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "nativeInst_sparc.hpp"
#include "oops/instanceOop.hpp"
#include "oops/method.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
// Declaration and definition of StubGenerator (no .hpp file).
// For a more detailed description of the stub routine structure
// see the comment in stubRoutines.hpp.
#define __ _masm->
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
// Note: The register L7 is used as L7_thread_cache, and may not be used
// any other way within this module.
static const Register& Lstub_temp = L2;
// -------------------------------------------------------------------------------------------------------------------------
// Stub Code definitions
class StubGenerator: public StubCodeGenerator {
private:
#ifdef PRODUCT
#define inc_counter_np(a,b,c)
#else
#define inc_counter_np(counter, t1, t2) \
BLOCK_COMMENT("inc_counter " #counter); \
__ inc_counter(&counter, t1, t2);
#endif
//----------------------------------------------------------------------------------------------------
// Call stubs are used to call Java from C
address generate_call_stub(address& return_pc) {
StubCodeMark mark(this, "StubRoutines", "call_stub");
address start = __ pc();
// Incoming arguments:
//
// o0 : call wrapper address
// o1 : result (address)
// o2 : result type
// o3 : method
// o4 : (interpreter) entry point
// o5 : parameters (address)
// [sp + 0x5c]: parameter size (in words)
// [sp + 0x60]: thread
//
// +---------------+ <--- sp + 0
// | |
// . reg save area .
// | |
// +---------------+ <--- sp + 0x40
// | |
// . extra 7 slots .
// | |
// +---------------+ <--- sp + 0x5c
// | param. size |
// +---------------+ <--- sp + 0x60
// | thread |
// +---------------+
// | |
// note: if the link argument position changes, adjust
// the code in frame::entry_frame_call_wrapper()
const Argument link = Argument(0, false); // used only for GC
const Argument result = Argument(1, false);
const Argument result_type = Argument(2, false);
const Argument method = Argument(3, false);
const Argument entry_point = Argument(4, false);
const Argument parameters = Argument(5, false);
const Argument parameter_size = Argument(6, false);
const Argument thread = Argument(7, false);
// setup thread register
__ ld_ptr(thread.as_address(), G2_thread);
__ reinit_heapbase();
#ifdef ASSERT
// make sure we have no pending exceptions
{ const Register t = G3_scratch;
Label L;
__ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
__ br_null_short(t, Assembler::pt, L);
__ stop("StubRoutines::call_stub: entered with pending exception");
__ bind(L);
}
#endif
// create activation frame & allocate space for parameters
{ const Register t = G3_scratch;
__ ld_ptr(parameter_size.as_address(), t); // get parameter size (in words)
__ add(t, frame::memory_parameter_word_sp_offset, t); // add space for save area (in words)
__ round_to(t, WordsPerLong); // make sure it is multiple of 2 (in words)
__ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes
__ neg(t); // negate so it can be used with save
__ save(SP, t, SP); // setup new frame
}
// +---------------+ <--- sp + 0
// | |
// . reg save area .
// | |
// +---------------+ <--- sp + 0x40
// | |
// . extra 7 slots .
// | |
// +---------------+ <--- sp + 0x5c
// | empty slot | (only if parameter size is even)
// +---------------+
// | |
// . parameters .
// | |
// +---------------+ <--- fp + 0
// | |
// . reg save area .
// | |
// +---------------+ <--- fp + 0x40
// | |
// . extra 7 slots .
// | |
// +---------------+ <--- fp + 0x5c
// | param. size |
// +---------------+ <--- fp + 0x60
// | thread |
// +---------------+
// | |
// pass parameters if any
BLOCK_COMMENT("pass parameters if any");
{ const Register src = parameters.as_in().as_register();
const Register dst = Lentry_args;
const Register tmp = G3_scratch;
const Register cnt = G4_scratch;
// test if any parameters & setup of Lentry_args
Label exit;
__ ld_ptr(parameter_size.as_in().as_address(), cnt); // parameter counter
__ add( FP, STACK_BIAS, dst );
__ cmp_zero_and_br(Assembler::zero, cnt, exit);
__ delayed()->sub(dst, BytesPerWord, dst); // setup Lentry_args
// copy parameters if any
Label loop;
__ BIND(loop);
// Store parameter value
__ ld_ptr(src, 0, tmp);
__ add(src, BytesPerWord, src);
__ st_ptr(tmp, dst, 0);
__ deccc(cnt);
__ br(Assembler::greater, false, Assembler::pt, loop);
__ delayed()->sub(dst, Interpreter::stackElementSize, dst);
// done
__ BIND(exit);
}
// setup parameters, method & call Java function
#ifdef ASSERT
// layout_activation_impl checks it's notion of saved SP against
// this register, so if this changes update it as well.
const Register saved_SP = Lscratch;
__ mov(SP, saved_SP); // keep track of SP before call
#endif
// setup parameters
const Register t = G3_scratch;
__ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
__ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes
__ sub(FP, t, Gargs); // setup parameter pointer
__ add( Gargs, STACK_BIAS, Gargs ); // Account for LP64 stack bias
__ mov(SP, O5_savedSP);
// do the call
//
// the following register must be setup:
//
// G2_thread
// G5_method
// Gargs
BLOCK_COMMENT("call Java function");
__ jmpl(entry_point.as_in().as_register(), G0, O7);
__ delayed()->mov(method.as_in().as_register(), G5_method); // setup method
BLOCK_COMMENT("call_stub_return_address:");
return_pc = __ pc();
// The callee, if it wasn't interpreted, can return with SP changed so
// we can no longer assert of change of SP.
// store result depending on type
// (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
// is treated as T_INT)
{ const Register addr = result .as_in().as_register();
const Register type = result_type.as_in().as_register();
Label is_long, is_float, is_double, is_object, exit;
__ cmp(type, T_OBJECT); __ br(Assembler::equal, false, Assembler::pn, is_object);
__ delayed()->cmp(type, T_FLOAT); __ br(Assembler::equal, false, Assembler::pn, is_float);
__ delayed()->cmp(type, T_DOUBLE); __ br(Assembler::equal, false, Assembler::pn, is_double);
__ delayed()->cmp(type, T_LONG); __ br(Assembler::equal, false, Assembler::pn, is_long);
__ delayed()->nop();
// store int result
__ st(O0, addr, G0);
__ BIND(exit);
__ ret();
__ delayed()->restore();
__ BIND(is_object);
__ ba(exit);
__ delayed()->st_ptr(O0, addr, G0);
__ BIND(is_float);
__ ba(exit);
__ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
__ BIND(is_double);
__ ba(exit);
__ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
__ BIND(is_long);
__ ba(exit);
__ delayed()->st_long(O0, addr, G0); // store entire long
}
return start;
}
//----------------------------------------------------------------------------------------------------
// Return point for a Java call if there's an exception thrown in Java code.
// The exception is caught and transformed into a pending exception stored in
// JavaThread that can be tested from within the VM.
//
// Oexception: exception oop
address generate_catch_exception() {
StubCodeMark mark(this, "StubRoutines", "catch_exception");
address start = __ pc();
// verify that thread corresponds
__ verify_thread();
const Register& temp_reg = Gtemp;
Address pending_exception_addr (G2_thread, Thread::pending_exception_offset());
Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset ());
Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset ());
// set pending exception
__ verify_oop(Oexception);
__ st_ptr(Oexception, pending_exception_addr);
__ set((intptr_t)__FILE__, temp_reg);
__ st_ptr(temp_reg, exception_file_offset_addr);
__ set((intptr_t)__LINE__, temp_reg);
__ st(temp_reg, exception_line_offset_addr);
// complete return to VM
assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
__ jump_to(stub_ret, temp_reg);
__ delayed()->nop();
return start;
}
//----------------------------------------------------------------------------------------------------
// Continuation point for runtime calls returning with a pending exception
// The pending exception check happened in the runtime or native call stub
// The pending exception in Thread is converted into a Java-level exception
//
// Contract with Java-level exception handler: O0 = exception
// O1 = throwing pc
address generate_forward_exception() {
StubCodeMark mark(this, "StubRoutines", "forward_exception");
address start = __ pc();
// Upon entry, O7 has the return address returning into Java
// (interpreted or compiled) code; i.e. the return address
// becomes the throwing pc.
const Register& handler_reg = Gtemp;
Address exception_addr(G2_thread, Thread::pending_exception_offset());
#ifdef ASSERT
// make sure that this code is only executed if there is a pending exception
{ Label L;
__ ld_ptr(exception_addr, Gtemp);
__ br_notnull_short(Gtemp, Assembler::pt, L);
__ stop("StubRoutines::forward exception: no pending exception (1)");
__ bind(L);
}
#endif
// compute exception handler into handler_reg
__ get_thread();
__ ld_ptr(exception_addr, Oexception);
__ verify_oop(Oexception);
__ save_frame(0); // compensates for compiler weakness
__ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
BLOCK_COMMENT("call exception_handler_for_return_address");
__ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch);
__ mov(O0, handler_reg);
__ restore(); // compensates for compiler weakness
__ ld_ptr(exception_addr, Oexception);
__ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
#ifdef ASSERT
// make sure exception is set
{ Label L;
__ br_notnull_short(Oexception, Assembler::pt, L);
__ stop("StubRoutines::forward exception: no pending exception (2)");
__ bind(L);
}
#endif
// jump to exception handler
__ jmp(handler_reg, 0);
// clear pending exception
__ delayed()->st_ptr(G0, exception_addr);
return start;
}
// Safefetch stubs.
void generate_safefetch(const char* name, int size, address* entry,
address* fault_pc, address* continuation_pc) {
// safefetch signatures:
// int SafeFetch32(int* adr, int errValue);
// intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
//
// arguments:
// o0 = adr
// o1 = errValue
//
// result:
// o0 = *adr or errValue
StubCodeMark mark(this, "StubRoutines", name);
// Entry point, pc or function descriptor.
__ align(CodeEntryAlignment);
*entry = __ pc();
__ mov(O0, G1); // g1 = o0
__ mov(O1, O0); // o0 = o1
// Load *adr into c_rarg1, may fault.
*fault_pc = __ pc();
switch (size) {
case 4:
// int32_t
__ ldsw(G1, 0, O0); // o0 = [g1]
break;
case 8:
// int64_t
__ ldx(G1, 0, O0); // o0 = [g1]
break;
default:
ShouldNotReachHere();
}
// return errValue or *adr
*continuation_pc = __ pc();
// By convention with the trap handler we ensure there is a non-CTI
// instruction in the trap shadow.
__ nop();
__ retl();
__ delayed()->nop();
}
//------------------------------------------------------------------------------------------------------------------------
// Continuation point for throwing of implicit exceptions that are not handled in
// the current activation. Fabricates an exception oop and initiates normal
// exception dispatching in this frame. Only callee-saved registers are preserved
// (through the normal register window / RegisterMap handling).
// If the compiler needs all registers to be preserved between the fault
// point and the exception handler then it must assume responsibility for that in
// AbstractCompiler::continuation_for_implicit_null_exception or
// continuation_for_implicit_division_by_zero_exception. All other implicit
// exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
// either at call sites or otherwise assume that stack unwinding will be initiated,
// so caller saved registers were assumed volatile in the compiler.
// Note that we generate only this stub into a RuntimeStub, because it needs to be
// properly traversed and ignored during GC, so we change the meaning of the "__"
// macro within this method.
#undef __
#define __ masm->
address generate_throw_exception(const char* name, address runtime_entry,
Register arg1 = noreg, Register arg2 = noreg) {
#ifdef ASSERT
int insts_size = VerifyThread ? 1 * K : 600;
#else
int insts_size = VerifyThread ? 1 * K : 256;
#endif /* ASSERT */
int locs_size = 32;
CodeBuffer code(name, insts_size, locs_size);
MacroAssembler* masm = new MacroAssembler(&code);
__ verify_thread();
// This is an inlined and slightly modified version of call_VM
// which has the ability to fetch the return PC out of thread-local storage
__ assert_not_delayed();
// Note that we always push a frame because on the SPARC
// architecture, for all of our implicit exception kinds at call
// sites, the implicit exception is taken before the callee frame
// is pushed.
__ save_frame(0);
int frame_complete = __ offset();
// Note that we always have a runtime stub frame on the top of stack by this point
Register last_java_sp = SP;
// 64-bit last_java_sp is biased!
__ set_last_Java_frame(last_java_sp, G0);
if (VerifyThread) __ mov(G2_thread, O0); // about to be smashed; pass early
__ save_thread(noreg);
if (arg1 != noreg) {
assert(arg2 != O1, "clobbered");
__ mov(arg1, O1);
}
if (arg2 != noreg) {
__ mov(arg2, O2);
}
// do the call
BLOCK_COMMENT("call runtime_entry");
__ call(runtime_entry, relocInfo::runtime_call_type);
if (!VerifyThread)
__ delayed()->mov(G2_thread, O0); // pass thread as first argument
else
__ delayed()->nop(); // (thread already passed)
__ restore_thread(noreg);
__ reset_last_Java_frame();
// check for pending exceptions. use Gtemp as scratch register.
#ifdef ASSERT
Label L;
Address exception_addr(G2_thread, Thread::pending_exception_offset());
Register scratch_reg = Gtemp;
__ ld_ptr(exception_addr, scratch_reg);
__ br_notnull_short(scratch_reg, Assembler::pt, L);
__ should_not_reach_here();
__ bind(L);
#endif // ASSERT
BLOCK_COMMENT("call forward_exception_entry");
__ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
// we use O7 linkage so that forward_exception_entry has the issuing PC
__ delayed()->restore();
RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
return stub->entry_point();
}
#undef __
#define __ _masm->
// Generate a routine that sets all the registers so we
// can tell if the stop routine prints them correctly.
address generate_test_stop() {
StubCodeMark mark(this, "StubRoutines", "test_stop");
address start = __ pc();
int i;
__ save_frame(0);
static jfloat zero = 0.0, one = 1.0;
// put addr in L0, then load through L0 to F0
__ set((intptr_t)&zero, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F0);
__ set((intptr_t)&one, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
// use add to put 2..18 in F2..F18
for ( i = 2; i <= 18; ++i ) {
__ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1), as_FloatRegister(i));
}
// Now put double 2 in F16, double 18 in F18
__ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
__ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
// use add to put 20..32 in F20..F32
for (i = 20; i < 32; i += 2) {
__ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2), as_FloatRegister(i));
}
// put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
for ( i = 0; i < 8; ++i ) {
if (i < 6) {
__ set( i, as_iRegister(i));
__ set(16 + i, as_oRegister(i));
__ set(24 + i, as_gRegister(i));
}
__ set( 8 + i, as_lRegister(i));
}
__ stop("testing stop");
__ ret();
__ delayed()->restore();
return start;
}
address generate_stop_subroutine() {
StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
address start = __ pc();
__ stop_subroutine();
return start;
}
address generate_flush_callers_register_windows() {
StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
address start = __ pc();
__ flushw();
__ retl(false);
__ delayed()->add( FP, STACK_BIAS, O0 );
// The returned value must be a stack pointer whose register save area
// is flushed, and will stay flushed while the caller executes.
return start;
}
// Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
//
// Arguments:
//
// exchange_value: O0
// dest: O1
//
// Results:
//
// O0: the value previously stored in dest
//
address generate_atomic_xchg() {
StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
address start = __ pc();
if (UseCASForSwap) {
// Use CAS instead of swap, just in case the MP hardware
// prefers to work with just one kind of synch. instruction.
Label retry;
__ BIND(retry);
__ mov(O0, O3); // scratch copy of exchange value
__ ld(O1, 0, O2); // observe the previous value
// try to replace O2 with O3
__ cas(O1, O2, O3);
__ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
__ retl(false);
__ delayed()->mov(O2, O0); // report previous value to caller
} else {
__ retl(false);
__ delayed()->swap(O1, 0, O0);
}
return start;
}
// Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
//
// Arguments:
//
// exchange_value: O0
// dest: O1
// compare_value: O2
//
// Results:
//
// O0: the value previously stored in dest
//
address generate_atomic_cmpxchg() {
StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
address start = __ pc();
// cmpxchg(dest, compare_value, exchange_value)
__ cas(O1, O2, O0);
__ retl(false);
__ delayed()->nop();
return start;
}
// Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
//
// Arguments:
//
// exchange_value: O1:O0
// dest: O2
// compare_value: O4:O3
//
// Results:
//
// O1:O0: the value previously stored in dest
//
// Overwrites: G1,G2,G3
//
address generate_atomic_cmpxchg_long() {
StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
address start = __ pc();
__ sllx(O0, 32, O0);
__ srl(O1, 0, O1);
__ or3(O0,O1,O0); // O0 holds 64-bit value from compare_value
__ sllx(O3, 32, O3);
__ srl(O4, 0, O4);
__ or3(O3,O4,O3); // O3 holds 64-bit value from exchange_value
__ casx(O2, O3, O0);
__ srl(O0, 0, O1); // unpacked return value in O1:O0
__ retl(false);
__ delayed()->srlx(O0, 32, O0);
return start;
}
// Support for jint Atomic::add(jint add_value, volatile jint* dest).
//
// Arguments:
//
// add_value: O0 (e.g., +1 or -1)
// dest: O1
//
// Results:
//
// O0: the new value stored in dest
//
// Overwrites: O3
//
address generate_atomic_add() {
StubCodeMark mark(this, "StubRoutines", "atomic_add");
address start = __ pc();
__ BIND(_atomic_add_stub);
Label(retry);
__ BIND(retry);
__ lduw(O1, 0, O2);
__ add(O0, O2, O3);
__ cas(O1, O2, O3);
__ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
__ retl(false);
__ delayed()->add(O0, O2, O0); // note that cas made O2==O3
return start;
}
Label _atomic_add_stub; // called from other stubs
// Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
// Arguments :
//
// ret : O0, returned
// icc/xcc: set as O0 (depending on wordSize)
// sub : O1, argument, not changed
// super: O2, argument, not changed
// raddr: O7, blown by call
address generate_partial_subtype_check() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
address start = __ pc();
Label miss;
__ save_frame(0);
Register Rret = I0;
Register Rsub = I1;
Register Rsuper = I2;
Register L0_ary_len = L0;
Register L1_ary_ptr = L1;
Register L2_super = L2;
Register L3_index = L3;
__ check_klass_subtype_slow_path(Rsub, Rsuper,
L0, L1, L2, L3,
NULL, &miss);
// Match falls through here.
__ addcc(G0,0,Rret); // set Z flags, Z result
__ ret(); // Result in Rret is zero; flags set to Z
__ delayed()->restore();
__ BIND(miss);
__ addcc(G0,1,Rret); // set NZ flags, NZ result
__ ret(); // Result in Rret is != 0; flags set to NZ
__ delayed()->restore();
return start;
}
// Called from MacroAssembler::verify_oop
//
address generate_verify_oop_subroutine() {
StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
address start = __ pc();
__ verify_oop_subroutine();
return start;
}
//
// Verify that a register contains clean 32-bits positive value
// (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
//
// Input:
// Rint - 32-bits value
// Rtmp - scratch
//
void assert_clean_int(Register Rint, Register Rtmp) {
#if defined(ASSERT)
__ signx(Rint, Rtmp);
__ cmp(Rint, Rtmp);
__ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
#endif
}
//
// Generate overlap test for array copy stubs
//
// Input:
// O0 - array1
// O1 - array2
// O2 - element count
//
// Kills temps: O3, O4
//
void array_overlap_test(address no_overlap_target, int log2_elem_size) {
assert(no_overlap_target != NULL, "must be generated");
array_overlap_test(no_overlap_target, NULL, log2_elem_size);
}
void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
}
void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
const Register from = O0;
const Register to = O1;
const Register count = O2;
const Register to_from = O3; // to - from
const Register byte_count = O4; // count << log2_elem_size
__ subcc(to, from, to_from);
__ sll_ptr(count, log2_elem_size, byte_count);
if (NOLp == NULL)
__ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
else
__ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
__ delayed()->cmp(to_from, byte_count);
if (NOLp == NULL)
__ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, no_overlap_target);
else
__ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, (*NOLp));
__ delayed()->nop();
}
//
// Generate pre-write barrier for array.
//
// Input:
// addr - register containing starting address
// count - register containing element count
// tmp - scratch register
//
// The input registers are overwritten.
//
void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
BarrierSet* bs = Universe::heap()->barrier_set();
switch (bs->kind()) {
case BarrierSet::G1SATBCTLogging:
// With G1, don't generate the call if we statically know that the target in uninitialized
if (!dest_uninitialized) {
__ save_frame(0);
// Save the necessary global regs... will be used after.
if (addr->is_global()) {
__ mov(addr, L0);
}
if (count->is_global()) {
__ mov(count, L1);
}
__ mov(addr->after_save(), O0);
// Get the count into O1
__ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
__ delayed()->mov(count->after_save(), O1);
if (addr->is_global()) {
__ mov(L0, addr);
}
if (count->is_global()) {
__ mov(L1, count);
}
__ restore();
}
break;
case BarrierSet::CardTableForRS:
case BarrierSet::CardTableExtension:
case BarrierSet::ModRef:
case BarrierSet::Epsilon:
break;
default:
ShouldNotReachHere();
}
}
//
// Generate post-write barrier for array.
//
// Input:
// addr - register containing starting address
// count - register containing element count
// tmp - scratch register
//
// The input registers are overwritten.
//
void gen_write_ref_array_post_barrier(Register addr, Register count,
Register tmp) {
BarrierSet* bs = Universe::heap()->barrier_set();
switch (bs->kind()) {
case BarrierSet::G1SATBCTLogging:
{
// Get some new fresh output registers.
__ save_frame(0);
__ mov(addr->after_save(), O0);
__ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
__ delayed()->mov(count->after_save(), O1);
__ restore();
}
break;
case BarrierSet::CardTableForRS:
case BarrierSet::CardTableExtension:
{
CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
assert_different_registers(addr, count, tmp);
Label L_loop;
__ sll_ptr(count, LogBytesPerHeapOop, count);
__ sub(count, BytesPerHeapOop, count);
__ add(count, addr, count);
// Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
__ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
__ srl_ptr(count, CardTableModRefBS::card_shift, count);
__ sub(count, addr, count);
AddressLiteral rs(ct->byte_map_base);
__ set(rs, tmp);
__ BIND(L_loop);
__ stb(G0, tmp, addr);
__ subcc(count, 1, count);
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
__ delayed()->add(addr, 1, addr);
}
break;
case BarrierSet::ModRef:
case BarrierSet::Epsilon:
break;
default:
ShouldNotReachHere();
}
}
//
// Generate main code for disjoint arraycopy
//
typedef void (StubGenerator::*CopyLoopFunc)(Register from, Register to, Register count, int count_dec,
Label& L_loop, bool use_prefetch, bool use_bis);
void disjoint_copy_core(Register from, Register to, Register count, int log2_elem_size,
int iter_size, StubGenerator::CopyLoopFunc copy_loop_func) {
Label L_copy;
assert(log2_elem_size <= 3, "the following code should be changed");
int count_dec = 16>>log2_elem_size;
int prefetch_dist = MAX2(ArraycopySrcPrefetchDistance, ArraycopyDstPrefetchDistance);
assert(prefetch_dist < 4096, "invalid value");
prefetch_dist = (prefetch_dist + (iter_size-1)) & (-iter_size); // round up to one iteration copy size
int prefetch_count = (prefetch_dist >> log2_elem_size); // elements count
if (UseBlockCopy) {
Label L_block_copy, L_block_copy_prefetch, L_skip_block_copy;
// 64 bytes tail + bytes copied in one loop iteration
int tail_size = 64 + iter_size;
int block_copy_count = (MAX2(tail_size, (int)BlockCopyLowLimit)) >> log2_elem_size;
// Use BIS copy only for big arrays since it requires membar.
