/*
* Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_SHARED_BARRIERSET_HPP
#define SHARE_VM_GC_SHARED_BARRIERSET_HPP
#include "gc/shared/barrierSetConfig.hpp"
#include "memory/memRegion.hpp"
#include "oops/access.hpp"
#include "oops/accessBackend.hpp"
#include "oops/oopsHierarchy.hpp"
#include "utilities/fakeRttiSupport.hpp"
// This class provides the interface between a barrier implementation and
// the rest of the system.
class BarrierSet: public CHeapObj<mtGC> {
friend class VMStructs;
static BarrierSet* _bs;
public:
enum Name {
#define BARRIER_SET_DECLARE_BS_ENUM(bs_name) bs_name ,
FOR_EACH_BARRIER_SET_DO(BARRIER_SET_DECLARE_BS_ENUM)
#undef BARRIER_SET_DECLARE_BS_ENUM
UnknownBS
};
static BarrierSet* barrier_set() { return _bs; }
protected:
// Fake RTTI support. For a derived class T to participate
// - T must have a corresponding Name entry.
// - GetName<T> must be specialized to return the corresponding Name
// entry.
// - If T is a base class, the constructor must have a FakeRtti
// parameter and pass it up to its base class, with the tag set
// augmented with the corresponding Name entry.
// - If T is a concrete class, the constructor must create a
// FakeRtti object whose tag set includes the corresponding Name
// entry, and pass it up to its base class.
typedef FakeRttiSupport<BarrierSet, Name> FakeRtti;
private:
FakeRtti _fake_rtti;
public:
// Metafunction mapping a class derived from BarrierSet to the
// corresponding Name enum tag.
template<typename T> struct GetName;
// Metafunction mapping a Name enum type to the corresponding
// lass derived from BarrierSet.
template<BarrierSet::Name T> struct GetType;
// Note: This is not presently the Name corresponding to the
// concrete class of this object.
BarrierSet::Name kind() const { return _fake_rtti.concrete_tag(); }
// Test whether this object is of the type corresponding to bsn.
bool is_a(BarrierSet::Name bsn) const { return _fake_rtti.has_tag(bsn); }
// End of fake RTTI support.
protected:
BarrierSet(const FakeRtti& fake_rtti) : _fake_rtti(fake_rtti) { }
~BarrierSet() { }
public:
// Operations on arrays, or general regions (e.g., for "clone") may be
// optimized by some barriers.
// Below length is the # array elements being written
virtual void write_ref_array_pre(oop* dst, int length,
bool dest_uninitialized = false) {}
virtual void write_ref_array_pre(narrowOop* dst, int length,
bool dest_uninitialized = false) {}
// Below count is the # array elements being written, starting
// at the address "start", which may not necessarily be HeapWord-aligned
inline void write_ref_array(HeapWord* start, size_t count);
// Static versions, suitable for calling from generated code;
// count is # array elements being written, starting with "start",
// which may not necessarily be HeapWord-aligned.
static void static_write_ref_array_pre(HeapWord* start, size_t count);
static void static_write_ref_array_post(HeapWord* start, size_t count);
protected:
virtual void write_ref_array_work(MemRegion mr) = 0;
public:
// (For efficiency reasons, this operation is specialized for certain
// barrier types. Semantically, it should be thought of as a call to the
// virtual "_work" function below, which must implement the barrier.)
void write_region(MemRegion mr);
protected:
virtual void write_region_work(MemRegion mr) = 0;
public:
// Inform the BarrierSet that the the covered heap region that starts
// with "base" has been changed to have the given size (possibly from 0,
// for initialization.)
virtual void resize_covered_region(MemRegion new_region) = 0;
// If the barrier set imposes any alignment restrictions on boundaries
// within the heap, this function tells whether they are met.
virtual bool is_aligned(HeapWord* addr) = 0;
// Print a description of the memory for the barrier set
virtual void print_on(outputStream* st) const = 0;
static void set_bs(BarrierSet* bs) { _bs = bs; }
// The AccessBarrier of a BarrierSet subclass is called by the Access API
// (cf. oops/access.hpp) to perform decorated accesses. GC implementations
// may override these default access operations by declaring an
// AccessBarrier class in its BarrierSet. Its accessors will then be
// automatically resolved at runtime.
