/*
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "code/codeCache.hpp"
#include "gc/parallel/adjoiningGenerations.hpp"
#include "gc/parallel/adjoiningVirtualSpaces.hpp"
#include "gc/parallel/gcTaskManager.hpp"
#include "gc/parallel/generationSizer.hpp"
#include "gc/parallel/objectStartArray.inline.hpp"
#include "gc/parallel/parallelScavengeHeap.inline.hpp"
#include "gc/parallel/psAdaptiveSizePolicy.hpp"
#include "gc/parallel/psMarkSweep.hpp"
#include "gc/parallel/psMemoryPool.hpp"
#include "gc/parallel/psParallelCompact.inline.hpp"
#include "gc/parallel/psPromotionManager.hpp"
#include "gc/parallel/psScavenge.hpp"
#include "gc/parallel/vmPSOperations.hpp"
#include "gc/shared/gcHeapSummary.hpp"
#include "gc/shared/gcLocker.hpp"
#include "gc/shared/gcWhen.hpp"
#include "logging/log.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/vmThread.hpp"
#include "services/memoryManager.hpp"
#include "services/memTracker.hpp"
#include "utilities/vmError.hpp"
PSYoungGen* ParallelScavengeHeap::_young_gen = NULL;
PSOldGen* ParallelScavengeHeap::_old_gen = NULL;
PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
jint ParallelScavengeHeap::initialize() {
const size_t heap_size = _collector_policy->max_heap_byte_size();
ReservedSpace heap_rs = Universe::reserve_heap(heap_size, _collector_policy->heap_alignment());
os::trace_page_sizes("Heap",
_collector_policy->min_heap_byte_size(),
heap_size,
generation_alignment(),
heap_rs.base(),
heap_rs.size());
initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
PSCardTable* card_table = new PSCardTable(reserved_region());
card_table->initialize();
CardTableBarrierSet* const barrier_set = new CardTableBarrierSet(card_table);
barrier_set->initialize();
set_barrier_set(barrier_set);
// Make up the generations
// Calculate the maximum size that a generation can grow. This
// includes growth into the other generation. Note that the
// parameter _max_gen_size is kept as the maximum
// size of the generation as the boundaries currently stand.
// _max_gen_size is still used as that value.
double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
_gens = new AdjoiningGenerations(heap_rs, _collector_policy, generation_alignment());
_old_gen = _gens->old_gen();
_young_gen = _gens->young_gen();
const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
const size_t old_capacity = _old_gen->capacity_in_bytes();
const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
_size_policy =
new PSAdaptiveSizePolicy(eden_capacity,
initial_promo_size,
young_gen()->to_space()->capacity_in_bytes(),
_collector_policy->gen_alignment(),
max_gc_pause_sec,
max_gc_minor_pause_sec,
GCTimeRatio
);
assert(!UseAdaptiveGCBoundary ||
(old_gen()->virtual_space()->high_boundary() ==
young_gen()->virtual_space()->low_boundary()),
"Boundaries must meet");
// initialize the policy counters - 2 collectors, 2 generations
_gc_policy_counters =
new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 2, _size_policy);
// Set up the GCTaskManager
_gc_task_manager = GCTaskManager::create(ParallelGCThreads);
if (UseParallelOldGC && !PSParallelCompact::initialize()) {
return JNI_ENOMEM;
}
return JNI_OK;
}
void ParallelScavengeHeap::initialize_serviceability() {
_eden_pool = new EdenMutableSpacePool(_young_gen,
_young_gen->eden_space(),
"PS Eden Space",
false /* support_usage_threshold */);
_survivor_pool = new SurvivorMutableSpacePool(_young_gen,
"PS Survivor Space",
false /* support_usage_threshold */);
_old_pool = new PSGenerationPool(_old_gen,
"PS Old Gen",
true /* support_usage_threshold */);
_young_manager = new GCMemoryManager("PS Scavenge", "end of minor GC");
_old_manager = new GCMemoryManager("PS MarkSweep", "end of major GC");
_old_manager->add_pool(_eden_pool);
_old_manager->add_pool(_survivor_pool);
_old_manager->add_pool(_old_pool);
_young_manager->add_pool(_eden_pool);
_young_manager->add_pool(_survivor_pool);
}
void ParallelScavengeHeap::post_initialize() {
CollectedHeap::post_initialize();
// Need to init the tenuring threshold
PSScavenge::initialize();
if (UseParallelOldGC) {
PSParallelCompact::post_initialize();
} else {
PSMarkSweep::initialize();
}
PSPromotionManager::initialize();
}
void ParallelScavengeHeap::update_counters() {
young_gen()->update_counters();
old_gen()->update_counters();
MetaspaceCounters::update_performance_counters();
CompressedClassSpaceCounters::update_performance_counters();
}
size_t ParallelScavengeHeap::capacity() const {
size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
return value;
}
size_t ParallelScavengeHeap::used() const {
size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
return value;
}
bool ParallelScavengeHeap::is_maximal_no_gc() const {
return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
}
size_t ParallelScavengeHeap::max_capacity() const {
size_t estimated = reserved_region().byte_size();
if (UseAdaptiveSizePolicy) {
estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
} else {
estimated -= young_gen()->to_space()->capacity_in_bytes();
}
return MAX2(estimated, capacity());
}
bool ParallelScavengeHeap::is_in(const void* p) const {
return young_gen()->is_in(p) || old_gen()->is_in(p);
}
bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
return young_gen()->is_in_reserved(p) || old_gen()->is_in_reserved(p);
}
// There are two levels of allocation policy here.