__ set(block_copy_count, O4);
__ cmp_and_br_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_skip_block_copy);
// This code is for disjoint source and destination:
// to <= from || to >= from+count
// but BIS will stomp over 'from' if (to > from-tail_size && to <= from)
__ sub(from, to, O4);
__ srax(O4, 4, O4); // divide by 16 since following short branch have only 5 bits for imm.
__ cmp_and_br_short(O4, (tail_size>>4), Assembler::lessEqualUnsigned, Assembler::pn, L_skip_block_copy);
__ wrasi(G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
// BIS should not be used to copy tail (64 bytes+iter_size)
// to avoid zeroing of following values.
__ sub(count, (tail_size>>log2_elem_size), count); // count is still positive >= 0
if (prefetch_count > 0) { // rounded up to one iteration count
// Do prefetching only if copy size is bigger
// than prefetch distance.
__ set(prefetch_count, O4);
__ cmp_and_brx_short(count, O4, Assembler::less, Assembler::pt, L_block_copy);
__ sub(count, O4, count);
(this->*copy_loop_func)(from, to, count, count_dec, L_block_copy_prefetch, true, true);
__ set(prefetch_count, O4);
__ add(count, O4, count);
} // prefetch_count > 0
(this->*copy_loop_func)(from, to, count, count_dec, L_block_copy, false, true);
__ add(count, (tail_size>>log2_elem_size), count); // restore count
__ wrasi(G0, Assembler::ASI_PRIMARY_NOFAULT);
// BIS needs membar.
__ membar(Assembler::StoreLoad);
// Copy tail
__ ba_short(L_copy);
__ BIND(L_skip_block_copy);
} // UseBlockCopy
if (prefetch_count > 0) { // rounded up to one iteration count
// Do prefetching only if copy size is bigger
// than prefetch distance.
__ set(prefetch_count, O4);
__ cmp_and_brx_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_copy);
__ sub(count, O4, count);
Label L_copy_prefetch;
(this->*copy_loop_func)(from, to, count, count_dec, L_copy_prefetch, true, false);
__ set(prefetch_count, O4);
__ add(count, O4, count);
} // prefetch_count > 0
(this->*copy_loop_func)(from, to, count, count_dec, L_copy, false, false);
}
//
// Helper methods for copy_16_bytes_forward_with_shift()
//
void copy_16_bytes_shift_loop(Register from, Register to, Register count, int count_dec,
Label& L_loop, bool use_prefetch, bool use_bis) {
const Register left_shift = G1; // left shift bit counter
const Register right_shift = G5; // right shift bit counter
__ align(OptoLoopAlignment);
__ BIND(L_loop);
if (use_prefetch) {
if (ArraycopySrcPrefetchDistance > 0) {
__ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
}
if (ArraycopyDstPrefetchDistance > 0) {
__ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
}
}
__ ldx(from, 0, O4);
__ ldx(from, 8, G4);
__ inc(to, 16);
__ inc(from, 16);
__ deccc(count, count_dec); // Can we do next iteration after this one?
__ srlx(O4, right_shift, G3);
__ bset(G3, O3);
__ sllx(O4, left_shift, O4);
__ srlx(G4, right_shift, G3);
__ bset(G3, O4);
if (use_bis) {
__ stxa(O3, to, -16);
__ stxa(O4, to, -8);
} else {
__ stx(O3, to, -16);
__ stx(O4, to, -8);
}
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
__ delayed()->sllx(G4, left_shift, O3);
}
// Copy big chunks forward with shift
//
// Inputs:
// from - source arrays
// to - destination array aligned to 8-bytes
// count - elements count to copy >= the count equivalent to 16 bytes
// count_dec - elements count's decrement equivalent to 16 bytes
// L_copy_bytes - copy exit label
//
void copy_16_bytes_forward_with_shift(Register from, Register to,
Register count, int log2_elem_size, Label& L_copy_bytes) {
Label L_aligned_copy, L_copy_last_bytes;
assert(log2_elem_size <= 3, "the following code should be changed");
int count_dec = 16>>log2_elem_size;
// if both arrays have the same alignment mod 8, do 8 bytes aligned copy
__ andcc(from, 7, G1); // misaligned bytes
__ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
__ delayed()->nop();
const Register left_shift = G1; // left shift bit counter
const Register right_shift = G5; // right shift bit counter
__ sll(G1, LogBitsPerByte, left_shift);
__ mov(64, right_shift);
__ sub(right_shift, left_shift, right_shift);
//
// Load 2 aligned 8-bytes chunks and use one from previous iteration
// to form 2 aligned 8-bytes chunks to store.
//
__ dec(count, count_dec); // Pre-decrement 'count'
__ andn(from, 7, from); // Align address
__ ldx(from, 0, O3);
__ inc(from, 8);
__ sllx(O3, left_shift, O3);
disjoint_copy_core(from, to, count, log2_elem_size, 16, &StubGenerator::copy_16_bytes_shift_loop);
__ inccc(count, count_dec>>1 ); // + 8 bytes
__ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
__ delayed()->inc(count, count_dec>>1); // restore 'count'
// copy 8 bytes, part of them already loaded in O3
__ ldx(from, 0, O4);
__ inc(to, 8);
__ inc(from, 8);
__ srlx(O4, right_shift, G3);
__ bset(O3, G3);
__ stx(G3, to, -8);
__ BIND(L_copy_last_bytes);
__ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
__ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
__ delayed()->sub(from, right_shift, from); // restore address
__ BIND(L_aligned_copy);
}
// Copy big chunks backward with shift
//
// Inputs:
// end_from - source arrays end address
// end_to - destination array end address aligned to 8-bytes
// count - elements count to copy >= the count equivalent to 16 bytes
// count_dec - elements count's decrement equivalent to 16 bytes
// L_aligned_copy - aligned copy exit label
// L_copy_bytes - copy exit label
//
void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
Register count, int count_dec,
Label& L_aligned_copy, Label& L_copy_bytes) {
Label L_loop, L_copy_last_bytes;
// if both arrays have the same alignment mod 8, do 8 bytes aligned copy
__ andcc(end_from, 7, G1); // misaligned bytes
__ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
__ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
const Register left_shift = G1; // left shift bit counter
const Register right_shift = G5; // right shift bit counter
__ sll(G1, LogBitsPerByte, left_shift);
__ mov(64, right_shift);
__ sub(right_shift, left_shift, right_shift);
//
// Load 2 aligned 8-bytes chunks and use one from previous iteration
// to form 2 aligned 8-bytes chunks to store.
//
__ andn(end_from, 7, end_from); // Align address
__ ldx(end_from, 0, O3);
__ align(OptoLoopAlignment);
__ BIND(L_loop);
__ ldx(end_from, -8, O4);
__ deccc(count, count_dec); // Can we do next iteration after this one?
__ ldx(end_from, -16, G4);
__ dec(end_to, 16);
__ dec(end_from, 16);
__ srlx(O3, right_shift, O3);
__ sllx(O4, left_shift, G3);
__ bset(G3, O3);
__ stx(O3, end_to, 8);
__ srlx(O4, right_shift, O4);
__ sllx(G4, left_shift, G3);
__ bset(G3, O4);
__ stx(O4, end_to, 0);
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
__ delayed()->mov(G4, O3);
__ inccc(count, count_dec>>1 ); // + 8 bytes
__ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
__ delayed()->inc(count, count_dec>>1); // restore 'count'
// copy 8 bytes, part of them already loaded in O3
__ ldx(end_from, -8, O4);
__ dec(end_to, 8);
__ dec(end_from, 8);
__ srlx(O3, right_shift, O3);
__ sllx(O4, left_shift, G3);
__ bset(O3, G3);
__ stx(G3, end_to, 0);
__ BIND(L_copy_last_bytes);
__ srl(left_shift, LogBitsPerByte, left_shift); // misaligned bytes
__ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
__ delayed()->add(end_from, left_shift, end_from); // restore address
}
//
// Generate stub for disjoint byte copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: O0
// to: O1
// count: O2 treated as signed
//
address generate_disjoint_byte_copy(bool aligned, address *entry, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_skip_alignment, L_align;
Label L_copy_byte, L_copy_byte_loop, L_exit;
const Register from = O0; // source array address
const Register to = O1; // destination array address
const Register count = O2; // elements count
const Register offset = O5; // offset from start of arrays
// O3, O4, G3, G4 are used as temp registers
assert_clean_int(count, O3); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
// for short arrays, just do single element copy
__ cmp(count, 23); // 16 + 7
__ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
__ delayed()->mov(G0, offset);
if (aligned) {
// 'aligned' == true when it is known statically during compilation
// of this arraycopy call site that both 'from' and 'to' addresses
// are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
//
// Aligned arrays have 4 bytes alignment in 32-bits VM
// and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
//
} else {
// copy bytes to align 'to' on 8 byte boundary
__ andcc(to, 7, G1); // misaligned bytes
__ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
__ delayed()->neg(G1);
__ inc(G1, 8); // bytes need to copy to next 8-bytes alignment
__ sub(count, G1, count);
__ BIND(L_align);
__ ldub(from, 0, O3);
__ deccc(G1);
__ inc(from);
__ stb(O3, to, 0);
__ br(Assembler::notZero, false, Assembler::pt, L_align);
__ delayed()->inc(to);
__ BIND(L_skip_alignment);
}
if (!aligned) {
// Copy with shift 16 bytes per iteration if arrays do not have
// the same alignment mod 8, otherwise fall through to the next
// code for aligned copy.
// The compare above (count >= 23) guarantes 'count' >= 16 bytes.
// Also jump over aligned copy after the copy with shift completed.
copy_16_bytes_forward_with_shift(from, to, count, 0, L_copy_byte);
}
// Both array are 8 bytes aligned, copy 16 bytes at a time
__ and3(count, 7, G4); // Save count
__ srl(count, 3, count);
generate_disjoint_long_copy_core(aligned);
__ mov(G4, count); // Restore count
// copy tailing bytes
__ BIND(L_copy_byte);
__ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
__ align(OptoLoopAlignment);
__ BIND(L_copy_byte_loop);
__ ldub(from, offset, O3);
__ deccc(count);
__ stb(O3, to, offset);
__ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
__ delayed()->inc(offset);
__ BIND(L_exit);
// O3, O4 are used as temp registers
inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
__ retl();
__ delayed()->mov(G0, O0); // return 0
return start;
}
//
// Generate stub for conjoint byte copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: O0
// to: O1
// count: O2 treated as signed
//
address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
address *entry, const char *name) {
// Do reverse copy.
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_skip_alignment, L_align, L_aligned_copy;
Label L_copy_byte, L_copy_byte_loop, L_exit;
const Register from = O0; // source array address
const Register to = O1; // destination array address
const Register count = O2; // elements count
const Register end_from = from; // source array end address
const Register end_to = to; // destination array end address
assert_clean_int(count, O3); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, 0);
__ add(to, count, end_to); // offset after last copied element
// for short arrays, just do single element copy
__ cmp(count, 23); // 16 + 7
__ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
__ delayed()->add(from, count, end_from);
{
// Align end of arrays since they could be not aligned even
// when arrays itself are aligned.
// copy bytes to align 'end_to' on 8 byte boundary
__ andcc(end_to, 7, G1); // misaligned bytes
__ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
__ delayed()->nop();
__ sub(count, G1, count);
__ BIND(L_align);
__ dec(end_from);
__ dec(end_to);
__ ldub(end_from, 0, O3);
__ deccc(G1);
__ brx(Assembler::notZero, false, Assembler::pt, L_align);
__ delayed()->stb(O3, end_to, 0);
__ BIND(L_skip_alignment);
}
if (aligned) {
// Both arrays are aligned to 8-bytes in 64-bits VM.
// The 'count' is decremented in copy_16_bytes_backward_with_shift()
// in unaligned case.
__ dec(count, 16);
} else {
// Copy with shift 16 bytes per iteration if arrays do not have
// the same alignment mod 8, otherwise jump to the next
// code for aligned copy (and substracting 16 from 'count' before jump).
// The compare above (count >= 11) guarantes 'count' >= 16 bytes.
// Also jump over aligned copy after the copy with shift completed.
copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
L_aligned_copy, L_copy_byte);
}
// copy 4 elements (16 bytes) at a time
__ align(OptoLoopAlignment);
__ BIND(L_aligned_copy);
__ dec(end_from, 16);
__ ldx(end_from, 8, O3);
__ ldx(end_from, 0, O4);
__ dec(end_to, 16);
__ deccc(count, 16);
__ stx(O3, end_to, 8);
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
__ delayed()->stx(O4, end_to, 0);
__ inc(count, 16);
// copy 1 element (2 bytes) at a time
__ BIND(L_copy_byte);
__ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
__ align(OptoLoopAlignment);
__ BIND(L_copy_byte_loop);
__ dec(end_from);
__ dec(end_to);
__ ldub(end_from, 0, O4);
__ deccc(count);
__ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
__ delayed()->stb(O4, end_to, 0);
__ BIND(L_exit);
// O3, O4 are used as temp registers
inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
__ retl();
__ delayed()->mov(G0, O0); // return 0
return start;
}
//
// Generate stub for disjoint short copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: O0
// to: O1
// count: O2 treated as signed
//
address generate_disjoint_short_copy(bool aligned, address *entry, const char * name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_skip_alignment, L_skip_alignment2;
Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
const Register from = O0; // source array address
const Register to = O1; // destination array address
const Register count = O2; // elements count
const Register offset = O5; // offset from start of arrays
// O3, O4, G3, G4 are used as temp registers
assert_clean_int(count, O3); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
// for short arrays, just do single element copy
__ cmp(count, 11); // 8 + 3 (22 bytes)
__ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
__ delayed()->mov(G0, offset);
if (aligned) {
// 'aligned' == true when it is known statically during compilation
// of this arraycopy call site that both 'from' and 'to' addresses
// are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
//
// Aligned arrays have 4 bytes alignment in 32-bits VM
// and 8 bytes - in 64-bits VM.
//
} else {
// copy 1 element if necessary to align 'to' on an 4 bytes
__ andcc(to, 3, G0);
__ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
__ delayed()->lduh(from, 0, O3);
__ inc(from, 2);
__ inc(to, 2);
__ dec(count);
__ sth(O3, to, -2);
__ BIND(L_skip_alignment);
// copy 2 elements to align 'to' on an 8 byte boundary
__ andcc(to, 7, G0);
__ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
__ delayed()->lduh(from, 0, O3);
__ dec(count, 2);
__ lduh(from, 2, O4);
__ inc(from, 4);
__ inc(to, 4);
__ sth(O3, to, -4);
__ sth(O4, to, -2);
__ BIND(L_skip_alignment2);
}
if (!aligned) {
// Copy with shift 16 bytes per iteration if arrays do not have
// the same alignment mod 8, otherwise fall through to the next
// code for aligned copy.
// The compare above (count >= 11) guarantes 'count' >= 16 bytes.
// Also jump over aligned copy after the copy with shift completed.
copy_16_bytes_forward_with_shift(from, to, count, 1, L_copy_2_bytes);
}
// Both array are 8 bytes aligned, copy 16 bytes at a time
__ and3(count, 3, G4); // Save
__ srl(count, 2, count);
generate_disjoint_long_copy_core(aligned);
__ mov(G4, count); // restore
// copy 1 element at a time
__ BIND(L_copy_2_bytes);
__ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
__ align(OptoLoopAlignment);
__ BIND(L_copy_2_bytes_loop);
__ lduh(from, offset, O3);
__ deccc(count);
__ sth(O3, to, offset);
__ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
__ delayed()->inc(offset, 2);
__ BIND(L_exit);
// O3, O4 are used as temp registers
inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
__ retl();
__ delayed()->mov(G0, O0); // return 0
return start;
}
//
// Generate stub for disjoint short fill. If "aligned" is true, the
// "to" address is assumed to be heapword aligned.
//
// Arguments for generated stub:
// to: O0
// value: O1
// count: O2 treated as signed
//
address generate_fill(BasicType t, bool aligned, const char* name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
const Register to = O0; // source array address
const Register value = O1; // fill value
const Register count = O2; // elements count
// O3 is used as a temp register
assert_clean_int(count, O3); // Make sure 'count' is clean int.
Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
Label L_fill_2_bytes, L_fill_elements, L_fill_32_bytes;
int shift = -1;
switch (t) {
case T_BYTE:
shift = 2;
break;
case T_SHORT:
shift = 1;
break;
case T_INT:
shift = 0;
break;
default: ShouldNotReachHere();
}
BLOCK_COMMENT("Entry:");
if (t == T_BYTE) {
// Zero extend value
__ and3(value, 0xff, value);
__ sllx(value, 8, O3);
__ or3(value, O3, value);
}
if (t == T_SHORT) {
// Zero extend value
__ sllx(value, 48, value);
__ srlx(value, 48, value);
}
if (t == T_BYTE || t == T_SHORT) {
__ sllx(value, 16, O3);
__ or3(value, O3, value);
}
__ cmp(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
__ brx(Assembler::lessUnsigned, false, Assembler::pn, L_fill_elements); // use unsigned cmp
__ delayed()->andcc(count, 1, G0);
if (!aligned && (t == T_BYTE || t == T_SHORT)) {
// align source address at 4 bytes address boundary
if (t == T_BYTE) {
// One byte misalignment happens only for byte arrays
__ andcc(to, 1, G0);
__ br(Assembler::zero, false, Assembler::pt, L_skip_align1);
__ delayed()->nop();
__ stb(value, to, 0);
__ inc(to, 1);
__ dec(count, 1);
__ BIND(L_skip_align1);
}
// Two bytes misalignment happens only for byte and short (char) arrays
__ andcc(to, 2, G0);
__ br(Assembler::zero, false, Assembler::pt, L_skip_align2);
__ delayed()->nop();
__ sth(value, to, 0);
__ inc(to, 2);
__ dec(count, 1 << (shift - 1));
__ BIND(L_skip_align2);
}
if (!aligned) {
// align to 8 bytes, we know we are 4 byte aligned to start
__ andcc(to, 7, G0);
__ br(Assembler::zero, false, Assembler::pt, L_fill_32_bytes);
__ delayed()->nop();
__ stw(value, to, 0);
__ inc(to, 4);
__ dec(count, 1 << shift);
__ BIND(L_fill_32_bytes);
}
if (t == T_INT) {
// Zero extend value
__ srl(value, 0, value);
}
if (t == T_BYTE || t == T_SHORT || t == T_INT) {
__ sllx(value, 32, O3);
__ or3(value, O3, value);
}
Label L_check_fill_8_bytes;
// Fill 32-byte chunks
__ subcc(count, 8 << shift, count);
__ brx(Assembler::less, false, Assembler::pt, L_check_fill_8_bytes);
__ delayed()->nop();
Label L_fill_32_bytes_loop, L_fill_4_bytes;
__ align(16);
__ BIND(L_fill_32_bytes_loop);
__ stx(value, to, 0);
__ stx(value, to, 8);
__ stx(value, to, 16);
__ stx(value, to, 24);
__ subcc(count, 8 << shift, count);
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_fill_32_bytes_loop);
__ delayed()->add(to, 32, to);
__ BIND(L_check_fill_8_bytes);
__ addcc(count, 8 << shift, count);
__ brx(Assembler::zero, false, Assembler::pn, L_exit);
__ delayed()->subcc(count, 1 << (shift + 1), count);
__ brx(Assembler::less, false, Assembler::pn, L_fill_4_bytes);
__ delayed()->andcc(count, 1<<shift, G0);
//
// length is too short, just fill 8 bytes at a time
//
Label L_fill_8_bytes_loop;
__ BIND(L_fill_8_bytes_loop);
__ stx(value, to, 0);
__ subcc(count, 1 << (shift + 1), count);
__ brx(Assembler::greaterEqual, false, Assembler::pn, L_fill_8_bytes_loop);
__ delayed()->add(to, 8, to);
// fill trailing 4 bytes
__ andcc(count, 1<<shift, G0); // in delay slot of branches
if (t == T_INT) {
__ BIND(L_fill_elements);
}
__ BIND(L_fill_4_bytes);
__ brx(Assembler::zero, false, Assembler::pt, L_fill_2_bytes);
if (t == T_BYTE || t == T_SHORT) {
__ delayed()->andcc(count, 1<<(shift-1), G0);
} else {
__ delayed()->nop();
}
__ stw(value, to, 0);
if (t == T_BYTE || t == T_SHORT) {
__ inc(to, 4);
// fill trailing 2 bytes
__ andcc(count, 1<<(shift-1), G0); // in delay slot of branches
__ BIND(L_fill_2_bytes);
__ brx(Assembler::zero, false, Assembler::pt, L_fill_byte);
__ delayed()->andcc(count, 1, count);
__ sth(value, to, 0);
if (t == T_BYTE) {
__ inc(to, 2);
// fill trailing byte
__ andcc(count, 1, count); // in delay slot of branches
__ BIND(L_fill_byte);
__ brx(Assembler::zero, false, Assembler::pt, L_exit);
__ delayed()->nop();
__ stb(value, to, 0);
} else {
__ BIND(L_fill_byte);
}
} else {
__ BIND(L_fill_2_bytes);
}
__ BIND(L_exit);
__ retl();
__ delayed()->nop();
// Handle copies less than 8 bytes. Int is handled elsewhere.
if (t == T_BYTE) {
__ BIND(L_fill_elements);
Label L_fill_2, L_fill_4;
// in delay slot __ andcc(count, 1, G0);
__ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
__ delayed()->andcc(count, 2, G0);
__ stb(value, to, 0);
__ inc(to, 1);
__ BIND(L_fill_2);
__ brx(Assembler::zero, false, Assembler::pt, L_fill_4);
__ delayed()->andcc(count, 4, G0);
__ stb(value, to, 0);
__ stb(value, to, 1);
__ inc(to, 2);
__ BIND(L_fill_4);
__ brx(Assembler::zero, false, Assembler::pt, L_exit);
__ delayed()->nop();
__ stb(value, to, 0);
__ stb(value, to, 1);
__ stb(value, to, 2);
__ retl();
__ delayed()->stb(value, to, 3);
}
if (t == T_SHORT) {
Label L_fill_2;
__ BIND(L_fill_elements);
// in delay slot __ andcc(count, 1, G0);
__ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
__ delayed()->andcc(count, 2, G0);
__ sth(value, to, 0);
__ inc(to, 2);
__ BIND(L_fill_2);
__ brx(Assembler::zero, false, Assembler::pt, L_exit);
__ delayed()->nop();
__ sth(value, to, 0);
__ retl();
__ delayed()->sth(value, to, 2);
}
return start;
}
//
// Generate stub for conjoint short copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: O0
// to: O1
// count: O2 treated as signed
//
address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
address *entry, const char *name) {
// Do reverse copy.
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
const Register from = O0; // source array address
const Register to = O1; // destination array address
const Register count = O2; // elements count
const Register end_from = from; // source array end address
const Register end_to = to; // destination array end address
const Register byte_count = O3; // bytes count to copy
assert_clean_int(count, O3); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, 1);
__ sllx(count, LogBytesPerShort, byte_count);
__ add(to, byte_count, end_to); // offset after last copied element
// for short arrays, just do single element copy
__ cmp(count, 11); // 8 + 3 (22 bytes)
__ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
__ delayed()->add(from, byte_count, end_from);
{
// Align end of arrays since they could be not aligned even
// when arrays itself are aligned.
// copy 1 element if necessary to align 'end_to' on an 4 bytes
__ andcc(end_to, 3, G0);
__ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
__ delayed()->lduh(end_from, -2, O3);
__ dec(end_from, 2);
__ dec(end_to, 2);
__ dec(count);
__ sth(O3, end_to, 0);
__ BIND(L_skip_alignment);
// copy 2 elements to align 'end_to' on an 8 byte boundary
__ andcc(end_to, 7, G0);
__ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
__ delayed()->lduh(end_from, -2, O3);
__ dec(count, 2);
__ lduh(end_from, -4, O4);
__ dec(end_from, 4);
__ dec(end_to, 4);
__ sth(O3, end_to, 2);
__ sth(O4, end_to, 0);
__ BIND(L_skip_alignment2);
}
if (aligned) {
// Both arrays are aligned to 8-bytes in 64-bits VM.
