8144246: adding lots of directives via jcmd may produce OOM crash
Summary: Add a limit to the number of directives
Reviewed-by: kvn
/*
* Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/codeCache.hpp"
#include "code/dependencyContext.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/compileLog.hpp"
#include "compiler/compilerOracle.hpp"
#include "compiler/directivesParser.hpp"
#include "interpreter/linkResolver.hpp"
#include "memory/allocation.inline.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/nativeLookup.hpp"
#include "prims/whitebox.hpp"
#include "runtime/arguments.hpp"
#include "runtime/atomic.inline.hpp"
#include "runtime/compilationPolicy.hpp"
#include "runtime/init.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/sweeper.hpp"
#include "trace/tracing.hpp"
#include "utilities/dtrace.hpp"
#include "utilities/events.hpp"
#ifdef COMPILER1
#include "c1/c1_Compiler.hpp"
#endif
#if INCLUDE_JVMCI
#include "jvmci/jvmciCompiler.hpp"
#include "jvmci/jvmciRuntime.hpp"
#include "jvmci/jvmciJavaClasses.hpp"
#include "runtime/vframe.hpp"
#endif
#ifdef COMPILER2
#include "opto/c2compiler.hpp"
#endif
#ifdef SHARK
#include "shark/sharkCompiler.hpp"
#endif
#ifdef DTRACE_ENABLED
// Only bother with this argument setup if dtrace is available
#define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) \
{ \
Symbol* klass_name = (method)->klass_name(); \
Symbol* name = (method)->name(); \
Symbol* signature = (method)->signature(); \
HOTSPOT_METHOD_COMPILE_BEGIN( \
(char *) comp_name, strlen(comp_name), \
(char *) klass_name->bytes(), klass_name->utf8_length(), \
(char *) name->bytes(), name->utf8_length(), \
(char *) signature->bytes(), signature->utf8_length()); \
}
#define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) \
{ \
Symbol* klass_name = (method)->klass_name(); \
Symbol* name = (method)->name(); \
Symbol* signature = (method)->signature(); \
HOTSPOT_METHOD_COMPILE_END( \
(char *) comp_name, strlen(comp_name), \
(char *) klass_name->bytes(), klass_name->utf8_length(), \
(char *) name->bytes(), name->utf8_length(), \
(char *) signature->bytes(), signature->utf8_length(), (success)); \
}
#else // ndef DTRACE_ENABLED
#define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
#define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
#endif // ndef DTRACE_ENABLED
bool CompileBroker::_initialized = false;
volatile bool CompileBroker::_should_block = false;
volatile jint CompileBroker::_print_compilation_warning = 0;
volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
// The installed compiler(s)
AbstractCompiler* CompileBroker::_compilers[2];
// These counters are used to assign an unique ID to each compilation.
volatile jint CompileBroker::_compilation_id = 0;
volatile jint CompileBroker::_osr_compilation_id = 0;
// Debugging information
int CompileBroker::_last_compile_type = no_compile;
int CompileBroker::_last_compile_level = CompLevel_none;
char CompileBroker::_last_method_compiled[CompileBroker::name_buffer_length];
// Performance counters
PerfCounter* CompileBroker::_perf_total_compilation = NULL;
PerfCounter* CompileBroker::_perf_osr_compilation = NULL;
PerfCounter* CompileBroker::_perf_standard_compilation = NULL;
PerfCounter* CompileBroker::_perf_total_bailout_count = NULL;
PerfCounter* CompileBroker::_perf_total_invalidated_count = NULL;
PerfCounter* CompileBroker::_perf_total_compile_count = NULL;
PerfCounter* CompileBroker::_perf_total_osr_compile_count = NULL;
PerfCounter* CompileBroker::_perf_total_standard_compile_count = NULL;
PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = NULL;
PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = NULL;
PerfCounter* CompileBroker::_perf_sum_nmethod_size = NULL;
PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = NULL;
PerfStringVariable* CompileBroker::_perf_last_method = NULL;
PerfStringVariable* CompileBroker::_perf_last_failed_method = NULL;
PerfStringVariable* CompileBroker::_perf_last_invalidated_method = NULL;
PerfVariable* CompileBroker::_perf_last_compile_type = NULL;
PerfVariable* CompileBroker::_perf_last_compile_size = NULL;
PerfVariable* CompileBroker::_perf_last_failed_type = NULL;
PerfVariable* CompileBroker::_perf_last_invalidated_type = NULL;
// Timers and counters for generating statistics
elapsedTimer CompileBroker::_t_total_compilation;
elapsedTimer CompileBroker::_t_osr_compilation;
elapsedTimer CompileBroker::_t_standard_compilation;
elapsedTimer CompileBroker::_t_invalidated_compilation;
elapsedTimer CompileBroker::_t_bailedout_compilation;
int CompileBroker::_total_bailout_count = 0;
int CompileBroker::_total_invalidated_count = 0;
int CompileBroker::_total_compile_count = 0;
int CompileBroker::_total_osr_compile_count = 0;
int CompileBroker::_total_standard_compile_count = 0;
int CompileBroker::_sum_osr_bytes_compiled = 0;
int CompileBroker::_sum_standard_bytes_compiled = 0;
int CompileBroker::_sum_nmethod_size = 0;
int CompileBroker::_sum_nmethod_code_size = 0;
long CompileBroker::_peak_compilation_time = 0;
CompileQueue* CompileBroker::_c2_compile_queue = NULL;
CompileQueue* CompileBroker::_c1_compile_queue = NULL;
class CompilationLog : public StringEventLog {
public:
CompilationLog() : StringEventLog("Compilation events") {
}
void log_compile(JavaThread* thread, CompileTask* task) {
StringLogMessage lm;
stringStream sstr = lm.stream();
// msg.time_stamp().update_to(tty->time_stamp().ticks());
task->print(&sstr, NULL, true, false);
log(thread, "%s", (const char*)lm);
}
void log_nmethod(JavaThread* thread, nmethod* nm) {
log(thread, "nmethod %d%s " INTPTR_FORMAT " code [" INTPTR_FORMAT ", " INTPTR_FORMAT "]",
nm->compile_id(), nm->is_osr_method() ? "%" : "",
p2i(nm), p2i(nm->code_begin()), p2i(nm->code_end()));
}
void log_failure(JavaThread* thread, CompileTask* task, const char* reason, const char* retry_message) {
StringLogMessage lm;
lm.print("%4d COMPILE SKIPPED: %s", task->compile_id(), reason);
if (retry_message != NULL) {
lm.append(" (%s)", retry_message);
}
lm.print("\n");
log(thread, "%s", (const char*)lm);
}
void log_metaspace_failure(const char* reason) {
ResourceMark rm;
StringLogMessage lm;
lm.print("%4d COMPILE PROFILING SKIPPED: %s", -1, reason);
lm.print("\n");
log(JavaThread::current(), "%s", (const char*)lm);
}
};
static CompilationLog* _compilation_log = NULL;
bool compileBroker_init() {
if (LogEvents) {
_compilation_log = new CompilationLog();
}
// init directives stack, adding default directive
DirectivesStack::init();
if (DirectivesParser::has_file()) {
return DirectivesParser::parse_from_flag();
} else if (CompilerDirectivesPrint) {
// Print default directive even when no other was added
DirectivesStack::print(tty);
}
return true;
}
CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
CompilerThread* thread = CompilerThread::current();
thread->set_task(task);
CompileLog* log = thread->log();
if (log != NULL) task->log_task_start(log);
}
CompileTaskWrapper::~CompileTaskWrapper() {
CompilerThread* thread = CompilerThread::current();
CompileTask* task = thread->task();
CompileLog* log = thread->log();
if (log != NULL) task->log_task_done(log);
thread->set_task(NULL);
task->set_code_handle(NULL);
thread->set_env(NULL);
if (task->is_blocking()) {
bool free_task = false;
{
MutexLocker notifier(task->lock(), thread);
task->mark_complete();
#if INCLUDE_JVMCI
if (CompileBroker::compiler(task->comp_level())->is_jvmci() &&
!task->has_waiter()) {
// The waiting thread timed out and thus did not free the task.
free_task = true;
}
#endif
if (!free_task) {
// Notify the waiting thread that the compilation has completed
// so that it can free the task.
task->lock()->notify_all();
}
}
if (free_task) {
// The task can only be freed once the task lock is released.
CompileTask::free(task);
}
} else {
task->mark_complete();
// By convention, the compiling thread is responsible for
// recycling a non-blocking CompileTask.
CompileTask::free(task);
}
}
/**
* Add a CompileTask to a CompileQueue.