//
// When an allocation request fails, the requesting thread must invoke a VM
// operation, transfer control to the VM thread, and await the results of a
// garbage collection. That is quite expensive, and we should avoid doing it
// multiple times if possible.
//
// To accomplish this, we have a basic allocation policy, and also a
// failed allocation policy.
//
// The basic allocation policy controls how you allocate memory without
// attempting garbage collection. It is okay to grab locks and
// expand the heap, if that can be done without coming to a safepoint.
// It is likely that the basic allocation policy will not be very
// aggressive.
//
// The failed allocation policy is invoked from the VM thread after
// the basic allocation policy is unable to satisfy a mem_allocate
// request. This policy needs to cover the entire range of collection,
// heap expansion, and out-of-memory conditions. It should make every
// attempt to allocate the requested memory.
// Basic allocation policy. Should never be called at a safepoint, or
// from the VM thread.
//
// This method must handle cases where many mem_allocate requests fail
// simultaneously. When that happens, only one VM operation will succeed,
// and the rest will not be executed. For that reason, this method loops
// during failed allocation attempts. If the java heap becomes exhausted,
// we rely on the size_policy object to force a bail out.
HeapWord* ParallelScavengeHeap::mem_allocate(
size_t size,
bool* gc_overhead_limit_was_exceeded) {
assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
// In general gc_overhead_limit_was_exceeded should be false so
// set it so here and reset it to true only if the gc time
// limit is being exceeded as checked below.
*gc_overhead_limit_was_exceeded = false;
HeapWord* result = young_gen()->allocate(size);
uint loop_count = 0;
uint gc_count = 0;
uint gclocker_stalled_count = 0;
while (result == NULL) {
// We don't want to have multiple collections for a single filled generation.
// To prevent this, each thread tracks the total_collections() value, and if
// the count has changed, does not do a new collection.
//
// The collection count must be read only while holding the heap lock. VM
// operations also hold the heap lock during collections. There is a lock
// contention case where thread A blocks waiting on the Heap_lock, while
// thread B is holding it doing a collection. When thread A gets the lock,
// the collection count has already changed. To prevent duplicate collections,
// The policy MUST attempt allocations during the same period it reads the
// total_collections() value!
{
MutexLocker ml(Heap_lock);
gc_count = total_collections();
result = young_gen()->allocate(size);
if (result != NULL) {
return result;
}
// If certain conditions hold, try allocating from the old gen.
result = mem_allocate_old_gen(size);
if (result != NULL) {
return result;
}
if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
return NULL;
}
// Failed to allocate without a gc.
if (GCLocker::is_active_and_needs_gc()) {
// If this thread is not in a jni critical section, we stall
// the requestor until the critical section has cleared and
// GC allowed. When the critical section clears, a GC is
// initiated by the last thread exiting the critical section; so
// we retry the allocation sequence from the beginning of the loop,
// rather than causing more, now probably unnecessary, GC attempts.
JavaThread* jthr = JavaThread::current();
if (!jthr->in_critical()) {
MutexUnlocker mul(Heap_lock);
GCLocker::stall_until_clear();
gclocker_stalled_count += 1;
continue;
} else {
if (CheckJNICalls) {
fatal("Possible deadlock due to allocating while"
" in jni critical section");
}
return NULL;
}
}
}
if (result == NULL) {
// Generate a VM operation
VM_ParallelGCFailedAllocation op(size, gc_count);
VMThread::execute(&op);
// Did the VM operation execute? If so, return the result directly.