// The 'count' is decremented in copy_16_bytes_backward_with_shift()
// in unaligned case.
__ dec(count, 8);
} else {
// Copy with shift 16 bytes per iteration if arrays do not have
// the same alignment mod 8, otherwise jump to the next
// code for aligned copy (and substracting 8 from 'count' before jump).
// The compare above (count >= 11) guarantes 'count' >= 16 bytes.
// Also jump over aligned copy after the copy with shift completed.
copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
L_aligned_copy, L_copy_2_bytes);
}
// copy 4 elements (16 bytes) at a time
__ align(OptoLoopAlignment);
__ BIND(L_aligned_copy);
__ dec(end_from, 16);
__ ldx(end_from, 8, O3);
__ ldx(end_from, 0, O4);
__ dec(end_to, 16);
__ deccc(count, 8);
__ stx(O3, end_to, 8);
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
__ delayed()->stx(O4, end_to, 0);
__ inc(count, 8);
// copy 1 element (2 bytes) at a time
__ BIND(L_copy_2_bytes);
__ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
__ BIND(L_copy_2_bytes_loop);
__ dec(end_from, 2);
__ dec(end_to, 2);
__ lduh(end_from, 0, O4);
__ deccc(count);
__ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
__ delayed()->sth(O4, end_to, 0);
__ BIND(L_exit);
// O3, O4 are used as temp registers
inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
__ retl();
__ delayed()->mov(G0, O0); // return 0
return start;
}
//
// Helper methods for generate_disjoint_int_copy_core()
//
void copy_16_bytes_loop(Register from, Register to, Register count, int count_dec,
Label& L_loop, bool use_prefetch, bool use_bis) {
__ align(OptoLoopAlignment);
__ BIND(L_loop);
if (use_prefetch) {
if (ArraycopySrcPrefetchDistance > 0) {
__ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
}
if (ArraycopyDstPrefetchDistance > 0) {
__ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
}
}
__ ldx(from, 4, O4);
__ ldx(from, 12, G4);
__ inc(to, 16);
__ inc(from, 16);
__ deccc(count, 4); // Can we do next iteration after this one?
__ srlx(O4, 32, G3);
__ bset(G3, O3);
__ sllx(O4, 32, O4);
__ srlx(G4, 32, G3);
__ bset(G3, O4);
if (use_bis) {
__ stxa(O3, to, -16);
__ stxa(O4, to, -8);
} else {
__ stx(O3, to, -16);
__ stx(O4, to, -8);
}
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
__ delayed()->sllx(G4, 32, O3);
}
//
// Generate core code for disjoint int copy (and oop copy on 32-bit).
// If "aligned" is true, the "from" and "to" addresses are assumed
// to be heapword aligned.
//
// Arguments:
// from: O0
// to: O1
// count: O2 treated as signed
//
void generate_disjoint_int_copy_core(bool aligned) {
Label L_skip_alignment, L_aligned_copy;
Label L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
const Register from = O0; // source array address
const Register to = O1; // destination array address
const Register count = O2; // elements count
const Register offset = O5; // offset from start of arrays
// O3, O4, G3, G4 are used as temp registers
// 'aligned' == true when it is known statically during compilation
// of this arraycopy call site that both 'from' and 'to' addresses
// are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
//
// Aligned arrays have 4 bytes alignment in 32-bits VM
// and 8 bytes - in 64-bits VM.
//
if (!aligned) {
// The next check could be put under 'ifndef' since the code in
// generate_disjoint_long_copy_core() has own checks and set 'offset'.
// for short arrays, just do single element copy
__ cmp(count, 5); // 4 + 1 (20 bytes)
__ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
__ delayed()->mov(G0, offset);
// copy 1 element to align 'to' on an 8 byte boundary
__ andcc(to, 7, G0);
__ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
__ delayed()->ld(from, 0, O3);
__ inc(from, 4);
__ inc(to, 4);
__ dec(count);
__ st(O3, to, -4);
__ BIND(L_skip_alignment);
// if arrays have same alignment mod 8, do 4 elements copy
__ andcc(from, 7, G0);
__ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
__ delayed()->ld(from, 0, O3);
//
// Load 2 aligned 8-bytes chunks and use one from previous iteration
// to form 2 aligned 8-bytes chunks to store.
//
// copy_16_bytes_forward_with_shift() is not used here since this
// code is more optimal.
// copy with shift 4 elements (16 bytes) at a time
__ dec(count, 4); // The cmp at the beginning guaranty count >= 4
__ sllx(O3, 32, O3);
disjoint_copy_core(from, to, count, 2, 16, &StubGenerator::copy_16_bytes_loop);
__ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
__ delayed()->inc(count, 4); // restore 'count'
__ BIND(L_aligned_copy);
} // !aligned
// copy 4 elements (16 bytes) at a time
__ and3(count, 1, G4); // Save
__ srl(count, 1, count);
generate_disjoint_long_copy_core(aligned);
__ mov(G4, count); // Restore
// copy 1 element at a time
__ BIND(L_copy_4_bytes);
__ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
__ BIND(L_copy_4_bytes_loop);
__ ld(from, offset, O3);
__ deccc(count);
__ st(O3, to, offset);
__ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
__ delayed()->inc(offset, 4);
__ BIND(L_exit);
}
//
// Generate stub for disjoint int copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: O0
// to: O1
// count: O2 treated as signed
//
address generate_disjoint_int_copy(bool aligned, address *entry, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
const Register count = O2;
assert_clean_int(count, O3); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
generate_disjoint_int_copy_core(aligned);
// O3, O4 are used as temp registers
inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
__ retl();
__ delayed()->mov(G0, O0); // return 0
return start;
}
//
// Generate core code for conjoint int copy (and oop copy on 32-bit).
// If "aligned" is true, the "from" and "to" addresses are assumed
// to be heapword aligned.
//
// Arguments:
// from: O0
// to: O1
// count: O2 treated as signed
//
void generate_conjoint_int_copy_core(bool aligned) {
// Do reverse copy.
Label L_skip_alignment, L_aligned_copy;
Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
const Register from = O0; // source array address
const Register to = O1; // destination array address
const Register count = O2; // elements count
const Register end_from = from; // source array end address
const Register end_to = to; // destination array end address
// O3, O4, O5, G3 are used as temp registers
const Register byte_count = O3; // bytes count to copy
__ sllx(count, LogBytesPerInt, byte_count);
__ add(to, byte_count, end_to); // offset after last copied element
__ cmp(count, 5); // for short arrays, just do single element copy
__ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
__ delayed()->add(from, byte_count, end_from);
// copy 1 element to align 'to' on an 8 byte boundary
__ andcc(end_to, 7, G0);
__ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
__ delayed()->nop();
__ dec(count);
__ dec(end_from, 4);
__ dec(end_to, 4);
__ ld(end_from, 0, O4);
__ st(O4, end_to, 0);
__ BIND(L_skip_alignment);
// Check if 'end_from' and 'end_to' has the same alignment.
__ andcc(end_from, 7, G0);
__ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
__ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
// copy with shift 4 elements (16 bytes) at a time
//
// Load 2 aligned 8-bytes chunks and use one from previous iteration
// to form 2 aligned 8-bytes chunks to store.
//
__ ldx(end_from, -4, O3);
__ align(OptoLoopAlignment);
__ BIND(L_copy_16_bytes);
__ ldx(end_from, -12, O4);
__ deccc(count, 4);
__ ldx(end_from, -20, O5);
__ dec(end_to, 16);
__ dec(end_from, 16);
__ srlx(O3, 32, O3);
__ sllx(O4, 32, G3);
__ bset(G3, O3);
__ stx(O3, end_to, 8);
__ srlx(O4, 32, O4);
__ sllx(O5, 32, G3);
__ bset(O4, G3);
__ stx(G3, end_to, 0);
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
__ delayed()->mov(O5, O3);
__ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
__ delayed()->inc(count, 4);
// copy 4 elements (16 bytes) at a time
__ align(OptoLoopAlignment);
__ BIND(L_aligned_copy);
__ dec(end_from, 16);
__ ldx(end_from, 8, O3);
__ ldx(end_from, 0, O4);
__ dec(end_to, 16);
__ deccc(count, 4);
__ stx(O3, end_to, 8);
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
__ delayed()->stx(O4, end_to, 0);
__ inc(count, 4);
// copy 1 element (4 bytes) at a time
__ BIND(L_copy_4_bytes);
__ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
__ BIND(L_copy_4_bytes_loop);
__ dec(end_from, 4);
__ dec(end_to, 4);
__ ld(end_from, 0, O4);
__ deccc(count);
__ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
__ delayed()->st(O4, end_to, 0);
__ BIND(L_exit);
}
//
// Generate stub for conjoint int copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: O0
// to: O1
// count: O2 treated as signed
//
address generate_conjoint_int_copy(bool aligned, address nooverlap_target,
address *entry, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
assert_clean_int(O2, O3); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, 2);
generate_conjoint_int_copy_core(aligned);
// O3, O4 are used as temp registers
inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
__ retl();
__ delayed()->mov(G0, O0); // return 0
return start;
}
//
// Helper methods for generate_disjoint_long_copy_core()
//
void copy_64_bytes_loop(Register from, Register to, Register count, int count_dec,
Label& L_loop, bool use_prefetch, bool use_bis) {
__ align(OptoLoopAlignment);
__ BIND(L_loop);
for (int off = 0; off < 64; off += 16) {
if (use_prefetch && (off & 31) == 0) {
if (ArraycopySrcPrefetchDistance > 0) {
__ prefetch(from, ArraycopySrcPrefetchDistance+off, Assembler::severalReads);
}
if (ArraycopyDstPrefetchDistance > 0) {
__ prefetch(to, ArraycopyDstPrefetchDistance+off, Assembler::severalWritesAndPossiblyReads);
}
}
__ ldx(from, off+0, O4);
__ ldx(from, off+8, O5);
if (use_bis) {
__ stxa(O4, to, off+0);
__ stxa(O5, to, off+8);
} else {
__ stx(O4, to, off+0);
__ stx(O5, to, off+8);
}
}
__ deccc(count, 8);
__ inc(from, 64);
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
__ delayed()->inc(to, 64);
}
//
// Generate core code for disjoint long copy (and oop copy on 64-bit).
// "aligned" is ignored, because we must make the stronger
// assumption that both addresses are always 64-bit aligned.
//
// Arguments:
// from: O0
// to: O1
// count: O2 treated as signed
//
// count -= 2;
// if ( count >= 0 ) { // >= 2 elements
// if ( count > 6) { // >= 8 elements
// count -= 6; // original count - 8
// do {
// copy_8_elements;
// count -= 8;
// } while ( count >= 0 );
// count += 6;
// }
// if ( count >= 0 ) { // >= 2 elements
// do {
// copy_2_elements;
// } while ( (count=count-2) >= 0 );
// }
// }
// count += 2;
// if ( count != 0 ) { // 1 element left
// copy_1_element;
// }
//
void generate_disjoint_long_copy_core(bool aligned) {
Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
const Register from = O0; // source array address
const Register to = O1; // destination array address
const Register count = O2; // elements count
const Register offset0 = O4; // element offset
const Register offset8 = O5; // next element offset
__ deccc(count, 2);
__ mov(G0, offset0); // offset from start of arrays (0)
__ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
__ delayed()->add(offset0, 8, offset8);
// Copy by 64 bytes chunks
const Register from64 = O3; // source address
const Register to64 = G3; // destination address
__ subcc(count, 6, O3);
__ brx(Assembler::negative, false, Assembler::pt, L_copy_16_bytes );
__ delayed()->mov(to, to64);
// Now we can use O4(offset0), O5(offset8) as temps
__ mov(O3, count);
// count >= 0 (original count - 8)
__ mov(from, from64);
disjoint_copy_core(from64, to64, count, 3, 64, &StubGenerator::copy_64_bytes_loop);
// Restore O4(offset0), O5(offset8)
__ sub(from64, from, offset0);
__ inccc(count, 6); // restore count
__ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
__ delayed()->add(offset0, 8, offset8);
// Copy by 16 bytes chunks
__ align(OptoLoopAlignment);
__ BIND(L_copy_16_bytes);
__ ldx(from, offset0, O3);
__ ldx(from, offset8, G3);
__ deccc(count, 2);
__ stx(O3, to, offset0);
__ inc(offset0, 16);
__ stx(G3, to, offset8);
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
__ delayed()->inc(offset8, 16);
// Copy last 8 bytes
__ BIND(L_copy_8_bytes);
__ inccc(count, 2);
__ brx(Assembler::zero, true, Assembler::pn, L_exit );
__ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
__ ldx(from, offset0, O3);
__ stx(O3, to, offset0);
__ BIND(L_exit);
}
//
// Generate stub for disjoint long copy.
// "aligned" is ignored, because we must make the stronger
// assumption that both addresses are always 64-bit aligned.
//
// Arguments for generated stub:
// from: O0
// to: O1
// count: O2 treated as signed
//
address generate_disjoint_long_copy(bool aligned, address *entry, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
assert_clean_int(O2, O3); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
generate_disjoint_long_copy_core(aligned);
// O3, O4 are used as temp registers
inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
__ retl();
__ delayed()->mov(G0, O0); // return 0
return start;
}
//
// Generate core code for conjoint long copy (and oop copy on 64-bit).
// "aligned" is ignored, because we must make the stronger
// assumption that both addresses are always 64-bit aligned.
//
// Arguments:
// from: O0
// to: O1
// count: O2 treated as signed
//
void generate_conjoint_long_copy_core(bool aligned) {
// Do reverse copy.
Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
const Register from = O0; // source array address
const Register to = O1; // destination array address
const Register count = O2; // elements count
const Register offset8 = O4; // element offset
const Register offset0 = O5; // previous element offset
__ subcc(count, 1, count);
__ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
__ delayed()->sllx(count, LogBytesPerLong, offset8);
__ sub(offset8, 8, offset0);
__ align(OptoLoopAlignment);
__ BIND(L_copy_16_bytes);
__ ldx(from, offset8, O2);
__ ldx(from, offset0, O3);
__ stx(O2, to, offset8);
__ deccc(offset8, 16); // use offset8 as counter
__ stx(O3, to, offset0);
__ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
__ delayed()->dec(offset0, 16);
__ BIND(L_copy_8_bytes);
__ brx(Assembler::negative, false, Assembler::pn, L_exit );
__ delayed()->nop();
__ ldx(from, 0, O3);
__ stx(O3, to, 0);
__ BIND(L_exit);
}
// Generate stub for conjoint long copy.
// "aligned" is ignored, because we must make the stronger
// assumption that both addresses are always 64-bit aligned.
//
// Arguments for generated stub:
// from: O0
// to: O1
// count: O2 treated as signed
//
address generate_conjoint_long_copy(bool aligned, address nooverlap_target,
address *entry, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
assert(aligned, "Should always be aligned");
assert_clean_int(O2, O3); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, 3);
generate_conjoint_long_copy_core(aligned);
// O3, O4 are used as temp registers
inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
__ retl();
__ delayed()->mov(G0, O0); // return 0
return start;
}
// Generate stub for disjoint oop copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: O0
// to: O1
// count: O2 treated as signed
//
address generate_disjoint_oop_copy(bool aligned, address *entry, const char *name,
bool dest_uninitialized = false) {
const Register from = O0; // source array address
const Register to = O1; // destination array address
const Register count = O2; // elements count
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
assert_clean_int(count, O3); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here
BLOCK_COMMENT("Entry:");
}
// save arguments for barrier generation
__ mov(to, G1);
__ mov(count, G5);
gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
assert_clean_int(count, O3); // Make sure 'count' is clean int.
if (UseCompressedOops) {
generate_disjoint_int_copy_core(aligned);
} else {
generate_disjoint_long_copy_core(aligned);
}
// O0 is used as temp register
gen_write_ref_array_post_barrier(G1, G5, O0);
// O3, O4 are used as temp registers
inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
__ retl();
__ delayed()->mov(G0, O0); // return 0
return start;
}
// Generate stub for conjoint oop copy. If "aligned" is true, the
// "from" and "to" addresses are assumed to be heapword aligned.
//
// Arguments for generated stub:
// from: O0
// to: O1
// count: O2 treated as signed
//
address generate_conjoint_oop_copy(bool aligned, address nooverlap_target,
address *entry, const char *name,
bool dest_uninitialized = false) {
const Register from = O0; // source array address
const Register to = O1; // destination array address
const Register count = O2; // elements count
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
assert_clean_int(count, O3); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
// save arguments for barrier generation
__ mov(to, G1);
__ mov(count, G5);
gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
if (UseCompressedOops) {
generate_conjoint_int_copy_core(aligned);
} else {
generate_conjoint_long_copy_core(aligned);
}
// O0 is used as temp register
gen_write_ref_array_post_barrier(G1, G5, O0);
// O3, O4 are used as temp registers
inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
__ retl();
__ delayed()->mov(G0, O0); // return 0
return start;
}
// Helper for generating a dynamic type check.
// Smashes only the given temp registers.
void generate_type_check(Register sub_klass,
Register super_check_offset,
Register super_klass,
Register temp,
Label& L_success) {
assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
BLOCK_COMMENT("type_check:");
Label L_miss, L_pop_to_miss;
assert_clean_int(super_check_offset, temp);
__ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
&L_success, &L_miss, NULL,
super_check_offset);
BLOCK_COMMENT("type_check_slow_path:");
__ save_frame(0);
__ check_klass_subtype_slow_path(sub_klass->after_save(),
super_klass->after_save(),
L0, L1, L2, L4,
NULL, &L_pop_to_miss);
__ ba(L_success);
__ delayed()->restore();
__ bind(L_pop_to_miss);
__ restore();
// Fall through on failure!
__ BIND(L_miss);
}
// Generate stub for checked oop copy.
//
// Arguments for generated stub:
// from: O0
// to: O1
// count: O2 treated as signed
// ckoff: O3 (super_check_offset)
// ckval: O4 (super_klass)
// ret: O0 zero for success; (-1^K) where K is partial transfer count
//
address generate_checkcast_copy(const char *name, address *entry, bool dest_uninitialized = false) {
const Register O0_from = O0; // source array address
const Register O1_to = O1; // destination array address
const Register O2_count = O2; // elements count
const Register O3_ckoff = O3; // super_check_offset
const Register O4_ckval = O4; // super_klass
const Register O5_offset = O5; // loop var, with stride wordSize
const Register G1_remain = G1; // loop var, with stride -1
const Register G3_oop = G3; // actual oop copied
const Register G4_klass = G4; // oop._klass
const Register G5_super = G5; // oop._klass._primary_supers[ckval]
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
#ifdef ASSERT
// We sometimes save a frame (see generate_type_check below).
// If this will cause trouble, let's fail now instead of later.
__ save_frame(0);
__ restore();
#endif
assert_clean_int(O2_count, G1); // Make sure 'count' is clean int.
#ifdef ASSERT
// caller guarantees that the arrays really are different
// otherwise, we would have to make conjoint checks
{ Label L;
__ mov(O3, G1); // spill: overlap test smashes O3
__ mov(O4, G4); // spill: overlap test smashes O4
array_overlap_test(L, LogBytesPerHeapOop);
__ stop("checkcast_copy within a single array");
__ bind(L);
__ mov(G1, O3);
__ mov(G4, O4);
}
#endif //ASSERT
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from generic stub)
BLOCK_COMMENT("Entry:");
}
gen_write_ref_array_pre_barrier(O1_to, O2_count, dest_uninitialized);
Label load_element, store_element, do_card_marks, fail, done;
__ addcc(O2_count, 0, G1_remain); // initialize loop index, and test it
__ brx(Assembler::notZero, false, Assembler::pt, load_element);
__ delayed()->mov(G0, O5_offset); // offset from start of arrays
// Empty array: Nothing to do.
inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
__ retl();
__ delayed()->set(0, O0); // return 0 on (trivial) success
// ======== begin loop ========
// (Loop is rotated; its entry is load_element.)
// Loop variables:
// (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
// (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
// G3, G4, G5 --- current oop, oop.klass, oop.klass.super
__ align(OptoLoopAlignment);
__ BIND(store_element);
__ deccc(G1_remain); // decrement the count
__ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
__ inc(O5_offset, heapOopSize); // step to next offset
__ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
__ delayed()->set(0, O0); // return -1 on success
// ======== loop entry is here ========
__ BIND(load_element);
__ load_heap_oop(O0_from, O5_offset, G3_oop); // load the oop
__ br_null_short(G3_oop, Assembler::pt, store_element);
__ load_klass(G3_oop, G4_klass); // query the object klass
generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
// branch to this on success:
store_element);
// ======== end loop ========
// It was a real error; we must depend on the caller to finish the job.
// Register G1 has number of *remaining* oops, O2 number of *total* oops.
// Emit GC store barriers for the oops we have copied (O2 minus G1),
// and report their number to the caller.
__ BIND(fail);
__ subcc(O2_count, G1_remain, O2_count);
__ brx(Assembler::zero, false, Assembler::pt, done);
__ delayed()->not1(O2_count, O0); // report (-1^K) to caller
__ BIND(do_card_marks);
gen_write_ref_array_post_barrier(O1_to, O2_count, O3); // store check on O1[0..O2]
__ BIND(done);
inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
__ retl();
__ delayed()->nop(); // return value in 00
return start;
}
// Generate 'unsafe' array copy stub
// Though just as safe as the other stubs, it takes an unscaled
// size_t argument instead of an element count.
//
// Arguments for generated stub:
// from: O0
// to: O1
// count: O2 byte count, treated as ssize_t, can be zero
//
// Examines the alignment of the operands and dispatches
// to a long, int, short, or byte copy loop.
//
address generate_unsafe_copy(const char* name,
address byte_copy_entry,
address short_copy_entry,
address int_copy_entry,
address long_copy_entry) {
const Register O0_from = O0; // source array address
const Register O1_to = O1; // destination array address
const Register O2_count = O2; // elements count
const Register G1_bits = G1; // test copy of low bits
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
// bump this on entry, not on exit:
inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
__ or3(O0_from, O1_to, G1_bits);
__ or3(O2_count, G1_bits, G1_bits);
__ btst(BytesPerLong-1, G1_bits);
__ br(Assembler::zero, true, Assembler::pt,
long_copy_entry, relocInfo::runtime_call_type);
// scale the count on the way out:
__ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
__ btst(BytesPerInt-1, G1_bits);
__ br(Assembler::zero, true, Assembler::pt,
int_copy_entry, relocInfo::runtime_call_type);
// scale the count on the way out:
__ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
__ btst(BytesPerShort-1, G1_bits);
__ br(Assembler::zero, true, Assembler::pt,
short_copy_entry, relocInfo::runtime_call_type);
// scale the count on the way out:
__ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
__ br(Assembler::always, false, Assembler::pt,
byte_copy_entry, relocInfo::runtime_call_type);
__ delayed()->nop();
return start;
}
// Perform range checks on the proposed arraycopy.
// Kills the two temps, but nothing else.
// Also, clean the sign bits of src_pos and dst_pos.
void arraycopy_range_checks(Register src, // source array oop (O0)
Register src_pos, // source position (O1)
Register dst, // destination array oo (O2)
Register dst_pos, // destination position (O3)
Register length, // length of copy (O4)
Register temp1, Register temp2,
Label& L_failed) {
BLOCK_COMMENT("arraycopy_range_checks:");
// if (src_pos + length > arrayOop(src)->length() ) FAIL;
const Register array_length = temp1; // scratch
const Register end_pos = temp2; // scratch
// Note: This next instruction may be in the delay slot of a branch:
__ add(length, src_pos, end_pos); // src_pos + length
__ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
__ cmp(end_pos, array_length);
__ br(Assembler::greater, false, Assembler::pn, L_failed);
// if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
__ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
__ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
__ cmp(end_pos, array_length);
__ br(Assembler::greater, false, Assembler::pn, L_failed);
// Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
// Move with sign extension can be used since they are positive.