*/
void CompileQueue::add(CompileTask* task) {
assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
task->set_next(NULL);
task->set_prev(NULL);
if (_last == NULL) {
// The compile queue is empty.
assert(_first == NULL, "queue is empty");
_first = task;
_last = task;
} else {
// Append the task to the queue.
assert(_last->next() == NULL, "not last");
_last->set_next(task);
task->set_prev(_last);
_last = task;
}
++_size;
// Mark the method as being in the compile queue.
task->method()->set_queued_for_compilation();
if (CIPrintCompileQueue) {
print_tty();
}
if (LogCompilation && xtty != NULL) {
task->log_task_queued();
}
// Notify CompilerThreads that a task is available.
MethodCompileQueue_lock->notify_all();
}
/**
* Empties compilation queue by putting all compilation tasks onto
* a freelist. Furthermore, the method wakes up all threads that are
* waiting on a compilation task to finish. This can happen if background
* compilation is disabled.
*/
void CompileQueue::free_all() {
MutexLocker mu(MethodCompileQueue_lock);
CompileTask* next = _first;
// Iterate over all tasks in the compile queue
while (next != NULL) {
CompileTask* current = next;
next = current->next();
{
// Wake up thread that blocks on the compile task.
MutexLocker ct_lock(current->lock());
current->lock()->notify();
}
// Put the task back on the freelist.
CompileTask::free(current);
}
_first = NULL;
// Wake up all threads that block on the queue.
MethodCompileQueue_lock->notify_all();
}
/**
* Get the next CompileTask from a CompileQueue
*/
CompileTask* CompileQueue::get() {
// save methods from RedefineClasses across safepoint
// across MethodCompileQueue_lock below.
methodHandle save_method;
methodHandle save_hot_method;
MutexLocker locker(MethodCompileQueue_lock);
// If _first is NULL we have no more compile jobs. There are two reasons for
// having no compile jobs: First, we compiled everything we wanted. Second,
// we ran out of code cache so compilation has been disabled. In the latter
// case we perform code cache sweeps to free memory such that we can re-enable
// compilation.
while (_first == NULL) {
// Exit loop if compilation is disabled forever
if (CompileBroker::is_compilation_disabled_forever()) {
return NULL;
}
// If there are no compilation tasks and we can compile new jobs
// (i.e., there is enough free space in the code cache) there is
// no need to invoke the sweeper. As a result, the hotness of methods
// remains unchanged. This behavior is desired, since we want to keep
// the stable state, i.e., we do not want to evict methods from the
// code cache if it is unnecessary.
// We need a timed wait here, since compiler threads can exit if compilation
// is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
// is not critical and we do not want idle compiler threads to wake up too often.
MethodCompileQueue_lock->wait(!Mutex::_no_safepoint_check_flag, 5*1000);
}
if (CompileBroker::is_compilation_disabled_forever()) {
return NULL;
}
CompileTask* task;
{
No_Safepoint_Verifier nsv;
task = CompilationPolicy::policy()->select_task(this);
}
// Save method pointers across unlock safepoint. The task is removed from
// the compilation queue, which is walked during RedefineClasses.
save_method = methodHandle(task->method());
save_hot_method = methodHandle(task->hot_method());
remove(task);
purge_stale_tasks(); // may temporarily release MCQ lock
return task;
}
// Clean & deallocate stale compile tasks.
// Temporarily releases MethodCompileQueue lock.
void CompileQueue::purge_stale_tasks() {
assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
if (_first_stale != NULL) {
// Stale tasks are purged when MCQ lock is released,
// but _first_stale updates are protected by MCQ lock.
// Once task processing starts and MCQ lock is released,
// other compiler threads can reuse _first_stale.
CompileTask* head = _first_stale;
_first_stale = NULL;
{
MutexUnlocker ul(MethodCompileQueue_lock);
for (CompileTask* task = head; task != NULL; ) {
CompileTask* next_task = task->next();
CompileTaskWrapper ctw(task); // Frees the task
task->set_failure_reason("stale task");
task = next_task;
}
}
}
}
void CompileQueue::remove(CompileTask* task) {
assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
if (task->prev() != NULL) {
task->prev()->set_next(task->next());
} else {
// max is the first element
assert(task == _first, "Sanity");
_first = task->next();
}
if (task->next() != NULL) {
task->next()->set_prev(task->prev());
} else {
// max is the last element
assert(task == _last, "Sanity");
_last = task->prev();
}
--_size;
}
void CompileQueue::remove_and_mark_stale(CompileTask* task) {
assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
remove(task);
// Enqueue the task for reclamation (should be done outside MCQ lock)
task->set_next(_first_stale);
task->set_prev(NULL);
_first_stale = task;
}
// methods in the compile queue need to be marked as used on the stack
// so that they don't get reclaimed by Redefine Classes
void CompileQueue::mark_on_stack() {
CompileTask* task = _first;
while (task != NULL) {
task->mark_on_stack();
task = task->next();
}
}
CompileQueue* CompileBroker::compile_queue(int comp_level) {
if (is_c2_compile(comp_level)) return _c2_compile_queue;
if (is_c1_compile(comp_level)) return _c1_compile_queue;
return NULL;
}
void CompileBroker::print_compile_queues(outputStream* st) {
MutexLocker locker(MethodCompileQueue_lock);
if (_c1_compile_queue != NULL) {
_c1_compile_queue->print(st);
}
if (_c2_compile_queue != NULL) {
_c2_compile_queue->print(st);
}
}
void CompileQueue::print(outputStream* st) {
assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
st->print_cr("Contents of %s", name());
st->print_cr("----------------------------");
CompileTask* task = _first;
if (task == NULL) {
st->print_cr("Empty");
} else {
while (task != NULL) {
task->print(st, NULL, true, true);
task = task->next();
}
}
st->print_cr("----------------------------");
}
void CompileQueue::print_tty() {
ttyLocker ttyl;
print(tty);
}
CompilerCounters::CompilerCounters() {
_current_method[0] = '\0';
_compile_type = CompileBroker::no_compile;
}
// ------------------------------------------------------------------
// CompileBroker::compilation_init
//
// Initialize the Compilation object
void CompileBroker::compilation_init(TRAPS) {
_last_method_compiled[0] = '\0';
// No need to initialize compilation system if we do not use it.
if (!UseCompiler) {
return;
}
#ifndef SHARK
// Set the interface to the current compiler(s).
int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
#if INCLUDE_JVMCI
if (EnableJVMCI) {
// This is creating a JVMCICompiler singleton.
JVMCICompiler* jvmci = new JVMCICompiler();
if (UseJVMCICompiler) {
_compilers[1] = jvmci;
if (FLAG_IS_DEFAULT(JVMCIThreads)) {
if (BootstrapJVMCI) {
// JVMCI will bootstrap so give it more threads
c2_count = MIN2(32, os::active_processor_count());
}
} else {
c2_count = JVMCIThreads;
}
if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
} else {
c1_count = JVMCIHostThreads;
}
if (!UseInterpreter) {
// Force initialization of JVMCI compiler otherwise JVMCI
// compilations will not block until JVMCI is initialized
ResourceMark rm;
TempNewSymbol getCompiler = SymbolTable::new_symbol("getCompiler", CHECK);
TempNewSymbol sig = SymbolTable::new_symbol("()Ljdk/vm/ci/runtime/JVMCICompiler;", CHECK);
Handle jvmciRuntime = JVMCIRuntime::get_HotSpotJVMCIRuntime(CHECK);
JavaValue result(T_OBJECT);
JavaCalls::call_virtual(&result, jvmciRuntime, HotSpotJVMCIRuntime::klass(), getCompiler, sig, CHECK);
}
}
}
#endif // INCLUDE_JVMCI
#ifdef COMPILER1
if (c1_count > 0) {
_compilers[0] = new Compiler();
}
#endif // COMPILER1
#ifdef COMPILER2
if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
if (c2_count > 0) {
_compilers[1] = new C2Compiler();
}
}
#endif // COMPILER2
#else // SHARK
int c1_count = 0;
int c2_count = 1;
_compilers[1] = new SharkCompiler();
#endif // SHARK
// Start the compiler thread(s) and the sweeper thread
init_compiler_sweeper_threads(c1_count, c2_count);
// totalTime performance counter is always created as it is required
// by the implementation of java.lang.management.CompilationMBean.