//
// In order to register a new FooBarrierSet::AccessBarrier with the Access API,
// the following steps should be taken:
// 1) Provide an enum "name" for the BarrierSet in barrierSetConfig.hpp
// 2) Make sure the barrier set headers are included from barrierSetConfig.inline.hpp
// 3) Provide specializations for BarrierSet::GetName and BarrierSet::GetType.
template <DecoratorSet decorators, typename BarrierSetT>
class AccessBarrier: protected RawAccessBarrier<decorators> {
protected:
typedef RawAccessBarrier<decorators> Raw;
typedef typename BarrierSetT::template AccessBarrier<decorators> CRTPAccessBarrier;
public:
// Primitive heap accesses. These accessors get resolved when
// IN_HEAP is set (e.g. when using the HeapAccess API), it is
// not an oop_* overload, and the barrier strength is AS_NORMAL.
template <typename T>
static T load_in_heap(T* addr) {
return Raw::template load<T>(addr);
}
template <typename T>
static T load_in_heap_at(oop base, ptrdiff_t offset) {
return Raw::template load_at<T>(base, offset);
}
template <typename T>
static void store_in_heap(T* addr, T value) {
Raw::store(addr, value);
}
template <typename T>
static void store_in_heap_at(oop base, ptrdiff_t offset, T value) {
Raw::store_at(base, offset, value);
}
template <typename T>
static T atomic_cmpxchg_in_heap(T new_value, T* addr, T compare_value) {
return Raw::atomic_cmpxchg(new_value, addr, compare_value);
}
template <typename T>
static T atomic_cmpxchg_in_heap_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
return Raw::oop_atomic_cmpxchg_at(new_value, base, offset, compare_value);
}
template <typename T>
static T atomic_xchg_in_heap(T new_value, T* addr) {
return Raw::atomic_xchg(new_value, addr);
}
template <typename T>
static T atomic_xchg_in_heap_at(T new_value, oop base, ptrdiff_t offset) {
return Raw::atomic_xchg_at(new_value, base, offset);
}
template <typename T>
static bool arraycopy_in_heap(arrayOop src_obj, arrayOop dst_obj, T* src, T* dst, size_t length) {
return Raw::arraycopy(src_obj, dst_obj, src, dst, length);
}
// Heap oop accesses. These accessors get resolved when
// IN_HEAP is set (e.g. when using the HeapAccess API), it is
// an oop_* overload, and the barrier strength is AS_NORMAL.
template <typename T>
static oop oop_load_in_heap(T* addr) {
return Raw::template oop_load<oop>(addr);
}
static oop oop_load_in_heap_at(oop base, ptrdiff_t offset) {
return Raw::template oop_load_at<oop>(base, offset);
}
template <typename T>
static void oop_store_in_heap(T* addr, oop value) {
Raw::oop_store(addr, value);
}
static void oop_store_in_heap_at(oop base, ptrdiff_t offset, oop value) {
Raw::oop_store_at(base, offset, value);
}
template <typename T>
static oop oop_atomic_cmpxchg_in_heap(oop new_value, T* addr, oop compare_value) {
return Raw::oop_atomic_cmpxchg(new_value, addr, compare_value);
}
static oop oop_atomic_cmpxchg_in_heap_at(oop new_value, oop base, ptrdiff_t offset, oop compare_value) {
return Raw::oop_atomic_cmpxchg_at(new_value, base, offset, compare_value);
}
template <typename T>
static oop oop_atomic_xchg_in_heap(oop new_value, T* addr) {
return Raw::oop_atomic_xchg(new_value, addr);
}
static oop oop_atomic_xchg_in_heap_at(oop new_value, oop base, ptrdiff_t offset) {
return Raw::oop_atomic_xchg_at(new_value, base, offset);
}
template <typename T>
static bool oop_arraycopy_in_heap(arrayOop src_obj, arrayOop dst_obj, T* src, T* dst, size_t length) {
return Raw::oop_arraycopy(src_obj, dst_obj, src, dst, length);
}
// Off-heap oop accesses. These accessors get resolved when
// IN_HEAP is not set (e.g. when using the RootAccess API), it is
// an oop* overload, and the barrier strength is AS_NORMAL.
template <typename T>
static oop oop_load_not_in_heap(T* addr) {
return Raw::template oop_load<oop>(addr);
}
template <typename T>
static void oop_store_not_in_heap(T* addr, oop value) {
Raw::oop_store(addr, value);
}
template <typename T>
static oop oop_atomic_cmpxchg_not_in_heap(oop new_value, T* addr, oop compare_value) {
return Raw::oop_atomic_cmpxchg(new_value, addr, compare_value);
}
template <typename T>
static oop oop_atomic_xchg_not_in_heap(oop new_value, T* addr) {
return Raw::oop_atomic_xchg(new_value, addr);
}
// Clone barrier support
static void clone_in_heap(oop src, oop dst, size_t size) {
Raw::clone(src, dst, size);
}
};
};
template<typename T>
inline T* barrier_set_cast(BarrierSet* bs) {
assert(bs->is_a(BarrierSet::GetName<T>::value), "wrong type of barrier set");
return static_cast<T*>(bs);
}
#endif // SHARE_VM_GC_SHARED_BARRIERSET_HPP