__ delayed()->signx(src_pos, src_pos);
__ signx(dst_pos, dst_pos);
BLOCK_COMMENT("arraycopy_range_checks done");
}
//
// Generate generic array copy stubs
//
// Input:
// O0 - src oop
// O1 - src_pos
// O2 - dst oop
// O3 - dst_pos
// O4 - element count
//
// Output:
// O0 == 0 - success
// O0 == -1 - need to call System.arraycopy
//
address generate_generic_copy(const char *name,
address entry_jbyte_arraycopy,
address entry_jshort_arraycopy,
address entry_jint_arraycopy,
address entry_oop_arraycopy,
address entry_jlong_arraycopy,
address entry_checkcast_arraycopy) {
Label L_failed, L_objArray;
// Input registers
const Register src = O0; // source array oop
const Register src_pos = O1; // source position
const Register dst = O2; // destination array oop
const Register dst_pos = O3; // destination position
const Register length = O4; // elements count
// registers used as temp
const Register G3_src_klass = G3; // source array klass
const Register G4_dst_klass = G4; // destination array klass
const Register G5_lh = G5; // layout handler
const Register O5_temp = O5;
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
// bump this on entry, not on exit:
inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
// In principle, the int arguments could be dirty.
//assert_clean_int(src_pos, G1);
//assert_clean_int(dst_pos, G1);
//assert_clean_int(length, G1);
//-----------------------------------------------------------------------
// Assembler stubs will be used for this call to arraycopy
// if the following conditions are met:
//
// (1) src and dst must not be null.
// (2) src_pos must not be negative.
// (3) dst_pos must not be negative.
// (4) length must not be negative.
// (5) src klass and dst klass should be the same and not NULL.
// (6) src and dst should be arrays.
// (7) src_pos + length must not exceed length of src.
// (8) dst_pos + length must not exceed length of dst.
BLOCK_COMMENT("arraycopy initial argument checks");
// if (src == NULL) return -1;
__ br_null(src, false, Assembler::pn, L_failed);
// if (src_pos < 0) return -1;
__ delayed()->tst(src_pos);
__ br(Assembler::negative, false, Assembler::pn, L_failed);
__ delayed()->nop();
// if (dst == NULL) return -1;
__ br_null(dst, false, Assembler::pn, L_failed);
// if (dst_pos < 0) return -1;
__ delayed()->tst(dst_pos);
__ br(Assembler::negative, false, Assembler::pn, L_failed);
// if (length < 0) return -1;
__ delayed()->tst(length);
__ br(Assembler::negative, false, Assembler::pn, L_failed);
BLOCK_COMMENT("arraycopy argument klass checks");
// get src->klass()
if (UseCompressedClassPointers) {
__ delayed()->nop(); // ??? not good
__ load_klass(src, G3_src_klass);
} else {
__ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
}
#ifdef ASSERT
// assert(src->klass() != NULL);
BLOCK_COMMENT("assert klasses not null");
{ Label L_a, L_b;
__ br_notnull_short(G3_src_klass, Assembler::pt, L_b); // it is broken if klass is NULL
__ bind(L_a);
__ stop("broken null klass");
__ bind(L_b);
__ load_klass(dst, G4_dst_klass);
__ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
__ delayed()->mov(G0, G4_dst_klass); // scribble the temp
BLOCK_COMMENT("assert done");
}
#endif
// Load layout helper
//
// |array_tag| | header_size | element_type | |log2_element_size|
// 32 30 24 16 8 2 0
//
// array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
//
int lh_offset = in_bytes(Klass::layout_helper_offset());
// Load 32-bits signed value. Use br() instruction with it to check icc.
__ lduw(G3_src_klass, lh_offset, G5_lh);
if (UseCompressedClassPointers) {
__ load_klass(dst, G4_dst_klass);
}
// Handle objArrays completely differently...
juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
__ set(objArray_lh, O5_temp);
__ cmp(G5_lh, O5_temp);
__ br(Assembler::equal, false, Assembler::pt, L_objArray);
if (UseCompressedClassPointers) {
__ delayed()->nop();
} else {
__ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
}
// if (src->klass() != dst->klass()) return -1;
__ cmp_and_brx_short(G3_src_klass, G4_dst_klass, Assembler::notEqual, Assembler::pn, L_failed);
// if (!src->is_Array()) return -1;
__ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
__ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
// At this point, it is known to be a typeArray (array_tag 0x3).
#ifdef ASSERT
__ delayed()->nop();
{ Label L;
jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
__ set(lh_prim_tag_in_place, O5_temp);
__ cmp(G5_lh, O5_temp);
__ br(Assembler::greaterEqual, false, Assembler::pt, L);
__ delayed()->nop();
__ stop("must be a primitive array");
__ bind(L);
}
#else
__ delayed(); // match next insn to prev branch
#endif
arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
O5_temp, G4_dst_klass, L_failed);
// TypeArrayKlass
//
// src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
// dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
//
const Register G4_offset = G4_dst_klass; // array offset
const Register G3_elsize = G3_src_klass; // log2 element size
__ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
__ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
__ add(src, G4_offset, src); // src array offset
__ add(dst, G4_offset, dst); // dst array offset
__ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
// next registers should be set before the jump to corresponding stub
const Register from = O0; // source array address
const Register to = O1; // destination array address
const Register count = O2; // elements count
// 'from', 'to', 'count' registers should be set in this order
// since they are the same as 'src', 'src_pos', 'dst'.
BLOCK_COMMENT("scale indexes to element size");
__ sll_ptr(src_pos, G3_elsize, src_pos);
__ sll_ptr(dst_pos, G3_elsize, dst_pos);
__ add(src, src_pos, from); // src_addr
__ add(dst, dst_pos, to); // dst_addr
BLOCK_COMMENT("choose copy loop based on element size");
__ cmp(G3_elsize, 0);
__ br(Assembler::equal, true, Assembler::pt, entry_jbyte_arraycopy);
__ delayed()->signx(length, count); // length
__ cmp(G3_elsize, LogBytesPerShort);
__ br(Assembler::equal, true, Assembler::pt, entry_jshort_arraycopy);
__ delayed()->signx(length, count); // length
__ cmp(G3_elsize, LogBytesPerInt);
__ br(Assembler::equal, true, Assembler::pt, entry_jint_arraycopy);
__ delayed()->signx(length, count); // length
#ifdef ASSERT
{ Label L;
__ cmp_and_br_short(G3_elsize, LogBytesPerLong, Assembler::equal, Assembler::pt, L);
__ stop("must be long copy, but elsize is wrong");
__ bind(L);
}
#endif
__ br(Assembler::always, false, Assembler::pt, entry_jlong_arraycopy);
__ delayed()->signx(length, count); // length
// ObjArrayKlass
__ BIND(L_objArray);
// live at this point: G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
Label L_plain_copy, L_checkcast_copy;
// test array classes for subtyping
__ cmp(G3_src_klass, G4_dst_klass); // usual case is exact equality
__ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
__ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
// Identically typed arrays can be copied without element-wise checks.
arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
O5_temp, G5_lh, L_failed);
__ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
__ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
__ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
__ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
__ add(src, src_pos, from); // src_addr
__ add(dst, dst_pos, to); // dst_addr
__ BIND(L_plain_copy);
__ br(Assembler::always, false, Assembler::pt, entry_oop_arraycopy);
__ delayed()->signx(length, count); // length
__ BIND(L_checkcast_copy);
// live at this point: G3_src_klass, G4_dst_klass
{
// Before looking at dst.length, make sure dst is also an objArray.
// lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
__ cmp(G5_lh, O5_temp);
__ br(Assembler::notEqual, false, Assembler::pn, L_failed);
// It is safe to examine both src.length and dst.length.
__ delayed(); // match next insn to prev branch
arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
O5_temp, G5_lh, L_failed);
// Marshal the base address arguments now, freeing registers.
__ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
__ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
__ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
__ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
__ add(src, src_pos, from); // src_addr
__ add(dst, dst_pos, to); // dst_addr
__ signx(length, count); // length (reloaded)
Register sco_temp = O3; // this register is free now
assert_different_registers(from, to, count, sco_temp,
G4_dst_klass, G3_src_klass);
// Generate the type check.
int sco_offset = in_bytes(Klass::super_check_offset_offset());
__ lduw(G4_dst_klass, sco_offset, sco_temp);
generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
O5_temp, L_plain_copy);
// Fetch destination element klass from the ObjArrayKlass header.
int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
// the checkcast_copy loop needs two extra arguments:
__ ld_ptr(G4_dst_klass, ek_offset, O4); // dest elem klass
// lduw(O4, sco_offset, O3); // sco of elem klass
__ br(Assembler::always, false, Assembler::pt, entry_checkcast_arraycopy);
__ delayed()->lduw(O4, sco_offset, O3);
}
__ BIND(L_failed);
__ retl();
__ delayed()->sub(G0, 1, O0); // return -1
return start;
}
//
// Generate stub for heap zeroing.
// "to" address is aligned to jlong (8 bytes).
//
// Arguments for generated stub:
// to: O0
// count: O1 treated as signed (count of HeapWord)
// count could be 0
//
address generate_zero_aligned_words(const char* name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
const Register to = O0; // source array address
const Register count = O1; // HeapWords count
const Register temp = O2; // scratch
Label Ldone;
__ sllx(count, LogHeapWordSize, count); // to bytes count
// Use BIS for zeroing
__ bis_zeroing(to, count, temp, Ldone);
__ bind(Ldone);
__ retl();
__ delayed()->nop();
return start;
}
void generate_arraycopy_stubs() {
address entry;
address entry_jbyte_arraycopy;
address entry_jshort_arraycopy;
address entry_jint_arraycopy;
address entry_oop_arraycopy;
address entry_jlong_arraycopy;
address entry_checkcast_arraycopy;
//*** jbyte
// Always need aligned and unaligned versions
StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
"jbyte_disjoint_arraycopy");
StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry,
&entry_jbyte_arraycopy,
"jbyte_arraycopy");
StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, &entry,
"arrayof_jbyte_disjoint_arraycopy");
StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, entry, NULL,
"arrayof_jbyte_arraycopy");
//*** jshort
// Always need aligned and unaligned versions
StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
"jshort_disjoint_arraycopy");
StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry,
&entry_jshort_arraycopy,
"jshort_arraycopy");
StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, &entry,
"arrayof_jshort_disjoint_arraycopy");
StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, entry, NULL,
"arrayof_jshort_arraycopy");
//*** jint
// Aligned versions
StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, &entry,
"arrayof_jint_disjoint_arraycopy");
StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, entry, &entry_jint_arraycopy,
"arrayof_jint_arraycopy");
// In 64 bit we need both aligned and unaligned versions of jint arraycopy.
// entry_jint_arraycopy always points to the unaligned version (notice that we overwrite it).
StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, &entry,
"jint_disjoint_arraycopy");
StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, entry,
&entry_jint_arraycopy,
"jint_arraycopy");
//*** jlong
// It is always aligned
StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, &entry,
"arrayof_jlong_disjoint_arraycopy");
StubRoutines::_arrayof_jlong_arraycopy = generate_conjoint_long_copy(true, entry, &entry_jlong_arraycopy,
"arrayof_jlong_arraycopy");
StubRoutines::_jlong_disjoint_arraycopy = StubRoutines::_arrayof_jlong_disjoint_arraycopy;
StubRoutines::_jlong_arraycopy = StubRoutines::_arrayof_jlong_arraycopy;
//*** oops
// Aligned versions
StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, &entry,
"arrayof_oop_disjoint_arraycopy");
StubRoutines::_arrayof_oop_arraycopy = generate_conjoint_oop_copy(true, entry, &entry_oop_arraycopy,
"arrayof_oop_arraycopy");
// Aligned versions without pre-barriers
StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, &entry,
"arrayof_oop_disjoint_arraycopy_uninit",
/*dest_uninitialized*/true);
StubRoutines::_arrayof_oop_arraycopy_uninit = generate_conjoint_oop_copy(true, entry, NULL,
"arrayof_oop_arraycopy_uninit",
/*dest_uninitialized*/true);
if (UseCompressedOops) {
// With compressed oops we need unaligned versions, notice that we overwrite entry_oop_arraycopy.
StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, &entry,
"oop_disjoint_arraycopy");
StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, entry, &entry_oop_arraycopy,
"oop_arraycopy");
// Unaligned versions without pre-barriers
StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(false, &entry,
"oop_disjoint_arraycopy_uninit",
/*dest_uninitialized*/true);
StubRoutines::_oop_arraycopy_uninit = generate_conjoint_oop_copy(false, entry, NULL,
"oop_arraycopy_uninit",
/*dest_uninitialized*/true);
} else {
// oop arraycopy is always aligned on 32bit and 64bit without compressed oops
StubRoutines::_oop_disjoint_arraycopy = StubRoutines::_arrayof_oop_disjoint_arraycopy;
StubRoutines::_oop_arraycopy = StubRoutines::_arrayof_oop_arraycopy;
StubRoutines::_oop_disjoint_arraycopy_uninit = StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit;
StubRoutines::_oop_arraycopy_uninit = StubRoutines::_arrayof_oop_arraycopy_uninit;
}
StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
/*dest_uninitialized*/true);
StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
entry_jbyte_arraycopy,
entry_jshort_arraycopy,
entry_jint_arraycopy,
entry_jlong_arraycopy);
StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
entry_jbyte_arraycopy,
entry_jshort_arraycopy,
entry_jint_arraycopy,
entry_oop_arraycopy,
entry_jlong_arraycopy,
entry_checkcast_arraycopy);
StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
if (UseBlockZeroing) {
StubRoutines::_zero_aligned_words = generate_zero_aligned_words("zero_aligned_words");
}
}
address generate_aescrypt_encryptBlock() {
// required since we read expanded key 'int' array starting first element without alignment considerations
assert((arrayOopDesc::base_offset_in_bytes(T_INT) & 7) == 0,
"the following code assumes that first element of an int array is aligned to 8 bytes");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
Label L_load_misaligned_input, L_load_expanded_key, L_doLast128bit, L_storeOutput, L_store_misaligned_output;
address start = __ pc();
Register from = O0; // source byte array
Register to = O1; // destination byte array
Register key = O2; // expanded key array
const Register keylen = O4; //reg for storing expanded key array length
// read expanded key length
__ ldsw(Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)), keylen, 0);
// Method to address arbitrary alignment for load instructions:
// Check last 3 bits of 'from' address to see if it is aligned to 8-byte boundary
// If zero/aligned then continue with double FP load instructions
// If not zero/mis-aligned then alignaddr will set GSR.align with number of bytes to skip during faligndata
// alignaddr will also convert arbitrary aligned 'from' address to nearest 8-byte aligned address
// load 3 * 8-byte components (to read 16 bytes input) in 3 different FP regs starting at this aligned address
// faligndata will then extract (based on GSR.align value) the appropriate 8 bytes from the 2 source regs
// check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
__ andcc(from, 7, G0);
__ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input);
__ delayed()->alignaddr(from, G0, from);
// aligned case: load input into F54-F56
__ ldf(FloatRegisterImpl::D, from, 0, F54);
__ ldf(FloatRegisterImpl::D, from, 8, F56);
__ ba_short(L_load_expanded_key);
__ BIND(L_load_misaligned_input);
__ ldf(FloatRegisterImpl::D, from, 0, F54);
__ ldf(FloatRegisterImpl::D, from, 8, F56);
__ ldf(FloatRegisterImpl::D, from, 16, F58);
__ faligndata(F54, F56, F54);
__ faligndata(F56, F58, F56);
__ BIND(L_load_expanded_key);
// Since we load expanded key buffers starting first element, 8-byte alignment is guaranteed
for ( int i = 0; i <= 38; i += 2 ) {
__ ldf(FloatRegisterImpl::D, key, i*4, as_FloatRegister(i));
}
// perform cipher transformation
__ fxor(FloatRegisterImpl::D, F0, F54, F54);
__ fxor(FloatRegisterImpl::D, F2, F56, F56);
// rounds 1 through 8
for ( int i = 4; i <= 28; i += 8 ) {
__ aes_eround01(as_FloatRegister(i), F54, F56, F58);
__ aes_eround23(as_FloatRegister(i+2), F54, F56, F60);
__ aes_eround01(as_FloatRegister(i+4), F58, F60, F54);
__ aes_eround23(as_FloatRegister(i+6), F58, F60, F56);
}
__ aes_eround01(F36, F54, F56, F58); //round 9
__ aes_eround23(F38, F54, F56, F60);
// 128-bit original key size
__ cmp_and_brx_short(keylen, 44, Assembler::equal, Assembler::pt, L_doLast128bit);
for ( int i = 40; i <= 50; i += 2 ) {
__ ldf(FloatRegisterImpl::D, key, i*4, as_FloatRegister(i) );
}
__ aes_eround01(F40, F58, F60, F54); //round 10
__ aes_eround23(F42, F58, F60, F56);
__ aes_eround01(F44, F54, F56, F58); //round 11
__ aes_eround23(F46, F54, F56, F60);
// 192-bit original key size
__ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pt, L_storeOutput);
__ ldf(FloatRegisterImpl::D, key, 208, F52);
__ aes_eround01(F48, F58, F60, F54); //round 12
__ aes_eround23(F50, F58, F60, F56);
__ ldf(FloatRegisterImpl::D, key, 216, F46);
__ ldf(FloatRegisterImpl::D, key, 224, F48);
__ ldf(FloatRegisterImpl::D, key, 232, F50);
__ aes_eround01(F52, F54, F56, F58); //round 13
__ aes_eround23(F46, F54, F56, F60);
__ ba_short(L_storeOutput);
__ BIND(L_doLast128bit);
__ ldf(FloatRegisterImpl::D, key, 160, F48);
__ ldf(FloatRegisterImpl::D, key, 168, F50);
__ BIND(L_storeOutput);
// perform last round of encryption common for all key sizes
__ aes_eround01_l(F48, F58, F60, F54); //last round
__ aes_eround23_l(F50, F58, F60, F56);
// Method to address arbitrary alignment for store instructions:
// Check last 3 bits of 'dest' address to see if it is aligned to 8-byte boundary
// If zero/aligned then continue with double FP store instructions
// If not zero/mis-aligned then edge8n will generate edge mask in result reg (O3 in below case)
// Example: If dest address is 0x07 and nearest 8-byte aligned address is 0x00 then edge mask will be 00000001
// Compute (8-n) where n is # of bytes skipped by partial store(stpartialf) inst from edge mask, n=7 in this case
// We get the value of n from the andcc that checks 'dest' alignment. n is available in O5 in below case.