{
EXCEPTION_MARK;
_perf_total_compilation =
PerfDataManager::create_counter(JAVA_CI, "totalTime",
PerfData::U_Ticks, CHECK);
}
if (UsePerfData) {
EXCEPTION_MARK;
// create the jvmstat performance counters
_perf_osr_compilation =
PerfDataManager::create_counter(SUN_CI, "osrTime",
PerfData::U_Ticks, CHECK);
_perf_standard_compilation =
PerfDataManager::create_counter(SUN_CI, "standardTime",
PerfData::U_Ticks, CHECK);
_perf_total_bailout_count =
PerfDataManager::create_counter(SUN_CI, "totalBailouts",
PerfData::U_Events, CHECK);
_perf_total_invalidated_count =
PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
PerfData::U_Events, CHECK);
_perf_total_compile_count =
PerfDataManager::create_counter(SUN_CI, "totalCompiles",
PerfData::U_Events, CHECK);
_perf_total_osr_compile_count =
PerfDataManager::create_counter(SUN_CI, "osrCompiles",
PerfData::U_Events, CHECK);
_perf_total_standard_compile_count =
PerfDataManager::create_counter(SUN_CI, "standardCompiles",
PerfData::U_Events, CHECK);
_perf_sum_osr_bytes_compiled =
PerfDataManager::create_counter(SUN_CI, "osrBytes",
PerfData::U_Bytes, CHECK);
_perf_sum_standard_bytes_compiled =
PerfDataManager::create_counter(SUN_CI, "standardBytes",
PerfData::U_Bytes, CHECK);
_perf_sum_nmethod_size =
PerfDataManager::create_counter(SUN_CI, "nmethodSize",
PerfData::U_Bytes, CHECK);
_perf_sum_nmethod_code_size =
PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
PerfData::U_Bytes, CHECK);
_perf_last_method =
PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
CompilerCounters::cmname_buffer_length,
"", CHECK);
_perf_last_failed_method =
PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
CompilerCounters::cmname_buffer_length,
"", CHECK);
_perf_last_invalidated_method =
PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
CompilerCounters::cmname_buffer_length,
"", CHECK);
_perf_last_compile_type =
PerfDataManager::create_variable(SUN_CI, "lastType",
PerfData::U_None,
(jlong)CompileBroker::no_compile,
CHECK);
_perf_last_compile_size =
PerfDataManager::create_variable(SUN_CI, "lastSize",
PerfData::U_Bytes,
(jlong)CompileBroker::no_compile,
CHECK);
_perf_last_failed_type =
PerfDataManager::create_variable(SUN_CI, "lastFailedType",
PerfData::U_None,
(jlong)CompileBroker::no_compile,
CHECK);
_perf_last_invalidated_type =
PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
PerfData::U_None,
(jlong)CompileBroker::no_compile,
CHECK);
}
_initialized = true;
}
JavaThread* CompileBroker::make_thread(const char* name, CompileQueue* queue, CompilerCounters* counters,
AbstractCompiler* comp, bool compiler_thread, TRAPS) {
JavaThread* thread = NULL;
Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_0);
instanceKlassHandle klass (THREAD, k);
instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_0);
Handle string = java_lang_String::create_from_str(name, CHECK_0);
// Initialize thread_oop to put it into the system threadGroup
Handle thread_group (THREAD, Universe::system_thread_group());
JavaValue result(T_VOID);
JavaCalls::call_special(&result, thread_oop,
klass,
vmSymbols::object_initializer_name(),
vmSymbols::threadgroup_string_void_signature(),
thread_group,
string,
CHECK_0);
{
MutexLocker mu(Threads_lock, THREAD);
if (compiler_thread) {
thread = new CompilerThread(queue, counters);
} else {
thread = new CodeCacheSweeperThread();
}
// At this point the new CompilerThread data-races with this startup
// thread (which I believe is the primoridal thread and NOT the VM
// thread). This means Java bytecodes being executed at startup can
// queue compile jobs which will run at whatever default priority the
// newly created CompilerThread runs at.
// At this point it may be possible that no osthread was created for the
// JavaThread due to lack of memory. We would have to throw an exception
// in that case. However, since this must work and we do not allow
// exceptions anyway, check and abort if this fails.
if (thread == NULL || thread->osthread() == NULL) {
vm_exit_during_initialization("java.lang.OutOfMemoryError",
os::native_thread_creation_failed_msg());
}
java_lang_Thread::set_thread(thread_oop(), thread);
// Note that this only sets the JavaThread _priority field, which by
// definition is limited to Java priorities and not OS priorities.
// The os-priority is set in the CompilerThread startup code itself
java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
// Note that we cannot call os::set_priority because it expects Java
// priorities and we are *explicitly* using OS priorities so that it's
// possible to set the compiler thread priority higher than any Java
// thread.
int native_prio = CompilerThreadPriority;
if (native_prio == -1) {
if (UseCriticalCompilerThreadPriority) {
native_prio = os::java_to_os_priority[CriticalPriority];
} else {
native_prio = os::java_to_os_priority[NearMaxPriority];
}
}
os::set_native_priority(thread, native_prio);
java_lang_Thread::set_daemon(thread_oop());
thread->set_threadObj(thread_oop());
if (compiler_thread) {
thread->as_CompilerThread()->set_compiler(comp);
}
Threads::add(thread);
Thread::start(thread);
}
// Let go of Threads_lock before yielding
os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
return thread;
}
void CompileBroker::init_compiler_sweeper_threads(int c1_compiler_count, int c2_compiler_count) {
EXCEPTION_MARK;
#if !defined(ZERO) && !defined(SHARK)
assert(c2_compiler_count > 0 || c1_compiler_count > 0, "No compilers?");
#endif // !ZERO && !SHARK
// Initialize the compilation queue
if (c2_compiler_count > 0) {
_c2_compile_queue = new CompileQueue("C2 compile queue");
_compilers[1]->set_num_compiler_threads(c2_compiler_count);
}
if (c1_compiler_count > 0) {
_c1_compile_queue = new CompileQueue("C1 compile queue");
_compilers[0]->set_num_compiler_threads(c1_compiler_count);
}
int compiler_count = c1_compiler_count + c2_compiler_count;
char name_buffer[256];
const bool compiler_thread = true;
for (int i = 0; i < c2_compiler_count; i++) {
// Create a name for our thread.
sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
CompilerCounters* counters = new CompilerCounters();
// Shark and C2
make_thread(name_buffer, _c2_compile_queue, counters, _compilers[1], compiler_thread, CHECK);
}
for (int i = c2_compiler_count; i < compiler_count; i++) {
// Create a name for our thread.
sprintf(name_buffer, "C1 CompilerThread%d", i);
CompilerCounters* counters = new CompilerCounters();
// C1
make_thread(name_buffer, _c1_compile_queue, counters, _compilers[0], compiler_thread, CHECK);
}
if (UsePerfData) {
PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, compiler_count, CHECK);
}
if (MethodFlushing) {
// Initialize the sweeper thread
make_thread("Sweeper thread", NULL, NULL, NULL, false, CHECK);
}
}
/**
* Set the methods on the stack as on_stack so that redefine classes doesn't
* reclaim them. This method is executed at a safepoint.
*/
void CompileBroker::mark_on_stack() {
assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
// Since we are at a safepoint, we do not need a lock to access
// the compile queues.
if (_c2_compile_queue != NULL) {
_c2_compile_queue->mark_on_stack();
}
if (_c1_compile_queue != NULL) {
_c1_compile_queue->mark_on_stack();
}
}
// ------------------------------------------------------------------
// CompileBroker::compile_method
//
// Request compilation of a method.
void CompileBroker::compile_method_base(const methodHandle& method,
int osr_bci,
int comp_level,
const methodHandle& hot_method,
int hot_count,
const char* comment,
Thread* thread) {
// do nothing if compiler thread(s) is not available
if (!_initialized) {
return;
}
guarantee(!method->is_abstract(), "cannot compile abstract methods");
assert(method->method_holder()->is_instance_klass(),
"sanity check");
assert(!method->method_holder()->is_not_initialized(),
"method holder must be initialized");
assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
if (CIPrintRequests) {
tty->print("request: ");
method->print_short_name(tty);
if (osr_bci != InvocationEntryBci) {
tty->print(" osr_bci: %d", osr_bci);
}
tty->print(" level: %d comment: %s count: %d", comp_level, comment, hot_count);
if (!hot_method.is_null()) {
tty->print(" hot: ");
if (hot_method() != method()) {
hot_method->print_short_name(tty);
} else {
tty->print("yes");
}
}
tty->cr();
}
// A request has been made for compilation. Before we do any
// real work, check to see if the method has been compiled
// in the meantime with a definitive result.
if (compilation_is_complete(method, osr_bci, comp_level)) {
return;
}
#ifndef PRODUCT
if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
// Positive OSROnlyBCI means only compile that bci. Negative means don't compile that BCI.
return;
}
}
#endif
// If this method is already in the compile queue, then
// we do not block the current thread.
if (compilation_is_in_queue(method)) {
// We may want to decay our counter a bit here to prevent
// multiple denied requests for compilation. This is an
// open compilation policy issue. Note: The other possibility,
// in the case that this is a blocking compile request, is to have
// all subsequent blocking requesters wait for completion of
// ongoing compiles. Note that in this case we'll need a protocol
// for freeing the associated compile tasks. [Or we could have
// a single static monitor on which all these waiters sleep.]
return;
}
// If the requesting thread is holding the pending list lock
// then we just return. We can't risk blocking while holding
// the pending list lock or a 3-way deadlock may occur
// between the reference handler thread, a GC (instigated
// by a compiler thread), and compiled method registration.
if (InstanceRefKlass::owns_pending_list_lock(JavaThread::current())) {
return;
}
if (TieredCompilation) {
// Tiered policy requires MethodCounters to exist before adding a method to
// the queue. Create if we don't have them yet.
method->get_method_counters(thread);
}
// Outputs from the following MutexLocker block:
CompileTask* task = NULL;
bool blocking = false;
CompileQueue* queue = compile_queue(comp_level);
// Acquire our lock.