// This prevents us from looping until time out on requests that can
// not be satisfied.
if (op.prologue_succeeded()) {
assert(is_in_or_null(op.result()), "result not in heap");
// If GC was locked out during VM operation then retry allocation
// and/or stall as necessary.
if (op.gc_locked()) {
assert(op.result() == NULL, "must be NULL if gc_locked() is true");
continue; // retry and/or stall as necessary
}
// Exit the loop if the gc time limit has been exceeded.
// The allocation must have failed above ("result" guarding
// this path is NULL) and the most recent collection has exceeded the
// gc overhead limit (although enough may have been collected to
// satisfy the allocation). Exit the loop so that an out-of-memory
// will be thrown (return a NULL ignoring the contents of
// op.result()),
// but clear gc_overhead_limit_exceeded so that the next collection
// starts with a clean slate (i.e., forgets about previous overhead
// excesses). Fill op.result() with a filler object so that the
// heap remains parsable.
const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
if (limit_exceeded && softrefs_clear) {
*gc_overhead_limit_was_exceeded = true;
size_policy()->set_gc_overhead_limit_exceeded(false);
log_trace(gc)("ParallelScavengeHeap::mem_allocate: return NULL because gc_overhead_limit_exceeded is set");
if (op.result() != NULL) {
CollectedHeap::fill_with_object(op.result(), size);
}
return NULL;
}
return op.result();
}
}
// The policy object will prevent us from looping forever. If the
// time spent in gc crosses a threshold, we will bail out.
loop_count++;
if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
(loop_count % QueuedAllocationWarningCount == 0)) {
log_warning(gc)("ParallelScavengeHeap::mem_allocate retries %d times", loop_count);
log_warning(gc)("\tsize=" SIZE_FORMAT, size);
}
}
return result;
}
// A "death march" is a series of ultra-slow allocations in which a full gc is
// done before each allocation, and after the full gc the allocation still
// cannot be satisfied from the young gen. This routine detects that condition;
// it should be called after a full gc has been done and the allocation
// attempted from the young gen. The parameter 'addr' should be the result of
// that young gen allocation attempt.
void
ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
if (addr != NULL) {
_death_march_count = 0; // death march has ended
} else if (_death_march_count == 0) {
if (should_alloc_in_eden(size)) {
_death_march_count = 1; // death march has started
}
}
}
HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
if (!should_alloc_in_eden(size) || GCLocker::is_active_and_needs_gc()) {
// Size is too big for eden, or gc is locked out.
return old_gen()->allocate(size);
}
// If a "death march" is in progress, allocate from the old gen a limited
// number of times before doing a GC.
if (_death_march_count > 0) {
if (_death_march_count < 64) {
++_death_march_count;
return old_gen()->allocate(size);
} else {
_death_march_count = 0;
}
}
return NULL;
}
void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
if (UseParallelOldGC) {
// The do_full_collection() parameter clear_all_soft_refs
// is interpreted here as maximum_compaction which will
// cause SoftRefs to be cleared.
bool maximum_compaction = clear_all_soft_refs;
PSParallelCompact::invoke(maximum_compaction);
} else {
PSMarkSweep::invoke(clear_all_soft_refs);
}
}
// Failed allocation policy. Must be called from the VM thread, and
// only at a safepoint! Note that this method has policy for allocation
// flow, and NOT collection policy. So we do not check for gc collection
// time over limit here, that is the responsibility of the heap specific
// collection methods. This method decides where to attempt allocations,
// and when to attempt collections, but no collection specific policy.
HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
assert(!is_gc_active(), "not reentrant");
assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
// We assume that allocation in eden will fail unless we collect.
// First level allocation failure, scavenge and allocate in young gen.
GCCauseSetter gccs(this, GCCause::_allocation_failure);
const bool invoked_full_gc = PSScavenge::invoke();
HeapWord* result = young_gen()->allocate(size);
// Second level allocation failure.
// Mark sweep and allocate in young generation.
if (result == NULL && !invoked_full_gc) {
do_full_collection(false);
result = young_gen()->allocate(size);
}
death_march_check(result, size);
// Third level allocation failure.
// After mark sweep and young generation allocation failure,
// allocate in old generation.
if (result == NULL) {
result = old_gen()->allocate(size);
}
// Fourth level allocation failure. We're running out of memory.
// More complete mark sweep and allocate in young generation.
if (result == NULL) {
do_full_collection(true);
result = young_gen()->allocate(size);
}
// Fifth level allocation failure.