// Set GSR.align to (8-n) using alignaddr
// Circular byte shift store values by n places so that the original bytes are at correct position for stpartialf
// Set the arbitrarily aligned 'dest' address to nearest 8-byte aligned address
// Store (partial) the original first (8-n) bytes starting at the original 'dest' address
// Negate the edge mask so that the subsequent stpartialf can store the original (8-n-1)th through 8th bytes at appropriate address
// We need to execute this process for both the 8-byte result values
// check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
__ andcc(to, 7, O5);
__ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output);
__ delayed()->edge8n(to, G0, O3);
// aligned case: store output into the destination array
__ stf(FloatRegisterImpl::D, F54, to, 0);
__ retl();
__ delayed()->stf(FloatRegisterImpl::D, F56, to, 8);
__ BIND(L_store_misaligned_output);
__ add(to, 8, O4);
__ mov(8, O2);
__ sub(O2, O5, O2);
__ alignaddr(O2, G0, O2);
__ faligndata(F54, F54, F54);
__ faligndata(F56, F56, F56);
__ and3(to, -8, to);
__ and3(O4, -8, O4);
__ stpartialf(to, O3, F54, Assembler::ASI_PST8_PRIMARY);
__ stpartialf(O4, O3, F56, Assembler::ASI_PST8_PRIMARY);
__ add(to, 8, to);
__ add(O4, 8, O4);
__ orn(G0, O3, O3);
__ stpartialf(to, O3, F54, Assembler::ASI_PST8_PRIMARY);
__ retl();
__ delayed()->stpartialf(O4, O3, F56, Assembler::ASI_PST8_PRIMARY);
return start;
}
address generate_aescrypt_decryptBlock() {
assert((arrayOopDesc::base_offset_in_bytes(T_INT) & 7) == 0,
"the following code assumes that first element of an int array is aligned to 8 bytes");
// required since we read original key 'byte' array as well in the decryption stubs
assert((arrayOopDesc::base_offset_in_bytes(T_BYTE) & 7) == 0,
"the following code assumes that first element of a byte array is aligned to 8 bytes");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
address start = __ pc();
Label L_load_misaligned_input, L_load_original_key, L_expand192bit, L_expand256bit, L_reload_misaligned_input;
Label L_256bit_transform, L_common_transform, L_store_misaligned_output;
Register from = O0; // source byte array
Register to = O1; // destination byte array
Register key = O2; // expanded key array
Register original_key = O3; // original key array only required during decryption
const Register keylen = O4; // reg for storing expanded key array length
// read expanded key array length
__ ldsw(Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)), keylen, 0);
// save 'from' since we may need to recheck alignment in case of 256-bit decryption
__ mov(from, G1);
// check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
__ andcc(from, 7, G0);
__ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input);
__ delayed()->alignaddr(from, G0, from);
// aligned case: load input into F52-F54
__ ldf(FloatRegisterImpl::D, from, 0, F52);
__ ldf(FloatRegisterImpl::D, from, 8, F54);
__ ba_short(L_load_original_key);
__ BIND(L_load_misaligned_input);
__ ldf(FloatRegisterImpl::D, from, 0, F52);
__ ldf(FloatRegisterImpl::D, from, 8, F54);
__ ldf(FloatRegisterImpl::D, from, 16, F56);
__ faligndata(F52, F54, F52);
__ faligndata(F54, F56, F54);
__ BIND(L_load_original_key);
// load original key from SunJCE expanded decryption key
// Since we load original key buffer starting first element, 8-byte alignment is guaranteed
for ( int i = 0; i <= 3; i++ ) {
__ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i));
}
// 256-bit original key size
__ cmp_and_brx_short(keylen, 60, Assembler::equal, Assembler::pn, L_expand256bit);
// 192-bit original key size
__ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pn, L_expand192bit);
// 128-bit original key size
// perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
for ( int i = 0; i <= 36; i += 4 ) {
__ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+2), i/4, as_FloatRegister(i+4));
__ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+4), as_FloatRegister(i+6));
}
// perform 128-bit key specific inverse cipher transformation
__ fxor(FloatRegisterImpl::D, F42, F54, F54);
__ fxor(FloatRegisterImpl::D, F40, F52, F52);
__ ba_short(L_common_transform);
__ BIND(L_expand192bit);
// start loading rest of the 192-bit key
__ ldf(FloatRegisterImpl::S, original_key, 16, F4);
__ ldf(FloatRegisterImpl::S, original_key, 20, F5);
// perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
for ( int i = 0; i <= 36; i += 6 ) {
__ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+4), i/6, as_FloatRegister(i+6));
__ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+6), as_FloatRegister(i+8));
__ aes_kexpand2(as_FloatRegister(i+4), as_FloatRegister(i+8), as_FloatRegister(i+10));
}
__ aes_kexpand1(F42, F46, 7, F48);
__ aes_kexpand2(F44, F48, F50);
// perform 192-bit key specific inverse cipher transformation
__ fxor(FloatRegisterImpl::D, F50, F54, F54);
__ fxor(FloatRegisterImpl::D, F48, F52, F52);
__ aes_dround23(F46, F52, F54, F58);
__ aes_dround01(F44, F52, F54, F56);
__ aes_dround23(F42, F56, F58, F54);
__ aes_dround01(F40, F56, F58, F52);
__ ba_short(L_common_transform);
__ BIND(L_expand256bit);
// load rest of the 256-bit key
for ( int i = 4; i <= 7; i++ ) {
__ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i));
}
// perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
for ( int i = 0; i <= 40; i += 8 ) {
__ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+6), i/8, as_FloatRegister(i+8));
__ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+8), as_FloatRegister(i+10));
__ aes_kexpand0(as_FloatRegister(i+4), as_FloatRegister(i+10), as_FloatRegister(i+12));
__ aes_kexpand2(as_FloatRegister(i+6), as_FloatRegister(i+12), as_FloatRegister(i+14));
}
__ aes_kexpand1(F48, F54, 6, F56);
__ aes_kexpand2(F50, F56, F58);
for ( int i = 0; i <= 6; i += 2 ) {
__ fsrc2(FloatRegisterImpl::D, as_FloatRegister(58-i), as_FloatRegister(i));
}
// reload original 'from' address
__ mov(G1, from);
// re-check 8-byte alignment
__ andcc(from, 7, G0);
__ br(Assembler::notZero, true, Assembler::pn, L_reload_misaligned_input);
__ delayed()->alignaddr(from, G0, from);
// aligned case: load input into F52-F54
__ ldf(FloatRegisterImpl::D, from, 0, F52);
__ ldf(FloatRegisterImpl::D, from, 8, F54);
__ ba_short(L_256bit_transform);
__ BIND(L_reload_misaligned_input);
__ ldf(FloatRegisterImpl::D, from, 0, F52);
__ ldf(FloatRegisterImpl::D, from, 8, F54);
__ ldf(FloatRegisterImpl::D, from, 16, F56);
__ faligndata(F52, F54, F52);
__ faligndata(F54, F56, F54);
// perform 256-bit key specific inverse cipher transformation
__ BIND(L_256bit_transform);
__ fxor(FloatRegisterImpl::D, F0, F54, F54);
__ fxor(FloatRegisterImpl::D, F2, F52, F52);
__ aes_dround23(F4, F52, F54, F58);
__ aes_dround01(F6, F52, F54, F56);
__ aes_dround23(F50, F56, F58, F54);
__ aes_dround01(F48, F56, F58, F52);
__ aes_dround23(F46, F52, F54, F58);
__ aes_dround01(F44, F52, F54, F56);
__ aes_dround23(F42, F56, F58, F54);
__ aes_dround01(F40, F56, F58, F52);
for ( int i = 0; i <= 7; i++ ) {
__ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i));
}
// perform inverse cipher transformations common for all key sizes
__ BIND(L_common_transform);
for ( int i = 38; i >= 6; i -= 8 ) {
__ aes_dround23(as_FloatRegister(i), F52, F54, F58);
__ aes_dround01(as_FloatRegister(i-2), F52, F54, F56);
if ( i != 6) {
__ aes_dround23(as_FloatRegister(i-4), F56, F58, F54);
__ aes_dround01(as_FloatRegister(i-6), F56, F58, F52);
} else {
__ aes_dround23_l(as_FloatRegister(i-4), F56, F58, F54);
__ aes_dround01_l(as_FloatRegister(i-6), F56, F58, F52);
}
}
// check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
__ andcc(to, 7, O5);
__ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output);
__ delayed()->edge8n(to, G0, O3);
// aligned case: store output into the destination array
__ stf(FloatRegisterImpl::D, F52, to, 0);
__ retl();
__ delayed()->stf(FloatRegisterImpl::D, F54, to, 8);
__ BIND(L_store_misaligned_output);
__ add(to, 8, O4);
__ mov(8, O2);
__ sub(O2, O5, O2);
__ alignaddr(O2, G0, O2);
__ faligndata(F52, F52, F52);
__ faligndata(F54, F54, F54);
__ and3(to, -8, to);
__ and3(O4, -8, O4);
__ stpartialf(to, O3, F52, Assembler::ASI_PST8_PRIMARY);
__ stpartialf(O4, O3, F54, Assembler::ASI_PST8_PRIMARY);
__ add(to, 8, to);
__ add(O4, 8, O4);
__ orn(G0, O3, O3);
__ stpartialf(to, O3, F52, Assembler::ASI_PST8_PRIMARY);
__ retl();
__ delayed()->stpartialf(O4, O3, F54, Assembler::ASI_PST8_PRIMARY);
return start;
}
address generate_cipherBlockChaining_encryptAESCrypt() {
assert((arrayOopDesc::base_offset_in_bytes(T_INT) & 7) == 0,
"the following code assumes that first element of an int array is aligned to 8 bytes");
assert((arrayOopDesc::base_offset_in_bytes(T_BYTE) & 7) == 0,
"the following code assumes that first element of a byte array is aligned to 8 bytes");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
Label L_cbcenc128, L_load_misaligned_input_128bit, L_128bit_transform, L_store_misaligned_output_128bit;
Label L_check_loop_end_128bit, L_cbcenc192, L_load_misaligned_input_192bit, L_192bit_transform;
Label L_store_misaligned_output_192bit, L_check_loop_end_192bit, L_cbcenc256, L_load_misaligned_input_256bit;
Label L_256bit_transform, L_store_misaligned_output_256bit, L_check_loop_end_256bit;
address start = __ pc();
Register from = I0; // source byte array
Register to = I1; // destination byte array
Register key = I2; // expanded key array
Register rvec = I3; // init vector
const Register len_reg = I4; // cipher length
const Register keylen = I5; // reg for storing expanded key array length
__ save_frame(0);
// save cipher len to return in the end
__ mov(len_reg, L0);
// read expanded key length
__ ldsw(Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)), keylen, 0);
// load initial vector, 8-byte alignment is guranteed
__ ldf(FloatRegisterImpl::D, rvec, 0, F60);
__ ldf(FloatRegisterImpl::D, rvec, 8, F62);
// load key, 8-byte alignment is guranteed
__ ldx(key,0,G1);
__ ldx(key,8,G5);
// start loading expanded key, 8-byte alignment is guranteed
for ( int i = 0, j = 16; i <= 38; i += 2, j += 8 ) {
__ ldf(FloatRegisterImpl::D, key, j, as_FloatRegister(i));
}
// 128-bit original key size
__ cmp_and_brx_short(keylen, 44, Assembler::equal, Assembler::pt, L_cbcenc128);
for ( int i = 40, j = 176; i <= 46; i += 2, j += 8 ) {
__ ldf(FloatRegisterImpl::D, key, j, as_FloatRegister(i));
}
// 192-bit original key size
__ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pt, L_cbcenc192);
for ( int i = 48, j = 208; i <= 54; i += 2, j += 8 ) {
__ ldf(FloatRegisterImpl::D, key, j, as_FloatRegister(i));
}
// 256-bit original key size
__ ba_short(L_cbcenc256);
__ align(OptoLoopAlignment);
__ BIND(L_cbcenc128);
// check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
__ andcc(from, 7, G0);
__ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input_128bit);
__ delayed()->mov(from, L1); // save original 'from' address before alignaddr
// aligned case: load input into G3 and G4
__ ldx(from,0,G3);
__ ldx(from,8,G4);
__ ba_short(L_128bit_transform);
__ BIND(L_load_misaligned_input_128bit);
// can clobber F48, F50 and F52 as they are not used in 128 and 192-bit key encryption
__ alignaddr(from, G0, from);
__ ldf(FloatRegisterImpl::D, from, 0, F48);
__ ldf(FloatRegisterImpl::D, from, 8, F50);
__ ldf(FloatRegisterImpl::D, from, 16, F52);
__ faligndata(F48, F50, F48);
__ faligndata(F50, F52, F50);
__ movdtox(F48, G3);
__ movdtox(F50, G4);
__ mov(L1, from);
__ BIND(L_128bit_transform);
__ xor3(G1,G3,G3);
__ xor3(G5,G4,G4);
__ movxtod(G3,F56);
__ movxtod(G4,F58);
__ fxor(FloatRegisterImpl::D, F60, F56, F60);
__ fxor(FloatRegisterImpl::D, F62, F58, F62);
// TEN_EROUNDS
for ( int i = 0; i <= 32; i += 8 ) {
__ aes_eround01(as_FloatRegister(i), F60, F62, F56);
__ aes_eround23(as_FloatRegister(i+2), F60, F62, F58);
if (i != 32 ) {
__ aes_eround01(as_FloatRegister(i+4), F56, F58, F60);
__ aes_eround23(as_FloatRegister(i+6), F56, F58, F62);
} else {
__ aes_eround01_l(as_FloatRegister(i+4), F56, F58, F60);
__ aes_eround23_l(as_FloatRegister(i+6), F56, F58, F62);
}
}
// check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
__ andcc(to, 7, L1);
__ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_128bit);
__ delayed()->edge8n(to, G0, L2);
// aligned case: store output into the destination array
__ stf(FloatRegisterImpl::D, F60, to, 0);
__ stf(FloatRegisterImpl::D, F62, to, 8);
__ ba_short(L_check_loop_end_128bit);
__ BIND(L_store_misaligned_output_128bit);
__ add(to, 8, L3);
__ mov(8, L4);
__ sub(L4, L1, L4);
__ alignaddr(L4, G0, L4);
// save cipher text before circular right shift
// as it needs to be stored as iv for next block (see code before next retl)
__ movdtox(F60, L6);
__ movdtox(F62, L7);
__ faligndata(F60, F60, F60);
__ faligndata(F62, F62, F62);
__ mov(to, L5);
__ and3(to, -8, to);
__ and3(L3, -8, L3);
__ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
__ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
__ add(to, 8, to);
__ add(L3, 8, L3);
__ orn(G0, L2, L2);
__ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
__ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
__ mov(L5, to);
__ movxtod(L6, F60);
__ movxtod(L7, F62);
__ BIND(L_check_loop_end_128bit);
__ add(from, 16, from);
__ add(to, 16, to);
__ subcc(len_reg, 16, len_reg);
__ br(Assembler::notEqual, false, Assembler::pt, L_cbcenc128);
__ delayed()->nop();
// re-init intial vector for next block, 8-byte alignment is guaranteed
__ stf(FloatRegisterImpl::D, F60, rvec, 0);
__ stf(FloatRegisterImpl::D, F62, rvec, 8);
__ mov(L0, I0);
__ ret();
__ delayed()->restore();
__ align(OptoLoopAlignment);
__ BIND(L_cbcenc192);
// check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
__ andcc(from, 7, G0);
__ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input_192bit);
__ delayed()->mov(from, L1); // save original 'from' address before alignaddr
// aligned case: load input into G3 and G4
__ ldx(from,0,G3);
__ ldx(from,8,G4);
__ ba_short(L_192bit_transform);
__ BIND(L_load_misaligned_input_192bit);
// can clobber F48, F50 and F52 as they are not used in 128 and 192-bit key encryption
__ alignaddr(from, G0, from);
__ ldf(FloatRegisterImpl::D, from, 0, F48);
__ ldf(FloatRegisterImpl::D, from, 8, F50);
__ ldf(FloatRegisterImpl::D, from, 16, F52);
__ faligndata(F48, F50, F48);
__ faligndata(F50, F52, F50);
__ movdtox(F48, G3);
__ movdtox(F50, G4);
__ mov(L1, from);
__ BIND(L_192bit_transform);
__ xor3(G1,G3,G3);
__ xor3(G5,G4,G4);
__ movxtod(G3,F56);
__ movxtod(G4,F58);
__ fxor(FloatRegisterImpl::D, F60, F56, F60);
__ fxor(FloatRegisterImpl::D, F62, F58, F62);
// TWELEVE_EROUNDS
for ( int i = 0; i <= 40; i += 8 ) {
__ aes_eround01(as_FloatRegister(i), F60, F62, F56);
__ aes_eround23(as_FloatRegister(i+2), F60, F62, F58);
if (i != 40 ) {
__ aes_eround01(as_FloatRegister(i+4), F56, F58, F60);
__ aes_eround23(as_FloatRegister(i+6), F56, F58, F62);
} else {
__ aes_eround01_l(as_FloatRegister(i+4), F56, F58, F60);
__ aes_eround23_l(as_FloatRegister(i+6), F56, F58, F62);
}
}
// check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
__ andcc(to, 7, L1);
__ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_192bit);
__ delayed()->edge8n(to, G0, L2);
// aligned case: store output into the destination array
__ stf(FloatRegisterImpl::D, F60, to, 0);
__ stf(FloatRegisterImpl::D, F62, to, 8);
__ ba_short(L_check_loop_end_192bit);
__ BIND(L_store_misaligned_output_192bit);
__ add(to, 8, L3);
__ mov(8, L4);
__ sub(L4, L1, L4);
__ alignaddr(L4, G0, L4);
__ movdtox(F60, L6);
__ movdtox(F62, L7);
__ faligndata(F60, F60, F60);
__ faligndata(F62, F62, F62);
__ mov(to, L5);
__ and3(to, -8, to);
__ and3(L3, -8, L3);
__ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
__ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
__ add(to, 8, to);
__ add(L3, 8, L3);
__ orn(G0, L2, L2);
__ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
__ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
__ mov(L5, to);
__ movxtod(L6, F60);
__ movxtod(L7, F62);
__ BIND(L_check_loop_end_192bit);
__ add(from, 16, from);
__ subcc(len_reg, 16, len_reg);
__ add(to, 16, to);
__ br(Assembler::notEqual, false, Assembler::pt, L_cbcenc192);
__ delayed()->nop();
// re-init intial vector for next block, 8-byte alignment is guaranteed
__ stf(FloatRegisterImpl::D, F60, rvec, 0);
__ stf(FloatRegisterImpl::D, F62, rvec, 8);
__ mov(L0, I0);
__ ret();
__ delayed()->restore();
__ align(OptoLoopAlignment);
__ BIND(L_cbcenc256);
// check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
__ andcc(from, 7, G0);
__ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input_256bit);
__ delayed()->mov(from, L1); // save original 'from' address before alignaddr
// aligned case: load input into G3 and G4
__ ldx(from,0,G3);
__ ldx(from,8,G4);
__ ba_short(L_256bit_transform);
__ BIND(L_load_misaligned_input_256bit);
// cannot clobber F48, F50 and F52. F56, F58 can be used though
__ alignaddr(from, G0, from);
__ movdtox(F60, L2); // save F60 before overwriting
__ ldf(FloatRegisterImpl::D, from, 0, F56);
__ ldf(FloatRegisterImpl::D, from, 8, F58);
__ ldf(FloatRegisterImpl::D, from, 16, F60);
__ faligndata(F56, F58, F56);
__ faligndata(F58, F60, F58);
__ movdtox(F56, G3);
__ movdtox(F58, G4);
__ mov(L1, from);
__ movxtod(L2, F60);
__ BIND(L_256bit_transform);
__ xor3(G1,G3,G3);
__ xor3(G5,G4,G4);
__ movxtod(G3,F56);
__ movxtod(G4,F58);
__ fxor(FloatRegisterImpl::D, F60, F56, F60);
__ fxor(FloatRegisterImpl::D, F62, F58, F62);
// FOURTEEN_EROUNDS
for ( int i = 0; i <= 48; i += 8 ) {
__ aes_eround01(as_FloatRegister(i), F60, F62, F56);
__ aes_eround23(as_FloatRegister(i+2), F60, F62, F58);
if (i != 48 ) {
__ aes_eround01(as_FloatRegister(i+4), F56, F58, F60);
__ aes_eround23(as_FloatRegister(i+6), F56, F58, F62);
} else {
__ aes_eround01_l(as_FloatRegister(i+4), F56, F58, F60);
__ aes_eround23_l(as_FloatRegister(i+6), F56, F58, F62);
}
}
// check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
__ andcc(to, 7, L1);
__ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_256bit);
__ delayed()->edge8n(to, G0, L2);
// aligned case: store output into the destination array
__ stf(FloatRegisterImpl::D, F60, to, 0);
__ stf(FloatRegisterImpl::D, F62, to, 8);
__ ba_short(L_check_loop_end_256bit);
__ BIND(L_store_misaligned_output_256bit);
__ add(to, 8, L3);
__ mov(8, L4);
__ sub(L4, L1, L4);
__ alignaddr(L4, G0, L4);
__ movdtox(F60, L6);
__ movdtox(F62, L7);
__ faligndata(F60, F60, F60);
__ faligndata(F62, F62, F62);
__ mov(to, L5);
__ and3(to, -8, to);
__ and3(L3, -8, L3);
__ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
__ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
__ add(to, 8, to);
__ add(L3, 8, L3);
__ orn(G0, L2, L2);
__ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
__ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
__ mov(L5, to);
__ movxtod(L6, F60);
__ movxtod(L7, F62);
__ BIND(L_check_loop_end_256bit);
__ add(from, 16, from);
__ subcc(len_reg, 16, len_reg);
__ add(to, 16, to);
__ br(Assembler::notEqual, false, Assembler::pt, L_cbcenc256);
__ delayed()->nop();
// re-init intial vector for next block, 8-byte alignment is guaranteed
__ stf(FloatRegisterImpl::D, F60, rvec, 0);
__ stf(FloatRegisterImpl::D, F62, rvec, 8);
__ mov(L0, I0);
__ ret();
__ delayed()->restore();
return start;
}
address generate_cipherBlockChaining_decryptAESCrypt_Parallel() {
assert((arrayOopDesc::base_offset_in_bytes(T_INT) & 7) == 0,
"the following code assumes that first element of an int array is aligned to 8 bytes");
assert((arrayOopDesc::base_offset_in_bytes(T_BYTE) & 7) == 0,
"the following code assumes that first element of a byte array is aligned to 8 bytes");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
Label L_cbcdec_end, L_expand192bit, L_expand256bit, L_dec_first_block_start;
Label L_dec_first_block128, L_dec_first_block192, L_dec_next2_blocks128, L_dec_next2_blocks192, L_dec_next2_blocks256;
Label L_load_misaligned_input_first_block, L_transform_first_block, L_load_misaligned_next2_blocks128, L_transform_next2_blocks128;
Label L_load_misaligned_next2_blocks192, L_transform_next2_blocks192, L_load_misaligned_next2_blocks256, L_transform_next2_blocks256;
Label L_store_misaligned_output_first_block, L_check_decrypt_end, L_store_misaligned_output_next2_blocks128;
Label L_check_decrypt_loop_end128, L_store_misaligned_output_next2_blocks192, L_check_decrypt_loop_end192;
Label L_store_misaligned_output_next2_blocks256, L_check_decrypt_loop_end256;
address start = __ pc();
Register from = I0; // source byte array
Register to = I1; // destination byte array
Register key = I2; // expanded key array
Register rvec = I3; // init vector
const Register len_reg = I4; // cipher length
const Register original_key = I5; // original key array only required during decryption
const Register keylen = L6; // reg for storing expanded key array length