{
MutexLocker locker(MethodCompileQueue_lock, thread);
// Make sure the method has not slipped into the queues since
// last we checked; note that those checks were "fast bail-outs".
// Here we need to be more careful, see 14012000 below.
if (compilation_is_in_queue(method)) {
return;
}
// We need to check again to see if the compilation has
// completed. A previous compilation may have registered
// some result.
if (compilation_is_complete(method, osr_bci, comp_level)) {
return;
}
// We now know that this compilation is not pending, complete,
// or prohibited. Assign a compile_id to this compilation
// and check to see if it is in our [Start..Stop) range.
int compile_id = assign_compile_id(method, osr_bci);
if (compile_id == 0) {
// The compilation falls outside the allowed range.
return;
}
// Should this thread wait for completion of the compile?
blocking = is_compile_blocking();
#if INCLUDE_JVMCI
if (UseJVMCICompiler) {
if (blocking) {
// Don't allow blocking compiles for requests triggered by JVMCI.
if (thread->is_Compiler_thread()) {
blocking = false;
}
// Don't allow blocking compiles if inside a class initializer or while performing class loading
vframeStream vfst((JavaThread*) thread);
for (; !vfst.at_end(); vfst.next()) {
if (vfst.method()->is_static_initializer() ||
(vfst.method()->method_holder()->is_subclass_of(SystemDictionary::ClassLoader_klass()) &&
vfst.method()->name() == vmSymbols::loadClass_name())) {
blocking = false;
break;
}
}
// Don't allow blocking compilation requests to JVMCI
// if JVMCI itself is not yet initialized
if (!JVMCIRuntime::is_HotSpotJVMCIRuntime_initialized() && compiler(comp_level)->is_jvmci()) {
blocking = false;
}
// Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
// to avoid deadlock between compiler thread(s) and threads run at shutdown
// such as the DestroyJavaVM thread.
if (JVMCIRuntime::shutdown_called()) {
blocking = false;
}
}
}
#endif // INCLUDE_JVMCI
// We will enter the compilation in the queue.
// 14012000: Note that this sets the queued_for_compile bits in
// the target method. We can now reason that a method cannot be
// queued for compilation more than once, as follows:
// Before a thread queues a task for compilation, it first acquires
// the compile queue lock, then checks if the method's queued bits
// are set or it has already been compiled. Thus there can not be two
// instances of a compilation task for the same method on the
// compilation queue. Consider now the case where the compilation
// thread has already removed a task for that method from the queue
// and is in the midst of compiling it. In this case, the
// queued_for_compile bits must be set in the method (and these
// will be visible to the current thread, since the bits were set
// under protection of the compile queue lock, which we hold now.
// When the compilation completes, the compiler thread first sets
// the compilation result and then clears the queued_for_compile
// bits. Neither of these actions are protected by a barrier (or done
// under the protection of a lock), so the only guarantee we have
// (on machines with TSO (Total Store Order)) is that these values
// will update in that order. As a result, the only combinations of
// these bits that the current thread will see are, in temporal order:
// <RESULT, QUEUE> :
// <0, 1> : in compile queue, but not yet compiled
// <1, 1> : compiled but queue bit not cleared
// <1, 0> : compiled and queue bit cleared
// Because we first check the queue bits then check the result bits,
// we are assured that we cannot introduce a duplicate task.
// Note that if we did the tests in the reverse order (i.e. check
// result then check queued bit), we could get the result bit before
// the compilation completed, and the queue bit after the compilation
// completed, and end up introducing a "duplicate" (redundant) task.
// In that case, the compiler thread should first check if a method
// has already been compiled before trying to compile it.
// NOTE: in the event that there are multiple compiler threads and
// there is de-optimization/recompilation, things will get hairy,
// and in that case it's best to protect both the testing (here) of
// these bits, and their updating (here and elsewhere) under a
// common lock.
task = create_compile_task(queue,
compile_id, method,
osr_bci, comp_level,
hot_method, hot_count, comment,
blocking);
}
if (blocking) {
wait_for_completion(task);
}
}
nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
int comp_level,
const methodHandle& hot_method, int hot_count,
const char* comment, Thread* THREAD) {
// make sure arguments make sense
assert(method->method_holder()->is_instance_klass(), "not an instance method");
assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized");
// allow any levels for WhiteBox
assert(WhiteBoxAPI || TieredCompilation || comp_level == CompLevel_highest_tier, "only CompLevel_highest_tier must be used in non-tiered");
// return quickly if possible
// lock, make sure that the compilation
// isn't prohibited in a straightforward way.
AbstractCompiler *comp = CompileBroker::compiler(comp_level);
if (comp == NULL || !comp->can_compile_method(method) ||
compilation_is_prohibited(method, osr_bci, comp_level)) {
return NULL;
}
if (osr_bci == InvocationEntryBci) {
// standard compilation
nmethod* method_code = method->code();
if (method_code != NULL) {
if (compilation_is_complete(method, osr_bci, comp_level)) {
return method_code;
}
}
if (method->is_not_compilable(comp_level)) {
return NULL;
}
} else {
// osr compilation
#ifndef TIERED
// seems like an assert of dubious value
assert(comp_level == CompLevel_highest_tier,
"all OSR compiles are assumed to be at a single compilation level");
#endif // TIERED
// We accept a higher level osr method
nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
if (nm != NULL) return nm;
if (method->is_not_osr_compilable(comp_level)) return NULL;
}
assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
// some prerequisites that are compiler specific
if (comp->is_c2() || comp->is_shark()) {
method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NULL);
// Resolve all classes seen in the signature of the method
// we are compiling.
Method::load_signature_classes(method, CHECK_AND_CLEAR_NULL);
}
// If the method is native, do the lookup in the thread requesting
// the compilation. Native lookups can load code, which is not
// permitted during compilation.
//
// Note: A native method implies non-osr compilation which is
// checked with an assertion at the entry of this method.
if (method->is_native() && !method->is_method_handle_intrinsic()) {
bool in_base_library;
address adr = NativeLookup::lookup(method, in_base_library, THREAD);
if (HAS_PENDING_EXCEPTION) {
// In case of an exception looking up the method, we just forget
// about it. The interpreter will kick-in and throw the exception.
method->set_not_compilable(); // implies is_not_osr_compilable()
CLEAR_PENDING_EXCEPTION;
return NULL;
}
assert(method->has_native_function(), "must have native code by now");
}
// RedefineClasses() has replaced this method; just return
if (method->is_old()) {
return NULL;
}
// JVMTI -- post_compile_event requires jmethod_id() that may require
// a lock the compiling thread can not acquire. Prefetch it here.
if (JvmtiExport::should_post_compiled_method_load()) {
method->jmethod_id();
}
// do the compilation
if (method->is_native()) {
if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
// The following native methods:
//
// java.lang.Float.intBitsToFloat
// java.lang.Float.floatToRawIntBits
// java.lang.Double.longBitsToDouble
// java.lang.Double.doubleToRawLongBits
//
// are called through the interpreter even if interpreter native stubs
// are not preferred (i.e., calling through adapter handlers is preferred).
// The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved
// if the version of the methods from the native libraries is called.
// As the interpreter and the C2-intrinsified version of the methods preserves
// sNaNs, that would result in an inconsistent way of handling of sNaNs.
if ((UseSSE >= 1 &&
(method->intrinsic_id() == vmIntrinsics::_intBitsToFloat ||
method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) ||
(UseSSE >= 2 &&
(method->intrinsic_id() == vmIntrinsics::_longBitsToDouble ||
method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) {
return NULL;
}
// To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
// pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
//
// Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
// in this case. If we can't generate one and use it we can not execute the out-of-line method handle calls.
AdapterHandlerLibrary::create_native_wrapper(method);
} else {
return NULL;
}
} else {
// If the compiler is shut off due to code cache getting full
// fail out now so blocking compiles dont hang the java thread
if (!should_compile_new_jobs()) {
CompilationPolicy::policy()->delay_compilation(method());
return NULL;
}
compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, comment, THREAD);
}
// return requested nmethod
// We accept a higher level osr method
if (osr_bci == InvocationEntryBci) {
return method->code();
}
return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
}
// ------------------------------------------------------------------
// CompileBroker::compilation_is_complete
//
// See if compilation of this method is already complete.
bool CompileBroker::compilation_is_complete(const methodHandle& method,
int osr_bci,
int comp_level) {
bool is_osr = (osr_bci != standard_entry_bci);
if (is_osr) {
if (method->is_not_osr_compilable(comp_level)) {
return true;
} else {
nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
return (result != NULL);
}
} else {
if (method->is_not_compilable(comp_level)) {
return true;
} else {
nmethod* result = method->code();
if (result == NULL) return false;
return comp_level == result->comp_level();
}
}
}
/**
* See if this compilation is already requested.