__ save_frame(0); //args are read from I* registers since we save the frame in the beginning
// save cipher len to return in the end
__ mov(len_reg, L7);
// load original key from SunJCE expanded decryption key
// Since we load original key buffer starting first element, 8-byte alignment is guaranteed
for ( int i = 0; i <= 3; i++ ) {
__ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i));
}
// load initial vector, 8-byte alignment is guaranteed
__ ldx(rvec,0,L0);
__ ldx(rvec,8,L1);
// read expanded key array length
__ ldsw(Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)), keylen, 0);
// 256-bit original key size
__ cmp_and_brx_short(keylen, 60, Assembler::equal, Assembler::pn, L_expand256bit);
// 192-bit original key size
__ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pn, L_expand192bit);
// 128-bit original key size
// perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
for ( int i = 0; i <= 36; i += 4 ) {
__ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+2), i/4, as_FloatRegister(i+4));
__ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+4), as_FloatRegister(i+6));
}
// load expanded key[last-1] and key[last] elements
__ movdtox(F40,L2);
__ movdtox(F42,L3);
__ and3(len_reg, 16, L4);
__ br_null_short(L4, Assembler::pt, L_dec_next2_blocks128);
__ nop();
__ ba_short(L_dec_first_block_start);
__ BIND(L_expand192bit);
// load rest of the 192-bit key
__ ldf(FloatRegisterImpl::S, original_key, 16, F4);
__ ldf(FloatRegisterImpl::S, original_key, 20, F5);
// perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
for ( int i = 0; i <= 36; i += 6 ) {
__ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+4), i/6, as_FloatRegister(i+6));
__ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+6), as_FloatRegister(i+8));
__ aes_kexpand2(as_FloatRegister(i+4), as_FloatRegister(i+8), as_FloatRegister(i+10));
}
__ aes_kexpand1(F42, F46, 7, F48);
__ aes_kexpand2(F44, F48, F50);
// load expanded key[last-1] and key[last] elements
__ movdtox(F48,L2);
__ movdtox(F50,L3);
__ and3(len_reg, 16, L4);
__ br_null_short(L4, Assembler::pt, L_dec_next2_blocks192);
__ nop();
__ ba_short(L_dec_first_block_start);
__ BIND(L_expand256bit);
// load rest of the 256-bit key
for ( int i = 4; i <= 7; i++ ) {
__ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i));
}
// perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
for ( int i = 0; i <= 40; i += 8 ) {
__ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+6), i/8, as_FloatRegister(i+8));
__ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+8), as_FloatRegister(i+10));
__ aes_kexpand0(as_FloatRegister(i+4), as_FloatRegister(i+10), as_FloatRegister(i+12));
__ aes_kexpand2(as_FloatRegister(i+6), as_FloatRegister(i+12), as_FloatRegister(i+14));
}
__ aes_kexpand1(F48, F54, 6, F56);
__ aes_kexpand2(F50, F56, F58);
// load expanded key[last-1] and key[last] elements
__ movdtox(F56,L2);
__ movdtox(F58,L3);
__ and3(len_reg, 16, L4);
__ br_null_short(L4, Assembler::pt, L_dec_next2_blocks256);
__ BIND(L_dec_first_block_start);
// check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
__ andcc(from, 7, G0);
__ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input_first_block);
__ delayed()->mov(from, G1); // save original 'from' address before alignaddr
// aligned case: load input into L4 and L5
__ ldx(from,0,L4);
__ ldx(from,8,L5);
__ ba_short(L_transform_first_block);
__ BIND(L_load_misaligned_input_first_block);
__ alignaddr(from, G0, from);
// F58, F60, F62 can be clobbered
__ ldf(FloatRegisterImpl::D, from, 0, F58);
__ ldf(FloatRegisterImpl::D, from, 8, F60);
__ ldf(FloatRegisterImpl::D, from, 16, F62);
__ faligndata(F58, F60, F58);
__ faligndata(F60, F62, F60);
__ movdtox(F58, L4);
__ movdtox(F60, L5);
__ mov(G1, from);
__ BIND(L_transform_first_block);
__ xor3(L2,L4,G1);
__ movxtod(G1,F60);
__ xor3(L3,L5,G1);
__ movxtod(G1,F62);
// 128-bit original key size
__ cmp_and_brx_short(keylen, 44, Assembler::equal, Assembler::pn, L_dec_first_block128);
// 192-bit original key size
__ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pn, L_dec_first_block192);
__ aes_dround23(F54, F60, F62, F58);
__ aes_dround01(F52, F60, F62, F56);
__ aes_dround23(F50, F56, F58, F62);
__ aes_dround01(F48, F56, F58, F60);
__ BIND(L_dec_first_block192);
__ aes_dround23(F46, F60, F62, F58);
__ aes_dround01(F44, F60, F62, F56);
__ aes_dround23(F42, F56, F58, F62);
__ aes_dround01(F40, F56, F58, F60);
__ BIND(L_dec_first_block128);
for ( int i = 38; i >= 6; i -= 8 ) {
__ aes_dround23(as_FloatRegister(i), F60, F62, F58);
__ aes_dround01(as_FloatRegister(i-2), F60, F62, F56);
if ( i != 6) {
__ aes_dround23(as_FloatRegister(i-4), F56, F58, F62);
__ aes_dround01(as_FloatRegister(i-6), F56, F58, F60);
} else {
__ aes_dround23_l(as_FloatRegister(i-4), F56, F58, F62);
__ aes_dround01_l(as_FloatRegister(i-6), F56, F58, F60);
}
}
__ movxtod(L0,F56);
__ movxtod(L1,F58);
__ mov(L4,L0);
__ mov(L5,L1);
__ fxor(FloatRegisterImpl::D, F56, F60, F60);
__ fxor(FloatRegisterImpl::D, F58, F62, F62);
// check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
__ andcc(to, 7, G1);
__ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_first_block);
__ delayed()->edge8n(to, G0, G2);
// aligned case: store output into the destination array
__ stf(FloatRegisterImpl::D, F60, to, 0);
__ stf(FloatRegisterImpl::D, F62, to, 8);
__ ba_short(L_check_decrypt_end);
__ BIND(L_store_misaligned_output_first_block);
__ add(to, 8, G3);
__ mov(8, G4);
__ sub(G4, G1, G4);
__ alignaddr(G4, G0, G4);
__ faligndata(F60, F60, F60);
__ faligndata(F62, F62, F62);
__ mov(to, G1);
__ and3(to, -8, to);
__ and3(G3, -8, G3);
__ stpartialf(to, G2, F60, Assembler::ASI_PST8_PRIMARY);
__ stpartialf(G3, G2, F62, Assembler::ASI_PST8_PRIMARY);
__ add(to, 8, to);
__ add(G3, 8, G3);
__ orn(G0, G2, G2);
__ stpartialf(to, G2, F60, Assembler::ASI_PST8_PRIMARY);
__ stpartialf(G3, G2, F62, Assembler::ASI_PST8_PRIMARY);
__ mov(G1, to);
__ BIND(L_check_decrypt_end);
__ add(from, 16, from);
__ add(to, 16, to);
__ subcc(len_reg, 16, len_reg);
__ br(Assembler::equal, false, Assembler::pt, L_cbcdec_end);
__ delayed()->nop();
// 256-bit original key size
__ cmp_and_brx_short(keylen, 60, Assembler::equal, Assembler::pn, L_dec_next2_blocks256);
// 192-bit original key size
__ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pn, L_dec_next2_blocks192);
__ align(OptoLoopAlignment);
__ BIND(L_dec_next2_blocks128);
__ nop();
// check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
__ andcc(from, 7, G0);
__ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_next2_blocks128);
__ delayed()->mov(from, G1); // save original 'from' address before alignaddr
// aligned case: load input into G4, G5, L4 and L5
__ ldx(from,0,G4);
__ ldx(from,8,G5);
__ ldx(from,16,L4);
__ ldx(from,24,L5);
__ ba_short(L_transform_next2_blocks128);
__ BIND(L_load_misaligned_next2_blocks128);
__ alignaddr(from, G0, from);
// F40, F42, F58, F60, F62 can be clobbered
__ ldf(FloatRegisterImpl::D, from, 0, F40);
__ ldf(FloatRegisterImpl::D, from, 8, F42);
__ ldf(FloatRegisterImpl::D, from, 16, F60);
__ ldf(FloatRegisterImpl::D, from, 24, F62);
__ ldf(FloatRegisterImpl::D, from, 32, F58);
__ faligndata(F40, F42, F40);
__ faligndata(F42, F60, F42);
__ faligndata(F60, F62, F60);
__ faligndata(F62, F58, F62);
__ movdtox(F40, G4);
__ movdtox(F42, G5);
__ movdtox(F60, L4);
__ movdtox(F62, L5);
__ mov(G1, from);
__ BIND(L_transform_next2_blocks128);
// F40:F42 used for first 16-bytes
__ xor3(L2,G4,G1);
__ movxtod(G1,F40);
__ xor3(L3,G5,G1);
__ movxtod(G1,F42);
// F60:F62 used for next 16-bytes
__ xor3(L2,L4,G1);
__ movxtod(G1,F60);
__ xor3(L3,L5,G1);
__ movxtod(G1,F62);
for ( int i = 38; i >= 6; i -= 8 ) {
__ aes_dround23(as_FloatRegister(i), F40, F42, F44);
__ aes_dround01(as_FloatRegister(i-2), F40, F42, F46);
__ aes_dround23(as_FloatRegister(i), F60, F62, F58);
__ aes_dround01(as_FloatRegister(i-2), F60, F62, F56);
if (i != 6 ) {
__ aes_dround23(as_FloatRegister(i-4), F46, F44, F42);
__ aes_dround01(as_FloatRegister(i-6), F46, F44, F40);
__ aes_dround23(as_FloatRegister(i-4), F56, F58, F62);
__ aes_dround01(as_FloatRegister(i-6), F56, F58, F60);
} else {
__ aes_dround23_l(as_FloatRegister(i-4), F46, F44, F42);
__ aes_dround01_l(as_FloatRegister(i-6), F46, F44, F40);
__ aes_dround23_l(as_FloatRegister(i-4), F56, F58, F62);
__ aes_dround01_l(as_FloatRegister(i-6), F56, F58, F60);
}
}
__ movxtod(L0,F46);
__ movxtod(L1,F44);
__ fxor(FloatRegisterImpl::D, F46, F40, F40);
__ fxor(FloatRegisterImpl::D, F44, F42, F42);
__ movxtod(G4,F56);
__ movxtod(G5,F58);
__ mov(L4,L0);
__ mov(L5,L1);
__ fxor(FloatRegisterImpl::D, F56, F60, F60);
__ fxor(FloatRegisterImpl::D, F58, F62, F62);
// For mis-aligned store of 32 bytes of result we can do:
// Circular right-shift all 4 FP registers so that 'head' and 'tail'
// parts that need to be stored starting at mis-aligned address are in a FP reg
// the other 3 FP regs can thus be stored using regular store
// we then use the edge + partial-store mechanism to store the 'head' and 'tail' parts
// check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
__ andcc(to, 7, G1);
__ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_next2_blocks128);
__ delayed()->edge8n(to, G0, G2);
// aligned case: store output into the destination array
__ stf(FloatRegisterImpl::D, F40, to, 0);
__ stf(FloatRegisterImpl::D, F42, to, 8);
__ stf(FloatRegisterImpl::D, F60, to, 16);
__ stf(FloatRegisterImpl::D, F62, to, 24);
__ ba_short(L_check_decrypt_loop_end128);
__ BIND(L_store_misaligned_output_next2_blocks128);
__ mov(8, G4);
__ sub(G4, G1, G4);
__ alignaddr(G4, G0, G4);
__ faligndata(F40, F42, F56); // F56 can be clobbered
__ faligndata(F42, F60, F42);
__ faligndata(F60, F62, F60);
__ faligndata(F62, F40, F40);
__ mov(to, G1);
__ and3(to, -8, to);
__ stpartialf(to, G2, F40, Assembler::ASI_PST8_PRIMARY);
__ stf(FloatRegisterImpl::D, F56, to, 8);
__ stf(FloatRegisterImpl::D, F42, to, 16);
__ stf(FloatRegisterImpl::D, F60, to, 24);
__ add(to, 32, to);
__ orn(G0, G2, G2);
__ stpartialf(to, G2, F40, Assembler::ASI_PST8_PRIMARY);
__ mov(G1, to);
__ BIND(L_check_decrypt_loop_end128);
__ add(from, 32, from);
__ add(to, 32, to);
__ subcc(len_reg, 32, len_reg);
__ br(Assembler::notEqual, false, Assembler::pt, L_dec_next2_blocks128);
__ delayed()->nop();
__ ba_short(L_cbcdec_end);
__ align(OptoLoopAlignment);
__ BIND(L_dec_next2_blocks192);
__ nop();
// check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
__ andcc(from, 7, G0);
__ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_next2_blocks192);
__ delayed()->mov(from, G1); // save original 'from' address before alignaddr
// aligned case: load input into G4, G5, L4 and L5
__ ldx(from,0,G4);
__ ldx(from,8,G5);
__ ldx(from,16,L4);
__ ldx(from,24,L5);
__ ba_short(L_transform_next2_blocks192);
__ BIND(L_load_misaligned_next2_blocks192);
__ alignaddr(from, G0, from);
// F48, F50, F52, F60, F62 can be clobbered
__ ldf(FloatRegisterImpl::D, from, 0, F48);
__ ldf(FloatRegisterImpl::D, from, 8, F50);
__ ldf(FloatRegisterImpl::D, from, 16, F60);
__ ldf(FloatRegisterImpl::D, from, 24, F62);
__ ldf(FloatRegisterImpl::D, from, 32, F52);
__ faligndata(F48, F50, F48);
__ faligndata(F50, F60, F50);
__ faligndata(F60, F62, F60);
__ faligndata(F62, F52, F62);
__ movdtox(F48, G4);
__ movdtox(F50, G5);
__ movdtox(F60, L4);
__ movdtox(F62, L5);
__ mov(G1, from);
__ BIND(L_transform_next2_blocks192);
// F48:F50 used for first 16-bytes
__ xor3(L2,G4,G1);
__ movxtod(G1,F48);
__ xor3(L3,G5,G1);
__ movxtod(G1,F50);
// F60:F62 used for next 16-bytes
__ xor3(L2,L4,G1);
__ movxtod(G1,F60);
__ xor3(L3,L5,G1);
__ movxtod(G1,F62);
for ( int i = 46; i >= 6; i -= 8 ) {
__ aes_dround23(as_FloatRegister(i), F48, F50, F52);
__ aes_dround01(as_FloatRegister(i-2), F48, F50, F54);
__ aes_dround23(as_FloatRegister(i), F60, F62, F58);
__ aes_dround01(as_FloatRegister(i-2), F60, F62, F56);
if (i != 6 ) {
__ aes_dround23(as_FloatRegister(i-4), F54, F52, F50);
__ aes_dround01(as_FloatRegister(i-6), F54, F52, F48);
__ aes_dround23(as_FloatRegister(i-4), F56, F58, F62);
__ aes_dround01(as_FloatRegister(i-6), F56, F58, F60);
} else {
__ aes_dround23_l(as_FloatRegister(i-4), F54, F52, F50);
__ aes_dround01_l(as_FloatRegister(i-6), F54, F52, F48);
__ aes_dround23_l(as_FloatRegister(i-4), F56, F58, F62);
__ aes_dround01_l(as_FloatRegister(i-6), F56, F58, F60);
}
}
__ movxtod(L0,F54);
__ movxtod(L1,F52);
__ fxor(FloatRegisterImpl::D, F54, F48, F48);
__ fxor(FloatRegisterImpl::D, F52, F50, F50);
__ movxtod(G4,F56);
__ movxtod(G5,F58);
__ mov(L4,L0);
__ mov(L5,L1);
__ fxor(FloatRegisterImpl::D, F56, F60, F60);
__ fxor(FloatRegisterImpl::D, F58, F62, F62);
// check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
__ andcc(to, 7, G1);
__ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_next2_blocks192);
__ delayed()->edge8n(to, G0, G2);
// aligned case: store output into the destination array
__ stf(FloatRegisterImpl::D, F48, to, 0);
__ stf(FloatRegisterImpl::D, F50, to, 8);
__ stf(FloatRegisterImpl::D, F60, to, 16);
__ stf(FloatRegisterImpl::D, F62, to, 24);
__ ba_short(L_check_decrypt_loop_end192);
__ BIND(L_store_misaligned_output_next2_blocks192);
__ mov(8, G4);
__ sub(G4, G1, G4);
__ alignaddr(G4, G0, G4);
__ faligndata(F48, F50, F56); // F56 can be clobbered
__ faligndata(F50, F60, F50);
__ faligndata(F60, F62, F60);
__ faligndata(F62, F48, F48);
__ mov(to, G1);
__ and3(to, -8, to);
__ stpartialf(to, G2, F48, Assembler::ASI_PST8_PRIMARY);
__ stf(FloatRegisterImpl::D, F56, to, 8);
__ stf(FloatRegisterImpl::D, F50, to, 16);
__ stf(FloatRegisterImpl::D, F60, to, 24);
__ add(to, 32, to);
__ orn(G0, G2, G2);
__ stpartialf(to, G2, F48, Assembler::ASI_PST8_PRIMARY);
__ mov(G1, to);
__ BIND(L_check_decrypt_loop_end192);
__ add(from, 32, from);
__ add(to, 32, to);
__ subcc(len_reg, 32, len_reg);
__ br(Assembler::notEqual, false, Assembler::pt, L_dec_next2_blocks192);
__ delayed()->nop();
__ ba_short(L_cbcdec_end);
__ align(OptoLoopAlignment);
__ BIND(L_dec_next2_blocks256);
__ nop();
// check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
__ andcc(from, 7, G0);
__ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_next2_blocks256);
__ delayed()->mov(from, G1); // save original 'from' address before alignaddr
// aligned case: load input into G4, G5, L4 and L5
__ ldx(from,0,G4);
__ ldx(from,8,G5);
__ ldx(from,16,L4);
__ ldx(from,24,L5);
__ ba_short(L_transform_next2_blocks256);
__ BIND(L_load_misaligned_next2_blocks256);
__ alignaddr(from, G0, from);
// F0, F2, F4, F60, F62 can be clobbered
__ ldf(FloatRegisterImpl::D, from, 0, F0);
__ ldf(FloatRegisterImpl::D, from, 8, F2);
__ ldf(FloatRegisterImpl::D, from, 16, F60);
__ ldf(FloatRegisterImpl::D, from, 24, F62);
__ ldf(FloatRegisterImpl::D, from, 32, F4);
__ faligndata(F0, F2, F0);
__ faligndata(F2, F60, F2);
__ faligndata(F60, F62, F60);
__ faligndata(F62, F4, F62);
__ movdtox(F0, G4);
__ movdtox(F2, G5);
__ movdtox(F60, L4);
__ movdtox(F62, L5);
__ mov(G1, from);
__ BIND(L_transform_next2_blocks256);
// F0:F2 used for first 16-bytes
__ xor3(L2,G4,G1);
__ movxtod(G1,F0);
__ xor3(L3,G5,G1);
__ movxtod(G1,F2);
// F60:F62 used for next 16-bytes
__ xor3(L2,L4,G1);
__ movxtod(G1,F60);
__ xor3(L3,L5,G1);
__ movxtod(G1,F62);
__ aes_dround23(F54, F0, F2, F4);
__ aes_dround01(F52, F0, F2, F6);
__ aes_dround23(F54, F60, F62, F58);
__ aes_dround01(F52, F60, F62, F56);
__ aes_dround23(F50, F6, F4, F2);
__ aes_dround01(F48, F6, F4, F0);
__ aes_dround23(F50, F56, F58, F62);
__ aes_dround01(F48, F56, F58, F60);
// save F48:F54 in temp registers
__ movdtox(F54,G2);
__ movdtox(F52,G3);
__ movdtox(F50,G6);
__ movdtox(F48,G1);
for ( int i = 46; i >= 14; i -= 8 ) {
__ aes_dround23(as_FloatRegister(i), F0, F2, F4);
__ aes_dround01(as_FloatRegister(i-2), F0, F2, F6);
__ aes_dround23(as_FloatRegister(i), F60, F62, F58);
__ aes_dround01(as_FloatRegister(i-2), F60, F62, F56);
__ aes_dround23(as_FloatRegister(i-4), F6, F4, F2);
__ aes_dround01(as_FloatRegister(i-6), F6, F4, F0);
__ aes_dround23(as_FloatRegister(i-4), F56, F58, F62);
__ aes_dround01(as_FloatRegister(i-6), F56, F58, F60);
}
// init F48:F54 with F0:F6 values (original key)
__ ldf(FloatRegisterImpl::D, original_key, 0, F48);
__ ldf(FloatRegisterImpl::D, original_key, 8, F50);
__ ldf(FloatRegisterImpl::D, original_key, 16, F52);
__ ldf(FloatRegisterImpl::D, original_key, 24, F54);
__ aes_dround23(F54, F0, F2, F4);
__ aes_dround01(F52, F0, F2, F6);
__ aes_dround23(F54, F60, F62, F58);
__ aes_dround01(F52, F60, F62, F56);
__ aes_dround23_l(F50, F6, F4, F2);
__ aes_dround01_l(F48, F6, F4, F0);
__ aes_dround23_l(F50, F56, F58, F62);
__ aes_dround01_l(F48, F56, F58, F60);
// re-init F48:F54 with their original values
__ movxtod(G2,F54);
__ movxtod(G3,F52);
__ movxtod(G6,F50);
__ movxtod(G1,F48);
__ movxtod(L0,F6);
__ movxtod(L1,F4);
__ fxor(FloatRegisterImpl::D, F6, F0, F0);
__ fxor(FloatRegisterImpl::D, F4, F2, F2);
__ movxtod(G4,F56);
__ movxtod(G5,F58);
__ mov(L4,L0);
__ mov(L5,L1);
__ fxor(FloatRegisterImpl::D, F56, F60, F60);
__ fxor(FloatRegisterImpl::D, F58, F62, F62);
// check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
__ andcc(to, 7, G1);
__ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_next2_blocks256);
__ delayed()->edge8n(to, G0, G2);
// aligned case: store output into the destination array
__ stf(FloatRegisterImpl::D, F0, to, 0);
__ stf(FloatRegisterImpl::D, F2, to, 8);
__ stf(FloatRegisterImpl::D, F60, to, 16);
__ stf(FloatRegisterImpl::D, F62, to, 24);
__ ba_short(L_check_decrypt_loop_end256);
__ BIND(L_store_misaligned_output_next2_blocks256);
__ mov(8, G4);
__ sub(G4, G1, G4);
__ alignaddr(G4, G0, G4);
__ faligndata(F0, F2, F56); // F56 can be clobbered
__ faligndata(F2, F60, F2);
__ faligndata(F60, F62, F60);
__ faligndata(F62, F0, F0);
__ mov(to, G1);
__ and3(to, -8, to);
__ stpartialf(to, G2, F0, Assembler::ASI_PST8_PRIMARY);
__ stf(FloatRegisterImpl::D, F56, to, 8);
__ stf(FloatRegisterImpl::D, F2, to, 16);
__ stf(FloatRegisterImpl::D, F60, to, 24);
__ add(to, 32, to);
__ orn(G0, G2, G2);
__ stpartialf(to, G2, F0, Assembler::ASI_PST8_PRIMARY);
__ mov(G1, to);
__ BIND(L_check_decrypt_loop_end256);
__ add(from, 32, from);
__ add(to, 32, to);
__ subcc(len_reg, 32, len_reg);
__ br(Assembler::notEqual, false, Assembler::pt, L_dec_next2_blocks256);
__ delayed()->nop();
__ BIND(L_cbcdec_end);
// re-init intial vector for next block, 8-byte alignment is guaranteed
__ stx(L0, rvec, 0);
__ stx(L1, rvec, 8);
__ mov(L7, I0);
__ ret();
__ delayed()->restore();
return start;
}
address generate_sha1_implCompress(bool multi_block, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_sha1_loop, L_sha1_unaligned_input, L_sha1_unaligned_input_loop;
int i;
Register buf = O0; // byte[] source+offset
Register state = O1; // int[] SHA.state
Register ofs = O2; // int offset
Register limit = O3; // int limit
// load state into F0-F4
for (i = 0; i < 5; i++) {
__ ldf(FloatRegisterImpl::S, state, i*4, as_FloatRegister(i));
}
__ andcc(buf, 7, G0);
__ br(Assembler::notZero, false, Assembler::pn, L_sha1_unaligned_input);
__ delayed()->nop();
__ BIND(L_sha1_loop);
// load buf into F8-F22
for (i = 0; i < 8; i++) {
__ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 8));
}
__ sha1();
if (multi_block) {
__ add(ofs, 64, ofs);
__ add(buf, 64, buf);
__ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha1_loop);
__ mov(ofs, O0); // to be returned
}
// store F0-F4 into state and return
for (i = 0; i < 4; i++) {
__ stf(FloatRegisterImpl::S, as_FloatRegister(i), state, i*4);
}
__ retl();
__ delayed()->stf(FloatRegisterImpl::S, F4, state, 0x10);
__ BIND(L_sha1_unaligned_input);
__ alignaddr(buf, G0, buf);
__ BIND(L_sha1_unaligned_input_loop);
// load buf into F8-F22
for (i = 0; i < 9; i++) {
__ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 8));
}
for (i = 0; i < 8; i++) {
__ faligndata(as_FloatRegister(i*2 + 8), as_FloatRegister(i*2 + 10), as_FloatRegister(i*2 + 8));
}
__ sha1();
if (multi_block) {
__ add(ofs, 64, ofs);
__ add(buf, 64, buf);
__ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha1_unaligned_input_loop);
__ mov(ofs, O0); // to be returned
}
// store F0-F4 into state and return
for (i = 0; i < 4; i++) {
__ stf(FloatRegisterImpl::S, as_FloatRegister(i), state, i*4);
}
__ retl();
__ delayed()->stf(FloatRegisterImpl::S, F4, state, 0x10);
return start;
}
address generate_sha256_implCompress(bool multi_block, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_sha256_loop, L_sha256_unaligned_input, L_sha256_unaligned_input_loop;
int i;
Register buf = O0; // byte[] source+offset
Register state = O1; // int[] SHA2.state
Register ofs = O2; // int offset
Register limit = O3; // int limit
// load state into F0-F7
for (i = 0; i < 8; i++) {
__ ldf(FloatRegisterImpl::S, state, i*4, as_FloatRegister(i));
}