*
* Implementation note: there is only a single "is in queue" bit
* for each method. This means that the check below is overly
* conservative in the sense that an osr compilation in the queue
* will block a normal compilation from entering the queue (and vice
* versa). This can be remedied by a full queue search to disambiguate
* cases. If it is deemed profitable, this may be done.
*/
bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
return method->queued_for_compilation();
}
// ------------------------------------------------------------------
// CompileBroker::compilation_is_prohibited
//
// See if this compilation is not allowed.
bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level) {
bool is_native = method->is_native();
// Some compilers may not support the compilation of natives.
AbstractCompiler *comp = compiler(comp_level);
if (is_native &&
(!CICompileNatives || comp == NULL || !comp->supports_native())) {
method->set_not_compilable_quietly(comp_level);
return true;
}
bool is_osr = (osr_bci != standard_entry_bci);
// Some compilers may not support on stack replacement.
if (is_osr &&
(!CICompileOSR || comp == NULL || !comp->supports_osr())) {
method->set_not_osr_compilable(comp_level);
return true;
}
// Breaking the abstraction - directives are only used inside a compilation otherwise.
DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
bool excluded = directive->ExcludeOption;
DirectivesStack::release(directive);
// The method may be explicitly excluded by the user.
double scale;
if (excluded || (CompilerOracle::has_option_value(method, "CompileThresholdScaling", scale) && scale == 0)) {
bool quietly = CompilerOracle::should_exclude_quietly();
if (PrintCompilation && !quietly) {
// This does not happen quietly...
ResourceMark rm;
tty->print("### Excluding %s:%s",
method->is_native() ? "generation of native wrapper" : "compile",
(method->is_static() ? " static" : ""));
method->print_short_name(tty);
tty->cr();
}
method->set_not_compilable(comp_level, !quietly, "excluded by CompileCommand");
}
return false;
}
/**
* Generate serialized IDs for compilation requests. If certain debugging flags are used
* and the ID is not within the specified range, the method is not compiled and 0 is returned.
* The function also allows to generate separate compilation IDs for OSR compilations.
*/
int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
#ifdef ASSERT
bool is_osr = (osr_bci != standard_entry_bci);
int id;
if (method->is_native()) {
assert(!is_osr, "can't be osr");
// Adapters, native wrappers and method handle intrinsics
// should be generated always.
return Atomic::add(1, &_compilation_id);
} else if (CICountOSR && is_osr) {
id = Atomic::add(1, &_osr_compilation_id);
if (CIStartOSR <= id && id < CIStopOSR) {
return id;
}
} else {
id = Atomic::add(1, &_compilation_id);
if (CIStart <= id && id < CIStop) {
return id;
}
}
// Method was not in the appropriate compilation range.
method->set_not_compilable_quietly();
return 0;
#else
// CICountOSR is a develop flag and set to 'false' by default. In a product built,
// only _compilation_id is incremented.
return Atomic::add(1, &_compilation_id);
#endif
}
// ------------------------------------------------------------------
// CompileBroker::assign_compile_id_unlocked
//
// Public wrapper for assign_compile_id that acquires the needed locks
uint CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
MutexLocker locker(MethodCompileQueue_lock, thread);
return assign_compile_id(method, osr_bci);
}
/**
* Should the current thread block until this compilation request
* has been fulfilled?
*/
bool CompileBroker::is_compile_blocking() {
assert(!InstanceRefKlass::owns_pending_list_lock(JavaThread::current()), "possible deadlock");
return !BackgroundCompilation;
}
// ------------------------------------------------------------------
// CompileBroker::preload_classes
void CompileBroker::preload_classes(const methodHandle& method, TRAPS) {
// Move this code over from c1_Compiler.cpp
ShouldNotReachHere();
}
// ------------------------------------------------------------------
// CompileBroker::create_compile_task
//
// Create a CompileTask object representing the current request for
// compilation. Add this task to the queue.
CompileTask* CompileBroker::create_compile_task(CompileQueue* queue,
int compile_id,
const methodHandle& method,
int osr_bci,
int comp_level,
const methodHandle& hot_method,
int hot_count,
const char* comment,
bool blocking) {
CompileTask* new_task = CompileTask::allocate();
new_task->initialize(compile_id, method, osr_bci, comp_level,
hot_method, hot_count, comment,
blocking);
queue->add(new_task);
return new_task;
}
// 1 second should be long enough to complete most JVMCI compilations
// and not too long to stall a blocking JVMCI compilation that
// is trying to acquire a lock held by the app thread that submitted the
// compilation.
static const long BLOCKING_JVMCI_COMPILATION_TIMEOUT = 1000;
/**
* Wait for the compilation task to complete.
*/
void CompileBroker::wait_for_completion(CompileTask* task) {
if (CIPrintCompileQueue) {
ttyLocker ttyl;
tty->print_cr("BLOCKING FOR COMPILE");
}
assert(task->is_blocking(), "can only wait on blocking task");
JavaThread* thread = JavaThread::current();
thread->set_blocked_on_compilation(true);
methodHandle method(thread, task->method());
bool free_task;
#if INCLUDE_JVMCI
if (compiler(task->comp_level())->is_jvmci()) {
MutexLocker waiter(task->lock(), thread);
// No need to check if compilation has completed - just
// rely on the time out. The JVMCI compiler thread will
// recycle the CompileTask.
task->lock()->wait(!Mutex::_no_safepoint_check_flag, BLOCKING_JVMCI_COMPILATION_TIMEOUT);
// If the compilation completes while has_waiter is true then
// this thread is responsible for freeing the task. Otherwise
// the compiler thread will free the task.
task->clear_waiter();
free_task = task->is_complete();
} else
#endif
{
MutexLocker waiter(task->lock(), thread);
free_task = true;
while (!task->is_complete() && !is_compilation_disabled_forever()) {
task->lock()->wait();
}
}
thread->set_blocked_on_compilation(false);
if (free_task) {
if (is_compilation_disabled_forever()) {
CompileTask::free(task);
return;
}
// It is harmless to check this status without the lock, because
// completion is a stable property (until the task object is recycled).
assert(task->is_complete(), "Compilation should have completed");
assert(task->code_handle() == NULL, "must be reset");
// By convention, the waiter is responsible for recycling a
// blocking CompileTask. Since there is only one waiter ever
// waiting on a CompileTask, we know that no one else will
// be using this CompileTask; we can free it.
CompileTask::free(task);
}
}
/**
* Initialize compiler thread(s) + compiler object(s). The postcondition
* of this function is that the compiler runtimes are initialized and that
* compiler threads can start compiling.
*/
bool CompileBroker::init_compiler_runtime() {
CompilerThread* thread = CompilerThread::current();
AbstractCompiler* comp = thread->compiler();
// Final sanity check - the compiler object must exist
guarantee(comp != NULL, "Compiler object must exist");
int system_dictionary_modification_counter;
{
MutexLocker locker(Compile_lock, thread);
system_dictionary_modification_counter = SystemDictionary::number_of_modifications();
}
{
// Must switch to native to allocate ci_env
ThreadToNativeFromVM ttn(thread);
ciEnv ci_env(NULL, system_dictionary_modification_counter);
// Cache Jvmti state
ci_env.cache_jvmti_state();
// Cache DTrace flags
ci_env.cache_dtrace_flags();
// Switch back to VM state to do compiler initialization
ThreadInVMfromNative tv(thread);
ResetNoHandleMark rnhm;
if (!comp->is_shark()) {
// Perform per-thread and global initializations
comp->initialize();
}
}
if (comp->is_failed()) {
disable_compilation_forever();
// If compiler initialization failed, no compiler thread that is specific to a
// particular compiler runtime will ever start to compile methods.
shutdown_compiler_runtime(comp, thread);
return false;
}
// C1 specific check
if (comp->is_c1() && (thread->get_buffer_blob() == NULL)) {
warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
return false;
}
return true;
}
/**
* If C1 and/or C2 initialization failed, we shut down all compilation.
* We do this to keep things simple. This can be changed if it ever turns
* out to be a problem.
*/
void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
// Free buffer blob, if allocated
if (thread->get_buffer_blob() != NULL) {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
CodeCache::free(thread->get_buffer_blob());
}
if (comp->should_perform_shutdown()) {
// There are two reasons for shutting down the compiler
// 1) compiler runtime initialization failed
// 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
warning("%s initialization failed. Shutting down all compilers", comp->name());
// Only one thread per compiler runtime object enters here
// Set state to shut down
comp->set_shut_down();
// Delete all queued compilation tasks to make compiler threads exit faster.
if (_c1_compile_queue != NULL) {
_c1_compile_queue->free_all();
}
if (_c2_compile_queue != NULL) {
_c2_compile_queue->free_all();
}
// Set flags so that we continue execution with using interpreter only.
UseCompiler = false;
UseInterpreter = true;
// We could delete compiler runtimes also. However, there are references to
// the compiler runtime(s) (e.g., nmethod::is_compiled_by_c1()) which then
// fail. This can be done later if necessary.
}
}
// ------------------------------------------------------------------
// CompileBroker::compiler_thread_loop
//
// The main loop run by a CompilerThread.
void CompileBroker::compiler_thread_loop() {
CompilerThread* thread = CompilerThread::current();
CompileQueue* queue = thread->queue();
// For the thread that initializes the ciObjectFactory
// this resource mark holds all the shared objects
ResourceMark rm;
// First thread to get here will initialize the compiler interface
if (!ciObjectFactory::is_initialized()) {
ASSERT_IN_VM;
MutexLocker only_one (CompileThread_lock, thread);
if (!ciObjectFactory::is_initialized()) {
ciObjectFactory::initialize();
}
}
// Open a log.
if (LogCompilation) {
init_compiler_thread_log();
}
CompileLog* log = thread->log();
if (log != NULL) {
log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'",
thread->name(),
os::current_thread_id(),
os::current_process_id());
log->stamp();
log->end_elem();
}
// If compiler thread/runtime initialization fails, exit the compiler thread
if (!init_compiler_runtime()) {
return;
}
// Poll for new compilation tasks as long as the JVM runs. Compilation
// should only be disabled if something went wrong while initializing the
// compiler runtimes. This, in turn, should not happen. The only known case
// when compiler runtime initialization fails is if there is not enough free
// space in the code cache to generate the necessary stubs, etc.
while (!is_compilation_disabled_forever()) {
// We need this HandleMark to avoid leaking VM handles.
HandleMark hm(thread);
CompileTask* task = queue->get();
if (task == NULL) {
continue;
}
// Give compiler threads an extra quanta. They tend to be bursty and
// this helps the compiler to finish up the job.
if (CompilerThreadHintNoPreempt) {
os::hint_no_preempt();
}
// Assign the task to the current thread. Mark this compilation
// thread as active for the profiler.
CompileTaskWrapper ctw(task);
nmethodLocker result_handle; // (handle for the nmethod produced by this task)
task->set_code_handle(&result_handle);
methodHandle method(thread, task->method());
// Never compile a method if breakpoints are present in it
if (method()->number_of_breakpoints() == 0) {
// Compile the method.
if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
invoke_compiler_on_method(task);
} else {
// After compilation is disabled, remove remaining methods from queue
method->clear_queued_for_compilation();
task->set_failure_reason("compilation is disabled");
}
}
}
// Shut down compiler runtime
shutdown_compiler_runtime(thread->compiler(), thread);
}
// ------------------------------------------------------------------
// CompileBroker::init_compiler_thread_log
//
// Set up state required by +LogCompilation.
void CompileBroker::init_compiler_thread_log() {
CompilerThread* thread = CompilerThread::current();
char file_name[4*K];
FILE* fp = NULL;
intx thread_id = os::current_thread_id();
for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
const char* dir = (try_temp_dir ? os::get_temp_directory() : NULL);
if (dir == NULL) {
jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log",
thread_id, os::current_process_id());
} else {
jio_snprintf(file_name, sizeof(file_name),
"%s%shs_c" UINTX_FORMAT "_pid%u.log", dir,
os::file_separator(), thread_id, os::current_process_id());
}
fp = fopen(file_name, "wt");
if (fp != NULL) {
if (LogCompilation && Verbose) {
tty->print_cr("Opening compilation log %s", file_name);
}
CompileLog* log = new(ResourceObj::C_HEAP, mtCompiler) CompileLog(file_name, fp, thread_id);
thread->init_log(log);
if (xtty != NULL) {
ttyLocker ttyl;
// Record any per thread log files
xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name);
}
return;
}
}
warning("Cannot open log file: %s", file_name);
}
void CompileBroker::log_metaspace_failure() {
const char* message = "some methods may not be compiled because metaspace "
"is out of memory";
if (_compilation_log != NULL) {
_compilation_log->log_metaspace_failure(message);
}
if (PrintCompilation) {
tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
}
}
// ------------------------------------------------------------------
// CompileBroker::set_should_block
//
// Set _should_block.
// Call this from the VM, with Threads_lock held and a safepoint requested.
void CompileBroker::set_should_block() {
assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
#ifndef PRODUCT
if (PrintCompilation && (Verbose || WizardMode))
tty->print_cr("notifying compiler thread pool to block");
#endif
_should_block = true;
}
// ------------------------------------------------------------------
// CompileBroker::maybe_block
//
// Call this from the compiler at convenient points, to poll for _should_block.
void CompileBroker::maybe_block() {
if (_should_block) {
#ifndef PRODUCT
if (PrintCompilation && (Verbose || WizardMode))
tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
#endif
ThreadInVMfromNative tivfn(JavaThread::current());
}
}
// wrapper for CodeCache::print_summary()
static void codecache_print(bool detailed)
{
ResourceMark rm;
stringStream s;
// Dump code cache into a buffer before locking the tty,
{
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
CodeCache::print_summary(&s, detailed);
}
ttyLocker ttyl;
tty->print("%s", s.as_string());
}
void CompileBroker::post_compile(CompilerThread* thread, CompileTask* task, EventCompilation& event, bool success, ciEnv* ci_env) {
if (success) {
task->mark_success();
if (ci_env != NULL) {
task->set_num_inlined_bytecodes(ci_env->num_inlined_bytecodes());
}
if (_compilation_log != NULL) {
nmethod* code = task->code();
if (code != NULL) {
_compilation_log->log_nmethod(thread, code);
}
}
}
// simulate crash during compilation
assert(task->compile_id() != CICrashAt, "just as planned");
if (event.should_commit()) {
event.set_method(task->method());
event.set_compileID(task->compile_id());
event.set_compileLevel(task->comp_level());
event.set_succeded(task->is_success());
event.set_isOsr(task->osr_bci() != CompileBroker::standard_entry_bci);
event.set_codeSize((task->code() == NULL) ? 0 : task->code()->total_size());
event.set_inlinedBytes(task->num_inlined_bytecodes());
event.commit();
}
}
int DirectivesStack::_depth = 0;
CompilerDirectives* DirectivesStack::_top = NULL;
CompilerDirectives* DirectivesStack::_bottom = NULL;
// ------------------------------------------------------------------
// CompileBroker::invoke_compiler_on_method
//
// Compile a method.
//
void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
if (PrintCompilation) {
ResourceMark rm;
task->print_tty();
}
elapsedTimer time;
CompilerThread* thread = CompilerThread::current();
ResourceMark rm(thread);
if (LogEvents) {
_compilation_log->log_compile(thread, task);
}
// Common flags.
uint compile_id = task->compile_id();
int osr_bci = task->osr_bci();
bool is_osr = (osr_bci != standard_entry_bci);
bool should_log = (thread->log() != NULL);
bool should_break = false;
int task_level = task->comp_level();
DirectiveSet* directive;
{
// create the handle inside it's own block so it can't
// accidentally be referenced once the thread transitions to
// native. The NoHandleMark before the transition should catch
// any cases where this occurs in the future.
methodHandle method(thread, task->method());
assert(!method->is_native(), "no longer compile natives");
// Look up matching directives
directive = DirectivesStack::getMatchingDirective(method, compiler(task_level));
// Save information about this method in case of failure.
set_last_compile(thread, method, is_osr, task_level);
DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
}
should_break = directive->BreakAtExecuteOption || task->check_break_at_flags();
if (should_log && !directive->LogOption) {
should_log = false;
}
// Allocate a new set of JNI handles.
push_jni_handle_block();
Method* target_handle = task->method();
int compilable = ciEnv::MethodCompilable;
AbstractCompiler *comp = compiler(task_level);
int system_dictionary_modification_counter;
{
MutexLocker locker(Compile_lock, thread);
system_dictionary_modification_counter = SystemDictionary::number_of_modifications();
}
#if INCLUDE_JVMCI
if (UseJVMCICompiler && comp != NULL && comp->is_jvmci()) {
JVMCICompiler* jvmci = (JVMCICompiler*) comp;
TraceTime t1("compilation", &time);
EventCompilation event;
JVMCIEnv env(task, system_dictionary_modification_counter);
methodHandle method(thread, target_handle);
jvmci->compile_method(method, osr_bci, &env);
post_compile(thread, task, event, task->code() != NULL, NULL);
} else
#endif // INCLUDE_JVMCI
{
NoHandleMark nhm;
ThreadToNativeFromVM ttn(thread);
ciEnv ci_env(task, system_dictionary_modification_counter);
if (should_break) {
ci_env.set_break_at_compile(true);
}
if (should_log) {
ci_env.set_log(thread->log());
}
assert(thread->env() == &ci_env, "set by ci_env");
// The thread-env() field is cleared in ~CompileTaskWrapper.