__ andcc(buf, 7, G0);
__ br(Assembler::notZero, false, Assembler::pn, L_sha256_unaligned_input);
__ delayed()->nop();
__ BIND(L_sha256_loop);
// load buf into F8-F22
for (i = 0; i < 8; i++) {
__ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 8));
}
__ sha256();
if (multi_block) {
__ add(ofs, 64, ofs);
__ add(buf, 64, buf);
__ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha256_loop);
__ mov(ofs, O0); // to be returned
}
// store F0-F7 into state and return
for (i = 0; i < 7; i++) {
__ stf(FloatRegisterImpl::S, as_FloatRegister(i), state, i*4);
}
__ retl();
__ delayed()->stf(FloatRegisterImpl::S, F7, state, 0x1c);
__ BIND(L_sha256_unaligned_input);
__ alignaddr(buf, G0, buf);
__ BIND(L_sha256_unaligned_input_loop);
// load buf into F8-F22
for (i = 0; i < 9; i++) {
__ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 8));
}
for (i = 0; i < 8; i++) {
__ faligndata(as_FloatRegister(i*2 + 8), as_FloatRegister(i*2 + 10), as_FloatRegister(i*2 + 8));
}
__ sha256();
if (multi_block) {
__ add(ofs, 64, ofs);
__ add(buf, 64, buf);
__ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha256_unaligned_input_loop);
__ mov(ofs, O0); // to be returned
}
// store F0-F7 into state and return
for (i = 0; i < 7; i++) {
__ stf(FloatRegisterImpl::S, as_FloatRegister(i), state, i*4);
}
__ retl();
__ delayed()->stf(FloatRegisterImpl::S, F7, state, 0x1c);
return start;
}
address generate_sha512_implCompress(bool multi_block, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_sha512_loop, L_sha512_unaligned_input, L_sha512_unaligned_input_loop;
int i;
Register buf = O0; // byte[] source+offset
Register state = O1; // long[] SHA5.state
Register ofs = O2; // int offset
Register limit = O3; // int limit
// load state into F0-F14
for (i = 0; i < 8; i++) {
__ ldf(FloatRegisterImpl::D, state, i*8, as_FloatRegister(i*2));
}
__ andcc(buf, 7, G0);
__ br(Assembler::notZero, false, Assembler::pn, L_sha512_unaligned_input);
__ delayed()->nop();
__ BIND(L_sha512_loop);
// load buf into F16-F46
for (i = 0; i < 16; i++) {
__ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 16));
}
__ sha512();
if (multi_block) {
__ add(ofs, 128, ofs);
__ add(buf, 128, buf);
__ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha512_loop);
__ mov(ofs, O0); // to be returned
}
// store F0-F14 into state and return
for (i = 0; i < 7; i++) {
__ stf(FloatRegisterImpl::D, as_FloatRegister(i*2), state, i*8);
}
__ retl();
__ delayed()->stf(FloatRegisterImpl::D, F14, state, 0x38);
__ BIND(L_sha512_unaligned_input);
__ alignaddr(buf, G0, buf);
__ BIND(L_sha512_unaligned_input_loop);
// load buf into F16-F46
for (i = 0; i < 17; i++) {
__ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 16));
}
for (i = 0; i < 16; i++) {
__ faligndata(as_FloatRegister(i*2 + 16), as_FloatRegister(i*2 + 18), as_FloatRegister(i*2 + 16));
}
__ sha512();
if (multi_block) {
__ add(ofs, 128, ofs);
__ add(buf, 128, buf);
__ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha512_unaligned_input_loop);
__ mov(ofs, O0); // to be returned
}
// store F0-F14 into state and return
for (i = 0; i < 7; i++) {
__ stf(FloatRegisterImpl::D, as_FloatRegister(i*2), state, i*8);
}
__ retl();
__ delayed()->stf(FloatRegisterImpl::D, F14, state, 0x38);
return start;
}
/* Single and multi-block ghash operations */
address generate_ghash_processBlocks() {
__ align(CodeEntryAlignment);
Label L_ghash_loop, L_aligned, L_main;
StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks");
address start = __ pc();
Register state = I0;
Register subkeyH = I1;
Register data = I2;
Register len = I3;
__ save_frame(0);
__ ldx(state, 0, O0);
__ ldx(state, 8, O1);
// Loop label for multiblock operations
__ BIND(L_ghash_loop);
// Check if 'data' is unaligned
__ andcc(data, 7, G1);
__ br(Assembler::zero, false, Assembler::pt, L_aligned);
__ delayed()->nop();
Register left_shift = L1;
Register right_shift = L2;
Register data_ptr = L3;
// Get left and right shift values in bits
__ sll(G1, LogBitsPerByte, left_shift);
__ mov(64, right_shift);
__ sub(right_shift, left_shift, right_shift);
// Align to read 'data'
__ sub(data, G1, data_ptr);
// Load first 8 bytes of 'data'
__ ldx(data_ptr, 0, O4);
__ sllx(O4, left_shift, O4);
__ ldx(data_ptr, 8, O5);
__ srlx(O5, right_shift, G4);
__ bset(G4, O4);
// Load second 8 bytes of 'data'
__ sllx(O5, left_shift, O5);
__ ldx(data_ptr, 16, G4);
__ srlx(G4, right_shift, G4);
__ ba(L_main);
__ delayed()->bset(G4, O5);
// If 'data' is aligned, load normally
__ BIND(L_aligned);
__ ldx(data, 0, O4);
__ ldx(data, 8, O5);
__ BIND(L_main);
__ ldx(subkeyH, 0, O2);
__ ldx(subkeyH, 8, O3);
__ xor3(O0, O4, O0);
__ xor3(O1, O5, O1);
__ xmulxhi(O0, O3, G3);
__ xmulx(O0, O2, O5);
__ xmulxhi(O1, O2, G4);
__ xmulxhi(O1, O3, G5);
__ xmulx(O0, O3, G1);
__ xmulx(O1, O3, G2);
__ xmulx(O1, O2, O3);
__ xmulxhi(O0, O2, O4);
__ mov(0xE1, O0);
__ sllx(O0, 56, O0);
__ xor3(O5, G3, O5);
__ xor3(O5, G4, O5);
__ xor3(G5, G1, G1);
__ xor3(G1, O3, G1);
__ srlx(G2, 63, O1);
__ srlx(G1, 63, G3);
__ sllx(G2, 63, O3);
__ sllx(G2, 58, O2);
__ xor3(O3, O2, O2);
__ sllx(G1, 1, G1);
__ or3(G1, O1, G1);
__ xor3(G1, O2, G1);
__ sllx(G2, 1, G2);
__ xmulxhi(G1, O0, O1);
__ xmulx(G1, O0, O2);
__ xmulxhi(G2, O0, O3);
__ xmulx(G2, O0, G1);
__ xor3(O4, O1, O4);
__ xor3(O5, O2, O5);
__ xor3(O5, O3, O5);
__ sllx(O4, 1, O2);
__ srlx(O5, 63, O3);
__ or3(O2, O3, O0);
__ sllx(O5, 1, O1);
__ srlx(G1, 63, O2);
__ or3(O1, O2, O1);
__ xor3(O1, G3, O1);
__ deccc(len);
__ br(Assembler::notZero, true, Assembler::pt, L_ghash_loop);
__ delayed()->add(data, 16, data);
__ stx(O0, I0, 0);
__ stx(O1, I0, 8);
__ ret();
__ delayed()->restore();
return start;
}
/**
* Arguments:
*
* Inputs:
* O0 - int crc
* O1 - byte* buf
* O2 - int len
* O3 - int* table
*
* Output:
* O0 - int crc result
*/
address generate_updateBytesCRC32C() {
assert(UseCRC32CIntrinsics, "need CRC32C instruction");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C");
address start = __ pc();
const Register crc = O0; // crc
const Register buf = O1; // source java byte array address
const Register len = O2; // number of bytes
const Register table = O3; // byteTable
__ kernel_crc32c(crc, buf, len, table);
__ retl();
__ delayed()->nop();
return start;
}
#define ADLER32_NUM_TEMPS 16
/**
* Arguments:
*
* Inputs:
* O0 - int adler
* O1 - byte* buff
* O2 - int len
*
* Output:
* O0 - int adler result
*/
address generate_updateBytesAdler32() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "updateBytesAdler32");
address start = __ pc();
Label L_cleanup_loop, L_cleanup_loop_check;
Label L_main_loop_check, L_main_loop, L_inner_loop, L_inner_loop_check;
Label L_nmax_check_done;
// Aliases
Register s1 = O0;
Register s2 = O3;
Register buff = O1;
Register len = O2;
Register temp[ADLER32_NUM_TEMPS] = {L0, L1, L2, L3, L4, L5, L6, L7, I0, I1, I2, I3, I4, I5, G3, I7};
// Max number of bytes we can process before having to take the mod
// 0x15B0 is 5552 in decimal, the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1
unsigned long NMAX = 0x15B0;
// Zero-out the upper bits of len
__ clruwu(len);
// Create the mask 0xFFFF
__ set64(0x00FFFF, O4, O5); // O5 is the temp register
// s1 is initialized to the lower 16 bits of adler
// s2 is initialized to the upper 16 bits of adler
__ srlx(O0, 16, O5); // adler >> 16
__ and3(O0, O4, s1); // s1 = (adler & 0xFFFF)
__ and3(O5, O4, s2); // s2 = ((adler >> 16) & 0xFFFF)
// The pipelined loop needs at least 16 elements for 1 iteration
// It does check this, but it is more effective to skip to the cleanup loop
// Setup the constant for cutoff checking
__ mov(15, O4);
// Check if we are above the cutoff, if not go to the cleanup loop immediately
__ cmp_and_br_short(len, O4, Assembler::lessEqualUnsigned, Assembler::pt, L_cleanup_loop_check);
// Free up some registers for our use
for (int i = 0; i < ADLER32_NUM_TEMPS; i++) {
__ movxtod(temp[i], as_FloatRegister(2*i));
}
// Loop maintenance stuff is done at the end of the loop, so skip to there
__ ba_short(L_main_loop_check);
__ BIND(L_main_loop);
// Prologue for inner loop
__ ldub(buff, 0, L0);
__ dec(O5);
for (int i = 1; i < 8; i++) {
__ ldub(buff, i, temp[i]);
}
__ inc(buff, 8);
// Inner loop processes 16 elements at a time, might never execute if only 16 elements
// to be processed by the outter loop
__ ba_short(L_inner_loop_check);
__ BIND(L_inner_loop);
for (int i = 0; i < 8; i++) {
__ ldub(buff, (2*i), temp[(8+(2*i)) % ADLER32_NUM_TEMPS]);
__ add(s1, temp[i], s1);
__ ldub(buff, (2*i)+1, temp[(8+(2*i)+1) % ADLER32_NUM_TEMPS]);
__ add(s2, s1, s2);
}
// Original temp 0-7 used and new loads to temp 0-7 issued
// temp 8-15 ready to be consumed
__ add(s1, I0, s1);
__ dec(O5);
__ add(s2, s1, s2);
__ add(s1, I1, s1);
__ inc(buff, 16);
__ add(s2, s1, s2);
for (int i = 0; i < 6; i++) {
__ add(s1, temp[10+i], s1);
__ add(s2, s1, s2);
}
__ BIND(L_inner_loop_check);
__ nop();
__ cmp_and_br_short(O5, 0, Assembler::notEqual, Assembler::pt, L_inner_loop);
// Epilogue
for (int i = 0; i < 4; i++) {
__ ldub(buff, (2*i), temp[8+(2*i)]);
__ add(s1, temp[i], s1);
__ ldub(buff, (2*i)+1, temp[8+(2*i)+1]);
__ add(s2, s1, s2);
}
__ add(s1, temp[4], s1);
__ inc(buff, 8);
for (int i = 0; i < 11; i++) {
__ add(s2, s1, s2);
__ add(s1, temp[5+i], s1);
}
__ add(s2, s1, s2);
// Take the mod for s1 and s2
__ set64(0xFFF1, L0, L1);
__ udivx(s1, L0, L1);
__ udivx(s2, L0, L2);
__ mulx(L0, L1, L1);
__ mulx(L0, L2, L2);
__ sub(s1, L1, s1);
__ sub(s2, L2, s2);
// Make sure there is something left to process
__ BIND(L_main_loop_check);
__ set64(NMAX, L0, L1);
// k = len < NMAX ? len : NMAX
__ cmp_and_br_short(len, L0, Assembler::greaterEqualUnsigned, Assembler::pt, L_nmax_check_done);
__ andn(len, 0x0F, L0); // only loop a multiple of 16 times
__ BIND(L_nmax_check_done);
__ mov(L0, O5);
__ sub(len, L0, len); // len -= k
__ srlx(O5, 4, O5); // multiplies of 16
__ cmp_and_br_short(O5, 0, Assembler::notEqual, Assembler::pt, L_main_loop);
// Restore anything we used, take the mod one last time, combine and return
// Restore any registers we saved
for (int i = 0; i < ADLER32_NUM_TEMPS; i++) {
__ movdtox(as_FloatRegister(2*i), temp[i]);
}
// There might be nothing left to process
__ ba_short(L_cleanup_loop_check);
__ BIND(L_cleanup_loop);
__ ldub(buff, 0, O4); // load single byte form buffer
__ inc(buff); // buff++
__ add(s1, O4, s1); // s1 += *buff++;
__ dec(len); // len--
__ add(s1, s2, s2); // s2 += s1;
__ BIND(L_cleanup_loop_check);
__ nop();
__ cmp_and_br_short(len, 0, Assembler::notEqual, Assembler::pt, L_cleanup_loop);
// Take the mod one last time
__ set64(0xFFF1, O1, O2);
__ udivx(s1, O1, O2);
__ udivx(s2, O1, O5);
__ mulx(O1, O2, O2);
__ mulx(O1, O5, O5);
__ sub(s1, O2, s1);
__ sub(s2, O5, s2);
// Combine lower bits and higher bits
__ sllx(s2, 16, s2); // s2 = s2 << 16
__ or3(s1, s2, s1); // adler = s2 | s1
// Final return value is in O0
__ retl();
__ delayed()->nop();
return start;
}
/**
* Arguments:
*
* Inputs:
* O0 - int crc
* O1 - byte* buf
* O2 - int len
* O3 - int* table
*
* Output:
* O0 - int crc result
*/
address generate_updateBytesCRC32() {
assert(UseCRC32Intrinsics, "need VIS3 instructions");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
address start = __ pc();
const Register crc = O0; // crc
const Register buf = O1; // source java byte array address
const Register len = O2; // length
const Register table = O3; // crc_table address (reuse register)
__ kernel_crc32(crc, buf, len, table);
__ retl();
__ delayed()->nop();
return start;
}
/**
* Arguments:
*
* Inputs:
* I0 - int* x-addr
* I1 - int x-len
* I2 - int* y-addr
* I3 - int y-len
* I4 - int* z-addr (output vector)
* I5 - int z-len
*/
address generate_multiplyToLen() {
assert(UseMultiplyToLenIntrinsic, "need VIS3 instructions");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "multiplyToLen");
address start = __ pc();
__ save_frame(0);
const Register xptr = I0; // input address
const Register xlen = I1; // ...and length in 32b-words
const Register yptr = I2; //
const Register ylen = I3; //
const Register zptr = I4; // output address
const Register zlen = I5; // ...and length in 32b-words
/* The minimal "limb" representation suggest that odd length vectors are as
* likely as even length dittos. This in turn suggests that we need to cope
* with odd/even length arrays and data not aligned properly for 64-bit read
* and write operations. We thus use a number of different kernels:
*
* if (is_even(x.len) && is_even(y.len))
* if (is_align64(x) && is_align64(y) && is_align64(z))
* if (x.len == y.len && 16 <= x.len && x.len <= 64)
* memv_mult_mpmul(...)
* else
* memv_mult_64x64(...)
* else
* memv_mult_64x64u(...)
* else
* memv_mult_32x32(...)
*
* Here we assume VIS3 support (for 'umulxhi', 'addxc' and 'addxccc').
* In case CBCOND instructions are supported, we will use 'cxbX'. If the
* MPMUL instruction is supported, we will generate a kernel using 'mpmul'
* (for vectors with proper characteristics).
*/
const Register tmp0 = L0;
const Register tmp1 = L1;
Label L_mult_32x32;
Label L_mult_64x64u;
Label L_mult_64x64;
Label L_exit;
if_both_even(xlen, ylen, tmp0, false, L_mult_32x32);
if_all3_aligned(xptr, yptr, zptr, tmp1, 64, false, L_mult_64x64u);
if (UseMPMUL) {
if_eq(xlen, ylen, false, L_mult_64x64);
if_in_rng(xlen, 16, 64, tmp0, tmp1, false, L_mult_64x64);
// 1. Multiply naturally aligned 64b-datums using a generic 'mpmul' kernel,
// operating on equal length vectors of size [16..64].
gen_mult_mpmul(xlen, xptr, yptr, zptr, L_exit);
}
// 2. Multiply naturally aligned 64-bit datums (64x64).
__ bind(L_mult_64x64);
gen_mult_64x64(xptr, xlen, yptr, ylen, zptr, zlen, L_exit);
// 3. Multiply unaligned 64-bit datums (64x64).
__ bind(L_mult_64x64u);
gen_mult_64x64_unaligned(xptr, xlen, yptr, ylen, zptr, zlen, L_exit);
// 4. Multiply naturally aligned 32-bit datums (32x32).
__ bind(L_mult_32x32);
gen_mult_32x32(xptr, xlen, yptr, ylen, zptr, zlen, L_exit);
__ bind(L_exit);
__ ret();
__ delayed()->restore();
return start;
}
// Additional help functions used by multiplyToLen generation.
void if_both_even(Register r1, Register r2, Register tmp, bool iseven, Label &L)
{
__ or3(r1, r2, tmp);
__ andcc(tmp, 0x1, tmp);
__ br_icc_zero(iseven, Assembler::pn, L);
}
void if_all3_aligned(Register r1, Register r2, Register r3,
Register tmp, uint align, bool isalign, Label &L)
{
__ or3(r1, r2, tmp);
__ or3(r3, tmp, tmp);
__ andcc(tmp, (align - 1), tmp);
__ br_icc_zero(isalign, Assembler::pn, L);
}
void if_eq(Register x, Register y, bool iseq, Label &L)
{
Assembler::Condition cf = (iseq ? Assembler::equal : Assembler::notEqual);
__ cmp_and_br_short(x, y, cf, Assembler::pt, L);
}
void if_in_rng(Register x, int lb, int ub, Register t1, Register t2, bool inrng, Label &L)
{
assert(Assembler::is_simm13(lb), "Small ints only!");
assert(Assembler::is_simm13(ub), "Small ints only!");
// Compute (x - lb) * (ub - x) >= 0
// NOTE: With the local use of this routine, we rely on small integers to
// guarantee that we do not overflow in the multiplication.
__ add(G0, ub, t2);
__ sub(x, lb, t1);
__ sub(t2, x, t2);
__ mulx(t1, t2, t1);
Assembler::Condition cf = (inrng ? Assembler::greaterEqual : Assembler::less);
__ cmp_and_br_short(t1, G0, cf, Assembler::pt, L);
}
void ldd_entry(Register base, Register offs, FloatRegister dest)
{
__ ldd(base, offs, dest);
__ inc(offs, 8);
}
void ldx_entry(Register base, Register offs, Register dest)
{
__ ldx(base, offs, dest);
__ inc(offs, 8);
}
void mpmul_entry(int m, Label &next)
{
__ mpmul(m);
__ cbcond(Assembler::equal, Assembler::icc, G0, G0, next);
}
void stx_entry(Label &L, Register r1, Register r2, Register base, Register offs)
{
__ bind(L);
__ stx(r1, base, offs);
__ inc(offs, 8);
__ stx(r2, base, offs);
__ inc(offs, 8);
}
void offs_entry(Label &Lbl0, Label &Lbl1)
{
assert(Lbl0.is_bound(), "must be");
assert(Lbl1.is_bound(), "must be");
int offset = Lbl0.loc_pos() - Lbl1.loc_pos();
__ emit_data(offset);
}
/* Generate the actual multiplication kernels for BigInteger vectors:
*
* 1. gen_mult_mpmul(...)
*
* 2. gen_mult_64x64(...)
*
* 3. gen_mult_64x64_unaligned(...)
*
* 4. gen_mult_32x32(...)
*/
void gen_mult_mpmul(Register len, Register xptr, Register yptr, Register zptr,
Label &L_exit)
{
const Register zero = G0;
const Register gxp = G1; // Need to use global registers across RWs.
const Register gyp = G2;
const Register gzp = G3;
const Register offs = G4;
const Register disp = G5;
__ mov(xptr, gxp);
__ mov(yptr, gyp);
__ mov(zptr, gzp);
/* Compute jump vector entry:
*
* 1. mpmul input size (0..31) x 64b
* 2. vector input size in 32b limbs (even number)
* 3. branch entries in reverse order (31..0), using two
* instructions per entry (2 * 4 bytes).
*
* displacement = byte_offset(bra_offset(len))
* = byte_offset((64 - len)/2)
* = 8 * (64 - len)/2
* = 4 * (64 - len)
*/
Register temp = I5; // Alright to use input regs. in first batch.
__ sub(zero, len, temp);
__ add(temp, 64, temp);
__ sllx(temp, 2, disp); // disp := (64 - len) << 2
// Dispatch relative current PC, into instruction table below.
__ rdpc(temp);
__ add(temp, 16, temp);
__ jmp(temp, disp);
__ delayed()->clr(offs);
ldd_entry(gxp, offs, F22);
ldd_entry(gxp, offs, F20);
ldd_entry(gxp, offs, F18);
ldd_entry(gxp, offs, F16);
ldd_entry(gxp, offs, F14);
ldd_entry(gxp, offs, F12);
ldd_entry(gxp, offs, F10);
ldd_entry(gxp, offs, F8);
ldd_entry(gxp, offs, F6);
ldd_entry(gxp, offs, F4);
ldx_entry(gxp, offs, I5);
ldx_entry(gxp, offs, I4);
ldx_entry(gxp, offs, I3);
ldx_entry(gxp, offs, I2);
ldx_entry(gxp, offs, I1);
ldx_entry(gxp, offs, I0);
ldx_entry(gxp, offs, L7);
ldx_entry(gxp, offs, L6);
ldx_entry(gxp, offs, L5);
ldx_entry(gxp, offs, L4);
ldx_entry(gxp, offs, L3);
ldx_entry(gxp, offs, L2);
ldx_entry(gxp, offs, L1);
ldx_entry(gxp, offs, L0);
ldd_entry(gxp, offs, F2);
ldd_entry(gxp, offs, F0);
ldx_entry(gxp, offs, O5);
ldx_entry(gxp, offs, O4);
ldx_entry(gxp, offs, O3);
ldx_entry(gxp, offs, O2);
ldx_entry(gxp, offs, O1);
ldx_entry(gxp, offs, O0);
__ save(SP, -176, SP);
const Register addr = gxp; // Alright to reuse 'gxp'.
// Dispatch relative current PC, into instruction table below.
__ rdpc(addr);
__ add(addr, 16, addr);
__ jmp(addr, disp);
__ delayed()->clr(offs);
ldd_entry(gyp, offs, F58);
ldd_entry(gyp, offs, F56);
ldd_entry(gyp, offs, F54);
ldd_entry(gyp, offs, F52);
ldd_entry(gyp, offs, F50);
ldd_entry(gyp, offs, F48);
ldd_entry(gyp, offs, F46);
ldd_entry(gyp, offs, F44);
ldd_entry(gyp, offs, F42);
ldd_entry(gyp, offs, F40);
ldd_entry(gyp, offs, F38);
ldd_entry(gyp, offs, F36);
ldd_entry(gyp, offs, F34);
ldd_entry(gyp, offs, F32);
ldd_entry(gyp, offs, F30);
ldd_entry(gyp, offs, F28);
ldd_entry(gyp, offs, F26);
ldd_entry(gyp, offs, F24);
ldx_entry(gyp, offs, O5);
ldx_entry(gyp, offs, O4);
ldx_entry(gyp, offs, O3);
ldx_entry(gyp, offs, O2);
ldx_entry(gyp, offs, O1);
ldx_entry(gyp, offs, O0);
ldx_entry(gyp, offs, L7);
ldx_entry(gyp, offs, L6);
ldx_entry(gyp, offs, L5);
ldx_entry(gyp, offs, L4);
ldx_entry(gyp, offs, L3);
ldx_entry(gyp, offs, L2);
ldx_entry(gyp, offs, L1);
ldx_entry(gyp, offs, L0);
__ save(SP, -176, SP);
__ save(SP, -176, SP);
__ save(SP, -176, SP);
__ save(SP, -176, SP);
__ save(SP, -176, SP);
Label L_mpmul_restore_4, L_mpmul_restore_3, L_mpmul_restore_2;
Label L_mpmul_restore_1, L_mpmul_restore_0;
// Dispatch relative current PC, into instruction table below.
__ rdpc(addr);
__ add(addr, 16, addr);
__ jmp(addr, disp);
__ delayed()->clr(offs);
mpmul_entry(31, L_mpmul_restore_0);
mpmul_entry(30, L_mpmul_restore_0);
mpmul_entry(29, L_mpmul_restore_0);
mpmul_entry(28, L_mpmul_restore_0);
mpmul_entry(27, L_mpmul_restore_1);
mpmul_entry(26, L_mpmul_restore_1);
mpmul_entry(25, L_mpmul_restore_1);
mpmul_entry(24, L_mpmul_restore_1);
mpmul_entry(23, L_mpmul_restore_1);
mpmul_entry(22, L_mpmul_restore_1);
mpmul_entry(21, L_mpmul_restore_1);
mpmul_entry(20, L_mpmul_restore_2);
mpmul_entry(19, L_mpmul_restore_2);
mpmul_entry(18, L_mpmul_restore_2);
mpmul_entry(17, L_mpmul_restore_2);
mpmul_entry(16, L_mpmul_restore_2);
mpmul_entry(15, L_mpmul_restore_2);
mpmul_entry(14, L_mpmul_restore_2);
mpmul_entry(13, L_mpmul_restore_3);
mpmul_entry(12, L_mpmul_restore_3);
mpmul_entry(11, L_mpmul_restore_3);
mpmul_entry(10, L_mpmul_restore_3);
mpmul_entry( 9, L_mpmul_restore_3);
mpmul_entry( 8, L_mpmul_restore_3);
mpmul_entry( 7, L_mpmul_restore_3);
mpmul_entry( 6, L_mpmul_restore_4);
mpmul_entry( 5, L_mpmul_restore_4);
mpmul_entry( 4, L_mpmul_restore_4);
mpmul_entry( 3, L_mpmul_restore_4);
mpmul_entry( 2, L_mpmul_restore_4);
mpmul_entry( 1, L_mpmul_restore_4);
mpmul_entry( 0, L_mpmul_restore_4);
Label L_z31, L_z30, L_z29, L_z28, L_z27, L_z26, L_z25, L_z24;
Label L_z23, L_z22, L_z21, L_z20, L_z19, L_z18, L_z17, L_z16;
Label L_z15, L_z14, L_z13, L_z12, L_z11, L_z10, L_z09, L_z08;
Label L_z07, L_z06, L_z05, L_z04, L_z03, L_z02, L_z01, L_z00;
Label L_zst_base; // Store sequence base address.