// Cache Jvmti state
ci_env.cache_jvmti_state();
// Cache DTrace flags
ci_env.cache_dtrace_flags();
ciMethod* target = ci_env.get_method_from_handle(target_handle);
TraceTime t1("compilation", &time);
EventCompilation event;
if (comp == NULL) {
ci_env.record_method_not_compilable("no compiler", !TieredCompilation);
} else {
if (WhiteBoxAPI && WhiteBox::compilation_locked) {
MonitorLockerEx locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
while (WhiteBox::compilation_locked) {
locker.wait(Mutex::_no_safepoint_check_flag);
}
}
comp->compile_method(&ci_env, target, osr_bci, directive);
}
if (!ci_env.failing() && task->code() == NULL) {
//assert(false, "compiler should always document failure");
// The compiler elected, without comment, not to register a result.
// Do not attempt further compilations of this method.
ci_env.record_method_not_compilable("compile failed", !TieredCompilation);
}
// Copy this bit to the enclosing block:
compilable = ci_env.compilable();
if (ci_env.failing()) {
task->set_failure_reason(ci_env.failure_reason());
ci_env.report_failure(ci_env.failure_reason());
const char* retry_message = ci_env.retry_message();
if (_compilation_log != NULL) {
_compilation_log->log_failure(thread, task, ci_env.failure_reason(), retry_message);
}
if (PrintCompilation) {
FormatBufferResource msg = retry_message != NULL ?
FormatBufferResource("COMPILE SKIPPED: %s (%s)", ci_env.failure_reason(), retry_message) :
FormatBufferResource("COMPILE SKIPPED: %s", ci_env.failure_reason());
task->print(tty, msg);
}
}
post_compile(thread, task, event, !ci_env.failing(), &ci_env);
}
DirectivesStack::release(directive);
pop_jni_handle_block();
methodHandle method(thread, task->method());
DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
collect_statistics(thread, time, task);
if (PrintCompilation && PrintCompilation2) {
tty->print("%7d ", (int) tty->time_stamp().milliseconds()); // print timestamp
tty->print("%4d ", compile_id); // print compilation number
tty->print("%s ", (is_osr ? "%" : " "));
if (task->code() != NULL) {
tty->print("size: %d(%d) ", task->code()->total_size(), task->code()->insts_size());
}
tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
}
if (PrintCodeCacheOnCompilation)
codecache_print(/* detailed= */ false);
// Disable compilation, if required.
switch (compilable) {
case ciEnv::MethodCompilable_never:
if (is_osr)
method->set_not_osr_compilable_quietly();
else
method->set_not_compilable_quietly();
break;
case ciEnv::MethodCompilable_not_at_tier:
if (is_osr)
method->set_not_osr_compilable_quietly(task_level);
else
method->set_not_compilable_quietly(task_level);
break;
}
// Note that the queued_for_compilation bits are cleared without
// protection of a mutex. [They were set by the requester thread,
// when adding the task to the compile queue -- at which time the
// compile queue lock was held. Subsequently, we acquired the compile
// queue lock to get this task off the compile queue; thus (to belabour
// the point somewhat) our clearing of the bits must be occurring
// only after the setting of the bits. See also 14012000 above.
method->clear_queued_for_compilation();
#ifdef ASSERT
if (CollectedHeap::fired_fake_oom()) {
// The current compile received a fake OOM during compilation so
// go ahead and exit the VM since the test apparently succeeded
tty->print_cr("*** Shutting down VM after successful fake OOM");
vm_exit(0);
}
#endif
}
/**
* The CodeCache is full. Print warning and disable compilation.
* Schedule code cache cleaning so compilation can continue later.
* This function needs to be called only from CodeCache::allocate(),
* since we currently handle a full code cache uniformly.
*/
void CompileBroker::handle_full_code_cache(int code_blob_type) {
UseInterpreter = true;
if (UseCompiler || AlwaysCompileLoopMethods ) {
if (xtty != NULL) {
ResourceMark rm;
stringStream s;
// Dump code cache state into a buffer before locking the tty,
// because log_state() will use locks causing lock conflicts.
CodeCache::log_state(&s);
// Lock to prevent tearing
ttyLocker ttyl;
xtty->begin_elem("code_cache_full");
xtty->print("%s", s.as_string());
xtty->stamp();
xtty->end_elem();
}
#ifndef PRODUCT
if (CompileTheWorld || ExitOnFullCodeCache) {
codecache_print(/* detailed= */ true);
before_exit(JavaThread::current());
exit_globals(); // will delete tty
vm_direct_exit(CompileTheWorld ? 0 : 1);
}
#endif
if (UseCodeCacheFlushing) {
// Since code cache is full, immediately stop new compiles
if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
NMethodSweeper::log_sweep("disable_compiler");
}
} else {
disable_compilation_forever();
}
CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
}
}
// ------------------------------------------------------------------
// CompileBroker::set_last_compile
//
// Record this compilation for debugging purposes.
void CompileBroker::set_last_compile(CompilerThread* thread, const methodHandle& method, bool is_osr, int comp_level) {
ResourceMark rm;
char* method_name = method->name()->as_C_string();
strncpy(_last_method_compiled, method_name, CompileBroker::name_buffer_length);
_last_method_compiled[CompileBroker::name_buffer_length - 1] = '\0'; // ensure null terminated
char current_method[CompilerCounters::cmname_buffer_length];
size_t maxLen = CompilerCounters::cmname_buffer_length;
if (UsePerfData) {
const char* class_name = method->method_holder()->name()->as_C_string();
size_t s1len = strlen(class_name);
size_t s2len = strlen(method_name);
// check if we need to truncate the string
if (s1len + s2len + 2 > maxLen) {
// the strategy is to lop off the leading characters of the
// class name and the trailing characters of the method name.
if (s2len + 2 > maxLen) {
// lop of the entire class name string, let snprintf handle
// truncation of the method name.
class_name += s1len; // null string
}
else {
// lop off the extra characters from the front of the class name
class_name += ((s1len + s2len + 2) - maxLen);
}
}
jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
}
if (CICountOSR && is_osr) {
_last_compile_type = osr_compile;
} else {
_last_compile_type = normal_compile;
}
_last_compile_level = comp_level;
if (UsePerfData) {
CompilerCounters* counters = thread->counters();
counters->set_current_method(current_method);
counters->set_compile_type((jlong)_last_compile_type);
}
}
// ------------------------------------------------------------------
// CompileBroker::push_jni_handle_block
//
// Push on a new block of JNI handles.
void CompileBroker::push_jni_handle_block() {
JavaThread* thread = JavaThread::current();
// Allocate a new block for JNI handles.
// Inlined code from jni_PushLocalFrame()
JNIHandleBlock* java_handles = thread->active_handles();
JNIHandleBlock* compile_handles = JNIHandleBlock::allocate_block(thread);
assert(compile_handles != NULL && java_handles != NULL, "should not be NULL");
compile_handles->set_pop_frame_link(java_handles); // make sure java handles get gc'd.
thread->set_active_handles(compile_handles);
}
// ------------------------------------------------------------------
// CompileBroker::pop_jni_handle_block
//
// Pop off the current block of JNI handles.
void CompileBroker::pop_jni_handle_block() {
JavaThread* thread = JavaThread::current();
// Release our JNI handle block
JNIHandleBlock* compile_handles = thread->active_handles();
JNIHandleBlock* java_handles = compile_handles->pop_frame_link();
thread->set_active_handles(java_handles);
compile_handles->set_pop_frame_link(NULL);
JNIHandleBlock::release_block(compile_handles, thread); // may block
}
// ------------------------------------------------------------------
// CompileBroker::collect_statistics
//
// Collect statistics about the compilation.
void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
bool success = task->is_success();
methodHandle method (thread, task->method());
uint compile_id = task->compile_id();
bool is_osr = (task->osr_bci() != standard_entry_bci);
nmethod* code = task->code();
CompilerCounters* counters = thread->counters();
assert(code == NULL || code->is_locked_by_vm(), "will survive the MutexLocker");
MutexLocker locker(CompileStatistics_lock);
// _perf variables are production performance counters which are
// updated regardless of the setting of the CITime and CITimeEach flags
//
// account all time, including bailouts and failures in this counter;
// C1 and C2 counters are counting both successful and unsuccessful compiles
_t_total_compilation.add(time);
if (!success) {
_total_bailout_count++;
if (UsePerfData) {
_perf_last_failed_method->set_value(counters->current_method());
_perf_last_failed_type->set_value(counters->compile_type());
_perf_total_bailout_count->inc();
}
_t_bailedout_compilation.add(time);
} else if (code == NULL) {
if (UsePerfData) {
_perf_last_invalidated_method->set_value(counters->current_method());
_perf_last_invalidated_type->set_value(counters->compile_type());
_perf_total_invalidated_count->inc();
}
_total_invalidated_count++;
_t_invalidated_compilation.add(time);
} else {
// Compilation succeeded
// update compilation ticks - used by the implementation of
// java.lang.management.CompilationMBean
_perf_total_compilation->inc(time.ticks());
_peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time;
if (CITime) {
int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
JVMCI_ONLY(CompilerStatistics* stats = compiler(task->comp_level())->stats();)
if (is_osr) {
_t_osr_compilation.add(time);
_sum_osr_bytes_compiled += bytes_compiled;
JVMCI_ONLY(stats->_osr.update(time, bytes_compiled);)
} else {
_t_standard_compilation.add(time);
_sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
JVMCI_ONLY(stats->_standard.update(time, bytes_compiled);)
}
JVMCI_ONLY(stats->_nmethods_size += code->total_size();)
JVMCI_ONLY(stats->_nmethods_code_size += code->insts_size();)
}
if (UsePerfData) {
// save the name of the last method compiled
_perf_last_method->set_value(counters->current_method());
_perf_last_compile_type->set_value(counters->compile_type());
_perf_last_compile_size->set_value(method->code_size() +
task->num_inlined_bytecodes());
if (is_osr) {
_perf_osr_compilation->inc(time.ticks());
_perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
} else {
_perf_standard_compilation->inc(time.ticks());
_perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
}
}
if (CITimeEach) {
float bytes_per_sec = 1.0 * (method->code_size() + task->num_inlined_bytecodes()) / time.seconds();
tty->print_cr("%3d seconds: %f bytes/sec : %f (bytes %d + %d inlined)",
compile_id, time.seconds(), bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
}
// Collect counts of successful compilations
_sum_nmethod_size += code->total_size();
_sum_nmethod_code_size += code->insts_size();
_total_compile_count++;
if (UsePerfData) {
_perf_sum_nmethod_size->inc( code->total_size());
_perf_sum_nmethod_code_size->inc(code->insts_size());
_perf_total_compile_count->inc();
}
if (is_osr) {
if (UsePerfData) _perf_total_osr_compile_count->inc();
_total_osr_compile_count++;
} else {
if (UsePerfData) _perf_total_standard_compile_count->inc();
_total_standard_compile_count++;
}
}
// set the current method for the thread to null
if (UsePerfData) counters->set_current_method("");
}
const char* CompileBroker::compiler_name(int comp_level) {
AbstractCompiler *comp = CompileBroker::compiler(comp_level);
if (comp == NULL) {
return "no compiler";
} else {
return (comp->name());
}
}
#if INCLUDE_JVMCI
void CompileBroker::print_times(AbstractCompiler* comp) {
CompilerStatistics* stats = comp->stats();
tty->print_cr(" %s {speed: %d bytes/s; standard: %6.3f s, %d bytes, %d methods; osr: %6.3f s, %d bytes, %d methods; nmethods_size: %d bytes; nmethods_code_size: %d bytes}",
comp->name(), stats->bytes_per_second(),
stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
stats->_nmethods_size, stats->_nmethods_code_size);
comp->print_timers();
}
#endif // INCLUDE_JVMCI
void CompileBroker::print_times(bool per_compiler, bool aggregate) {
#if INCLUDE_JVMCI
elapsedTimer standard_compilation;
elapsedTimer total_compilation;
elapsedTimer osr_compilation;
int standard_bytes_compiled = 0;
int osr_bytes_compiled = 0;
int standard_compile_count = 0;
int osr_compile_count = 0;
int total_compile_count = 0;
int nmethods_size = 0;
int nmethods_code_size = 0;
bool printedHeader = false;
for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
AbstractCompiler* comp = _compilers[i];
if (comp != NULL) {
if (per_compiler && aggregate && !printedHeader) {
printedHeader = true;
tty->cr();
tty->print_cr("Individual compiler times (for compiled methods only)");
tty->print_cr("------------------------------------------------");
tty->cr();
}
CompilerStatistics* stats = comp->stats();
standard_compilation.add(stats->_standard._time);
osr_compilation.add(stats->_osr._time);
standard_bytes_compiled += stats->_standard._bytes;
osr_bytes_compiled += stats->_osr._bytes;
standard_compile_count += stats->_standard._count;
osr_compile_count += stats->_osr._count;
nmethods_size += stats->_nmethods_size;
nmethods_code_size += stats->_nmethods_code_size;
if (per_compiler) {
print_times(comp);
}
}
}
total_compile_count = osr_compile_count + standard_compile_count;
total_compilation.add(osr_compilation);
total_compilation.add(standard_compilation);
// In hosted mode, print the JVMCI compiler specific counters manually.
if (!UseJVMCICompiler) {
JVMCICompiler::print_compilation_timers();
}
#else // INCLUDE_JVMCI
elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
int standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
int osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
int standard_compile_count = CompileBroker::_total_standard_compile_count;
int osr_compile_count = CompileBroker::_total_osr_compile_count;
int total_compile_count = CompileBroker::_total_compile_count;
int nmethods_size = CompileBroker::_sum_nmethod_code_size;
int nmethods_code_size = CompileBroker::_sum_nmethod_size;
#endif // INCLUDE_JVMCI
if (!aggregate) {
return;
}
tty->cr();
tty->print_cr("Accumulated compiler times");
tty->print_cr("----------------------------------------------------------");
//0000000000111111111122222222223333333333444444444455555555556666666666
//0123456789012345678901234567890123456789012345678901234567890123456789
tty->print_cr(" Total compilation time : %7.3f s", total_compilation.seconds());
tty->print_cr(" Standard compilation : %7.3f s, Average : %2.3f s",
standard_compilation.seconds(),
standard_compilation.seconds() / standard_compile_count);
tty->print_cr(" Bailed out compilation : %7.3f s, Average : %2.3f s",
CompileBroker::_t_bailedout_compilation.seconds(),
CompileBroker::_t_bailedout_compilation.seconds() / CompileBroker::_total_bailout_count);
tty->print_cr(" On stack replacement : %7.3f s, Average : %2.3f s",
osr_compilation.seconds(),
osr_compilation.seconds() / osr_compile_count);
tty->print_cr(" Invalidated : %7.3f s, Average : %2.3f s",
CompileBroker::_t_invalidated_compilation.seconds(),
CompileBroker::_t_invalidated_compilation.seconds() / CompileBroker::_total_invalidated_count);
AbstractCompiler *comp = compiler(CompLevel_simple);
if (comp != NULL) {
tty->cr();
comp->print_timers();
}
comp = compiler(CompLevel_full_optimization);
if (comp != NULL) {
tty->cr();
comp->print_timers();
}
tty->cr();
tty->print_cr(" Total compiled methods : %8d methods", total_compile_count);
tty->print_cr(" Standard compilation : %8d methods", standard_compile_count);
tty->print_cr(" On stack replacement : %8d methods", osr_compile_count);
int tcb = osr_bytes_compiled + standard_bytes_compiled;
tty->print_cr(" Total compiled bytecodes : %8d bytes", tcb);
tty->print_cr(" Standard compilation : %8d bytes", standard_bytes_compiled);
tty->print_cr(" On stack replacement : %8d bytes", osr_bytes_compiled);
double tcs = total_compilation.seconds();
int bps = tcs == 0.0 ? 0 : (int)(tcb / tcs);
tty->print_cr(" Average compilation speed : %8d bytes/s", bps);
tty->cr();
tty->print_cr(" nmethod code size : %8d bytes", nmethods_code_size);
tty->print_cr(" nmethod total size : %8d bytes", nmethods_size);
}
// Debugging output for failure
void CompileBroker::print_last_compile() {
if ( _last_compile_level != CompLevel_none &&
compiler(_last_compile_level) != NULL &&
_last_method_compiled != NULL &&
_last_compile_type != no_compile) {
if (_last_compile_type == osr_compile) {
tty->print_cr("Last parse: [osr]%d+++(%d) %s",
_osr_compilation_id, _last_compile_level, _last_method_compiled);
} else {
tty->print_cr("Last parse: %d+++(%d) %s",
_compilation_id, _last_compile_level, _last_method_compiled);
}
}
}
void CompileBroker::print_compiler_threads_on(outputStream* st) {
#ifndef PRODUCT
st->print_cr("Compiler thread printing unimplemented.");
st->cr();
#endif
}