__ bind(L_zst_base);
stx_entry(L_z31, L7, L6, gzp, offs);
stx_entry(L_z30, L5, L4, gzp, offs);
stx_entry(L_z29, L3, L2, gzp, offs);
stx_entry(L_z28, L1, L0, gzp, offs);
__ restore();
stx_entry(L_z27, O5, O4, gzp, offs);
stx_entry(L_z26, O3, O2, gzp, offs);
stx_entry(L_z25, O1, O0, gzp, offs);
stx_entry(L_z24, L7, L6, gzp, offs);
stx_entry(L_z23, L5, L4, gzp, offs);
stx_entry(L_z22, L3, L2, gzp, offs);
stx_entry(L_z21, L1, L0, gzp, offs);
__ restore();
stx_entry(L_z20, O5, O4, gzp, offs);
stx_entry(L_z19, O3, O2, gzp, offs);
stx_entry(L_z18, O1, O0, gzp, offs);
stx_entry(L_z17, L7, L6, gzp, offs);
stx_entry(L_z16, L5, L4, gzp, offs);
stx_entry(L_z15, L3, L2, gzp, offs);
stx_entry(L_z14, L1, L0, gzp, offs);
__ restore();
stx_entry(L_z13, O5, O4, gzp, offs);
stx_entry(L_z12, O3, O2, gzp, offs);
stx_entry(L_z11, O1, O0, gzp, offs);
stx_entry(L_z10, L7, L6, gzp, offs);
stx_entry(L_z09, L5, L4, gzp, offs);
stx_entry(L_z08, L3, L2, gzp, offs);
stx_entry(L_z07, L1, L0, gzp, offs);
__ restore();
stx_entry(L_z06, O5, O4, gzp, offs);
stx_entry(L_z05, O3, O2, gzp, offs);
stx_entry(L_z04, O1, O0, gzp, offs);
stx_entry(L_z03, L7, L6, gzp, offs);
stx_entry(L_z02, L5, L4, gzp, offs);
stx_entry(L_z01, L3, L2, gzp, offs);
stx_entry(L_z00, L1, L0, gzp, offs);
__ restore();
__ restore();
// Exit out of 'mpmul' routine, back to multiplyToLen.
__ ba_short(L_exit);
Label L_zst_offs;
__ bind(L_zst_offs);
offs_entry(L_z31, L_zst_base); // index 31: 2048x2048
offs_entry(L_z30, L_zst_base);
offs_entry(L_z29, L_zst_base);
offs_entry(L_z28, L_zst_base);
offs_entry(L_z27, L_zst_base);
offs_entry(L_z26, L_zst_base);
offs_entry(L_z25, L_zst_base);
offs_entry(L_z24, L_zst_base);
offs_entry(L_z23, L_zst_base);
offs_entry(L_z22, L_zst_base);
offs_entry(L_z21, L_zst_base);
offs_entry(L_z20, L_zst_base);
offs_entry(L_z19, L_zst_base);
offs_entry(L_z18, L_zst_base);
offs_entry(L_z17, L_zst_base);
offs_entry(L_z16, L_zst_base);
offs_entry(L_z15, L_zst_base);
offs_entry(L_z14, L_zst_base);
offs_entry(L_z13, L_zst_base);
offs_entry(L_z12, L_zst_base);
offs_entry(L_z11, L_zst_base);
offs_entry(L_z10, L_zst_base);
offs_entry(L_z09, L_zst_base);
offs_entry(L_z08, L_zst_base);
offs_entry(L_z07, L_zst_base);
offs_entry(L_z06, L_zst_base);
offs_entry(L_z05, L_zst_base);
offs_entry(L_z04, L_zst_base);
offs_entry(L_z03, L_zst_base);
offs_entry(L_z02, L_zst_base);
offs_entry(L_z01, L_zst_base);
offs_entry(L_z00, L_zst_base); // index 0: 64x64
__ bind(L_mpmul_restore_4);
__ restore();
__ bind(L_mpmul_restore_3);
__ restore();
__ bind(L_mpmul_restore_2);
__ restore();
__ bind(L_mpmul_restore_1);
__ restore();
__ bind(L_mpmul_restore_0);
// Dispatch via offset vector entry, into z-store sequence.
Label L_zst_rdpc;
__ bind(L_zst_rdpc);
assert(L_zst_base.is_bound(), "must be");
assert(L_zst_offs.is_bound(), "must be");
assert(L_zst_rdpc.is_bound(), "must be");
int dbase = L_zst_rdpc.loc_pos() - L_zst_base.loc_pos();
int doffs = L_zst_rdpc.loc_pos() - L_zst_offs.loc_pos();
temp = gyp; // Alright to reuse 'gyp'.
__ rdpc(addr);
__ sub(addr, doffs, temp);
__ srlx(disp, 1, disp);
__ lduw(temp, disp, offs);
__ sub(addr, dbase, temp);
__ jmp(temp, offs);
__ delayed()->clr(offs);
}
void gen_mult_64x64(Register xp, Register xn,
Register yp, Register yn,
Register zp, Register zn, Label &L_exit)
{
// Assuming that a stack frame has already been created, i.e. local and
// output registers are available for immediate use.
const Register ri = L0; // Outer loop index, xv[i]
const Register rj = L1; // Inner loop index, yv[j]
const Register rk = L2; // Output loop index, zv[k]
const Register rx = L4; // x-vector datum [i]
const Register ry = L5; // y-vector datum [j]
const Register rz = L6; // z-vector datum [k]
const Register rc = L7; // carry over (to z-vector datum [k-1])
const Register lop = O0; // lo-64b product
const Register hip = O1; // hi-64b product
const Register zero = G0;
Label L_loop_i, L_exit_loop_i;
Label L_loop_j;
Label L_loop_i2, L_exit_loop_i2;
__ srlx(xn, 1, xn); // index for u32 to u64 ditto
__ srlx(yn, 1, yn); // index for u32 to u64 ditto
__ srlx(zn, 1, zn); // index for u32 to u64 ditto
__ dec(xn); // Adjust [0..(N/2)-1]
__ dec(yn);
__ dec(zn);
__ clr(rc); // u64 c = 0
__ sllx(xn, 3, ri); // int i = xn (byte offset i = 8*xn)
__ sllx(yn, 3, rj); // int j = yn (byte offset i = 8*xn)
__ sllx(zn, 3, rk); // int k = zn (byte offset k = 8*zn)
__ ldx(yp, rj, ry); // u64 y = yp[yn]
// for (int i = xn; i >= 0; i--)
__ bind(L_loop_i);
__ cmp_and_br_short(ri, 0, // i >= 0
Assembler::less, Assembler::pn, L_exit_loop_i);
__ ldx(xp, ri, rx); // x = xp[i]
__ mulx(rx, ry, lop); // lo-64b-part of result 64x64
__ umulxhi(rx, ry, hip); // hi-64b-part of result 64x64
__ addcc(rc, lop, lop); // Accumulate lower order bits (producing carry)
__ addxc(hip, zero, rc); // carry over to next datum [k-1]
__ stx(lop, zp, rk); // z[k] = lop
__ dec(rk, 8); // k--
__ dec(ri, 8); // i--
__ ba_short(L_loop_i);
__ bind(L_exit_loop_i);
__ stx(rc, zp, rk); // z[k] = c
// for (int j = yn - 1; j >= 0; j--)
__ sllx(yn, 3, rj); // int j = yn - 1 (byte offset j = 8*yn)
__ dec(rj, 8);
__ bind(L_loop_j);
__ cmp_and_br_short(rj, 0, // j >= 0
Assembler::less, Assembler::pn, L_exit);
__ clr(rc); // u64 c = 0
__ ldx(yp, rj, ry); // u64 y = yp[j]
// for (int i = xn, k = --zn; i >= 0; i--)
__ dec(zn); // --zn
__ sllx(xn, 3, ri); // int i = xn (byte offset i = 8*xn)
__ sllx(zn, 3, rk); // int k = zn (byte offset k = 8*zn)
__ bind(L_loop_i2);
__ cmp_and_br_short(ri, 0, // i >= 0
Assembler::less, Assembler::pn, L_exit_loop_i2);
__ ldx(xp, ri, rx); // x = xp[i]
__ ldx(zp, rk, rz); // z = zp[k], accumulator
__ mulx(rx, ry, lop); // lo-64b-part of result 64x64
__ umulxhi(rx, ry, hip); // hi-64b-part of result 64x64
__ addcc(rz, rc, rz); // Accumulate lower order bits,
__ addxc(hip, zero, rc); // Accumulate higher order bits to carry
__ addcc(rz, lop, rz); // z += lo(p) + c
__ addxc(rc, zero, rc);
__ stx(rz, zp, rk); // zp[k] = z
__ dec(rk, 8); // k--
__ dec(ri, 8); // i--
__ ba_short(L_loop_i2);
__ bind(L_exit_loop_i2);
__ stx(rc, zp, rk); // z[k] = c
__ dec(rj, 8); // j--
__ ba_short(L_loop_j);
}
void gen_mult_64x64_unaligned(Register xp, Register xn,
Register yp, Register yn,
Register zp, Register zn, Label &L_exit)
{
// Assuming that a stack frame has already been created, i.e. local and
// output registers are available for use.
const Register xpc = L0; // Outer loop cursor, xp[i]
const Register ypc = L1; // Inner loop cursor, yp[j]
const Register zpc = L2; // Output loop cursor, zp[k]
const Register rx = L4; // x-vector datum [i]
const Register ry = L5; // y-vector datum [j]
const Register rz = L6; // z-vector datum [k]
const Register rc = L7; // carry over (to z-vector datum [k-1])
const Register rt = O2;
const Register lop = O0; // lo-64b product
const Register hip = O1; // hi-64b product
const Register zero = G0;
Label L_loop_i, L_exit_loop_i;
Label L_loop_j;
Label L_loop_i2, L_exit_loop_i2;
__ srlx(xn, 1, xn); // index for u32 to u64 ditto
__ srlx(yn, 1, yn); // index for u32 to u64 ditto
__ srlx(zn, 1, zn); // index for u32 to u64 ditto
__ dec(xn); // Adjust [0..(N/2)-1]
__ dec(yn);
__ dec(zn);
__ clr(rc); // u64 c = 0
__ sllx(xn, 3, xpc); // u32* xpc = &xp[xn] (byte offset 8*xn)
__ add(xp, xpc, xpc);
__ sllx(yn, 3, ypc); // u32* ypc = &yp[yn] (byte offset 8*yn)
__ add(yp, ypc, ypc);
__ sllx(zn, 3, zpc); // u32* zpc = &zp[zn] (byte offset 8*zn)
__ add(zp, zpc, zpc);
__ lduw(ypc, 0, rt); // u64 y = yp[yn]
__ lduw(ypc, 4, ry); // ...
__ sllx(rt, 32, rt);
__ or3(rt, ry, ry);
// for (int i = xn; i >= 0; i--)
__ bind(L_loop_i);
__ cmp_and_br_short(xpc, xp,// i >= 0
Assembler::less, Assembler::pn, L_exit_loop_i);
__ lduw(xpc, 0, rt); // u64 x = xp[i]
__ lduw(xpc, 4, rx); // ...
__ sllx(rt, 32, rt);
__ or3(rt, rx, rx);
__ mulx(rx, ry, lop); // lo-64b-part of result 64x64
__ umulxhi(rx, ry, hip); // hi-64b-part of result 64x64
__ addcc(rc, lop, lop); // Accumulate lower order bits (producing carry)
__ addxc(hip, zero, rc); // carry over to next datum [k-1]
__ srlx(lop, 32, rt);
__ stw(rt, zpc, 0); // z[k] = lop
__ stw(lop, zpc, 4); // ...
__ dec(zpc, 8); // k-- (zpc--)
__ dec(xpc, 8); // i-- (xpc--)
__ ba_short(L_loop_i);
__ bind(L_exit_loop_i);
__ srlx(rc, 32, rt);
__ stw(rt, zpc, 0); // z[k] = c
__ stw(rc, zpc, 4);
// for (int j = yn - 1; j >= 0; j--)
__ sllx(yn, 3, ypc); // u32* ypc = &yp[yn] (byte offset 8*yn)
__ add(yp, ypc, ypc);
__ dec(ypc, 8); // yn - 1 (ypc--)
__ bind(L_loop_j);
__ cmp_and_br_short(ypc, yp,// j >= 0
Assembler::less, Assembler::pn, L_exit);
__ clr(rc); // u64 c = 0
__ lduw(ypc, 0, rt); // u64 y = yp[j] (= *ypc)
__ lduw(ypc, 4, ry); // ...
__ sllx(rt, 32, rt);
__ or3(rt, ry, ry);
// for (int i = xn, k = --zn; i >= 0; i--)
__ sllx(xn, 3, xpc); // u32* xpc = &xp[xn] (byte offset 8*xn)
__ add(xp, xpc, xpc);
__ dec(zn); // --zn
__ sllx(zn, 3, zpc); // u32* zpc = &zp[zn] (byte offset 8*zn)
__ add(zp, zpc, zpc);
__ bind(L_loop_i2);
__ cmp_and_br_short(xpc, xp,// i >= 0
Assembler::less, Assembler::pn, L_exit_loop_i2);
__ lduw(xpc, 0, rt); // u64 x = xp[i] (= *xpc)
__ lduw(xpc, 4, rx); // ...
__ sllx(rt, 32, rt);
__ or3(rt, rx, rx);
__ lduw(zpc, 0, rt); // u64 z = zp[k] (= *zpc)
__ lduw(zpc, 4, rz); // ...
__ sllx(rt, 32, rt);
__ or3(rt, rz, rz);
__ mulx(rx, ry, lop); // lo-64b-part of result 64x64
__ umulxhi(rx, ry, hip); // hi-64b-part of result 64x64
__ addcc(rz, rc, rz); // Accumulate lower order bits...
__ addxc(hip, zero, rc); // Accumulate higher order bits to carry
__ addcc(rz, lop, rz); // ... z += lo(p) + c
__ addxccc(rc, zero, rc);
__ srlx(rz, 32, rt);
__ stw(rt, zpc, 0); // zp[k] = z (*zpc = z)
__ stw(rz, zpc, 4);
__ dec(zpc, 8); // k-- (zpc--)
__ dec(xpc, 8); // i-- (xpc--)
__ ba_short(L_loop_i2);
__ bind(L_exit_loop_i2);
__ srlx(rc, 32, rt);
__ stw(rt, zpc, 0); // z[k] = c
__ stw(rc, zpc, 4);
__ dec(ypc, 8); // j-- (ypc--)
__ ba_short(L_loop_j);
}
void gen_mult_32x32(Register xp, Register xn,
Register yp, Register yn,
Register zp, Register zn, Label &L_exit)
{
// Assuming that a stack frame has already been created, i.e. local and
// output registers are available for use.
const Register ri = L0; // Outer loop index, xv[i]
const Register rj = L1; // Inner loop index, yv[j]
const Register rk = L2; // Output loop index, zv[k]
const Register rx = L4; // x-vector datum [i]
const Register ry = L5; // y-vector datum [j]
const Register rz = L6; // z-vector datum [k]
const Register rc = L7; // carry over (to z-vector datum [k-1])
const Register p64 = O0; // 64b product
const Register z65 = O1; // carry+64b accumulator
const Register c65 = O2; // carry at bit 65
const Register c33 = O2; // carry at bit 33 (after shift)
const Register zero = G0;
Label L_loop_i, L_exit_loop_i;
Label L_loop_j;
Label L_loop_i2, L_exit_loop_i2;
__ dec(xn); // Adjust [0..N-1]
__ dec(yn);
__ dec(zn);
__ clr(rc); // u32 c = 0
__ sllx(xn, 2, ri); // int i = xn (byte offset i = 4*xn)
__ sllx(yn, 2, rj); // int j = yn (byte offset i = 4*xn)
__ sllx(zn, 2, rk); // int k = zn (byte offset k = 4*zn)
__ lduw(yp, rj, ry); // u32 y = yp[yn]
// for (int i = xn; i >= 0; i--)
__ bind(L_loop_i);
__ cmp_and_br_short(ri, 0, // i >= 0
Assembler::less, Assembler::pn, L_exit_loop_i);
__ lduw(xp, ri, rx); // x = xp[i]
__ mulx(rx, ry, p64); // 64b result of 32x32
__ addcc(rc, p64, z65); // Accumulate to 65 bits (producing carry)
__ addxc(zero, zero, c65); // Materialise carry (in bit 65) into lsb,
__ sllx(c65, 32, c33); // and shift into bit 33
__ srlx(z65, 32, rc); // carry = c33 | hi(z65) >> 32
__ add(c33, rc, rc); // carry over to next datum [k-1]
__ stw(z65, zp, rk); // z[k] = lo(z65)
__ dec(rk, 4); // k--
__ dec(ri, 4); // i--
__ ba_short(L_loop_i);
__ bind(L_exit_loop_i);
__ stw(rc, zp, rk); // z[k] = c
// for (int j = yn - 1; j >= 0; j--)
__ sllx(yn, 2, rj); // int j = yn - 1 (byte offset j = 4*yn)
__ dec(rj, 4);
__ bind(L_loop_j);
__ cmp_and_br_short(rj, 0, // j >= 0
Assembler::less, Assembler::pn, L_exit);
__ clr(rc); // u32 c = 0
__ lduw(yp, rj, ry); // u32 y = yp[j]
// for (int i = xn, k = --zn; i >= 0; i--)
__ dec(zn); // --zn
__ sllx(xn, 2, ri); // int i = xn (byte offset i = 4*xn)
__ sllx(zn, 2, rk); // int k = zn (byte offset k = 4*zn)
__ bind(L_loop_i2);
__ cmp_and_br_short(ri, 0, // i >= 0
Assembler::less, Assembler::pn, L_exit_loop_i2);
__ lduw(xp, ri, rx); // x = xp[i]
__ lduw(zp, rk, rz); // z = zp[k], accumulator
__ mulx(rx, ry, p64); // 64b result of 32x32
__ add(rz, rc, rz); // Accumulate lower order bits,
__ addcc(rz, p64, z65); // z += lo(p64) + c
__ addxc(zero, zero, c65); // Materialise carry (in bit 65) into lsb,
__ sllx(c65, 32, c33); // and shift into bit 33
__ srlx(z65, 32, rc); // carry = c33 | hi(z65) >> 32
__ add(c33, rc, rc); // carry over to next datum [k-1]
__ stw(z65, zp, rk); // zp[k] = lo(z65)
__ dec(rk, 4); // k--
__ dec(ri, 4); // i--
__ ba_short(L_loop_i2);
__ bind(L_exit_loop_i2);
__ stw(rc, zp, rk); // z[k] = c
__ dec(rj, 4); // j--
__ ba_short(L_loop_j);
}
void generate_initial() {
// Generates all stubs and initializes the entry points
//------------------------------------------------------------------------------------------------------------------------
// entry points that exist in all platforms
// Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
// the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
StubRoutines::_forward_exception_entry = generate_forward_exception();
StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address);
StubRoutines::_catch_exception_entry = generate_catch_exception();
//------------------------------------------------------------------------------------------------------------------------
// entry points that are platform specific
StubRoutines::Sparc::_test_stop_entry = generate_test_stop();
StubRoutines::Sparc::_stop_subroutine_entry = generate_stop_subroutine();
StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
// Build this early so it's available for the interpreter.
StubRoutines::_throw_StackOverflowError_entry =
generate_throw_exception("StackOverflowError throw_exception",
CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
StubRoutines::_throw_delayed_StackOverflowError_entry =
generate_throw_exception("delayed StackOverflowError throw_exception",
CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
if (UseCRC32Intrinsics) {
// set table address before stub generation which use it
StubRoutines::_crc_table_adr = (address)StubRoutines::Sparc::_crc_table;
StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
}
if (UseCRC32CIntrinsics) {
// set table address before stub generation which use it
StubRoutines::_crc32c_table_addr = (address)StubRoutines::Sparc::_crc32c_table;
StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C();
}
}
void generate_all() {
// Generates all stubs and initializes the entry points
// Generate partial_subtype_check first here since its code depends on
// UseZeroBaseCompressedOops which is defined after heap initialization.
StubRoutines::Sparc::_partial_subtype_check = generate_partial_subtype_check();
// These entry points require SharedInfo::stack0 to be set up in non-core builds
StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
// support for verify_oop (must happen after universe_init)
StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop_subroutine();
// arraycopy stubs used by compilers
generate_arraycopy_stubs();
// Don't initialize the platform math functions since sparc
// doesn't have intrinsics for these operations.
// Safefetch stubs.
generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
&StubRoutines::_safefetch32_fault_pc,
&StubRoutines::_safefetch32_continuation_pc);
generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
&StubRoutines::_safefetchN_fault_pc,
&StubRoutines::_safefetchN_continuation_pc);
// generate AES intrinsics code
if (UseAESIntrinsics) {
StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel();
}
// generate GHASH intrinsics code
if (UseGHASHIntrinsics) {
StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks();
}
// generate SHA1/SHA256/SHA512 intrinsics code
if (UseSHA1Intrinsics) {
StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress");
StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB");
}
if (UseSHA256Intrinsics) {
StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress");
StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB");
}
if (UseSHA512Intrinsics) {
StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress");
StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB");
}
// generate Adler32 intrinsics code
if (UseAdler32Intrinsics) {
StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32();
}
#ifdef COMPILER2
// Intrinsics supported by C2 only:
if (UseMultiplyToLenIntrinsic) {
StubRoutines::_multiplyToLen = generate_multiplyToLen();
}
#endif // COMPILER2
}
public:
StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
// replace the standard masm with a special one:
_masm = new MacroAssembler(code);
_stub_count = !all ? 0x100 : 0x200;
if (all) {
generate_all();
} else {
generate_initial();
}
// make sure this stub is available for all local calls
if (_atomic_add_stub.is_unbound()) {
// generate a second time, if necessary
(void) generate_atomic_add();
}
}
private:
int _stub_count;
void stub_prolog(StubCodeDesc* cdesc) {
# ifdef ASSERT
// put extra information in the stub code, to make it more readable
// Write the high part of the address
// [RGV] Check if there is a dependency on the size of this prolog
__ emit_data((intptr_t)cdesc >> 32, relocInfo::none);
__ emit_data((intptr_t)cdesc, relocInfo::none);
__ emit_data(++_stub_count, relocInfo::none);
# endif
align(true);
}
void align(bool at_header = false) {
// %%%%% move this constant somewhere else
// UltraSPARC cache line size is 8 instructions:
const unsigned int icache_line_size = 32;
const unsigned int icache_half_line_size = 16;
if (at_header) {
while ((intptr_t)(__ pc()) % icache_line_size != 0) {
__ emit_data(0, relocInfo::none);
}
} else {
while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
__ nop();
}
}
}
}; // end class declaration
void StubGenerator_generate(CodeBuffer* code, bool all) {
StubGenerator g(code, all);
}