// After more complete mark sweep, allocate in old generation.
if (result == NULL) {
result = old_gen()->allocate(size);
}
return result;
}
void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
CollectedHeap::ensure_parsability(retire_tlabs);
young_gen()->eden_space()->ensure_parsability();
}
size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
return young_gen()->eden_space()->tlab_capacity(thr);
}
size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
return young_gen()->eden_space()->tlab_used(thr);
}
size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
}
HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
return young_gen()->allocate(size);
}
void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
CollectedHeap::accumulate_statistics_all_tlabs();
}
void ParallelScavengeHeap::resize_all_tlabs() {
CollectedHeap::resize_all_tlabs();
}
// This method is used by System.gc() and JVMTI.
void ParallelScavengeHeap::collect(GCCause::Cause cause) {
assert(!Heap_lock->owned_by_self(),
"this thread should not own the Heap_lock");
uint gc_count = 0;
uint full_gc_count = 0;
{
MutexLocker ml(Heap_lock);
// This value is guarded by the Heap_lock
gc_count = total_collections();
full_gc_count = total_full_collections();
}
VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
VMThread::execute(&op);
}
void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
young_gen()->object_iterate(cl);
old_gen()->object_iterate(cl);
}
HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
if (young_gen()->is_in_reserved(addr)) {
assert(young_gen()->is_in(addr),
"addr should be in allocated part of young gen");
// called from os::print_location by find or VMError
if (Debugging || VMError::fatal_error_in_progress()) return NULL;
Unimplemented();
} else if (old_gen()->is_in_reserved(addr)) {
assert(old_gen()->is_in(addr),
"addr should be in allocated part of old gen");
return old_gen()->start_array()->object_start((HeapWord*)addr);
}
return 0;
}
size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
return oop(addr)->size();
}
bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
return block_start(addr) == addr;
}
jlong ParallelScavengeHeap::millis_since_last_gc() {
return UseParallelOldGC ?
PSParallelCompact::millis_since_last_gc() :
PSMarkSweep::millis_since_last_gc();
}
void ParallelScavengeHeap::prepare_for_verify() {
ensure_parsability(false); // no need to retire TLABs for verification
}
PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
PSOldGen* old = old_gen();
HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
PSYoungGen* young = young_gen();
VirtualSpaceSummary young_summary(young->reserved().start(),
(HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
MutableSpace* eden = young_gen()->eden_space();
SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
MutableSpace* from = young_gen()->from_space();
SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
MutableSpace* to = young_gen()->to_space();
SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
VirtualSpaceSummary heap_summary = create_heap_space_summary();
return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
}
void ParallelScavengeHeap::print_on(outputStream* st) const {
young_gen()->print_on(st);
old_gen()->print_on(st);
MetaspaceUtils::print_on(st);
}
void ParallelScavengeHeap::print_on_error(outputStream* st) const {
this->CollectedHeap::print_on_error(st);
if (UseParallelOldGC) {
st->cr();
PSParallelCompact::print_on_error(st);
}
}
void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
PSScavenge::gc_task_manager()->threads_do(tc);
}
void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
PSScavenge::gc_task_manager()->print_threads_on(st);
}
void ParallelScavengeHeap::print_tracing_info() const {
AdaptiveSizePolicyOutput::print();
log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs", PSScavenge::accumulated_time()->seconds());
log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs",
UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweep::accumulated_time()->seconds());
}
void ParallelScavengeHeap::verify(VerifyOption option /* ignored */) {
// Why do we need the total_collections()-filter below?
if (total_collections() > 0) {
log_debug(gc, verify)("Tenured");
old_gen()->verify();
log_debug(gc, verify)("Eden");
young_gen()->verify();
}
}
void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
const PSHeapSummary& heap_summary = create_ps_heap_summary();
gc_tracer->report_gc_heap_summary(when, heap_summary);
const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
gc_tracer->report_metaspace_summary(when, metaspace_summary);
}
ParallelScavengeHeap* ParallelScavengeHeap::heap() {
CollectedHeap* heap = Universe::heap();
assert(heap != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Not a ParallelScavengeHeap");
return (ParallelScavengeHeap*)heap;
}
CardTableBarrierSet* ParallelScavengeHeap::barrier_set() {
return barrier_set_cast<CardTableBarrierSet>(CollectedHeap::barrier_set());
}
PSCardTable* ParallelScavengeHeap::card_table() {
return static_cast<PSCardTable*>(barrier_set()->card_table());
}
// Before delegating the resize to the young generation,
// the reserved space for the young and old generations
// may be changed to accommodate the desired resize.
void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
size_t survivor_size) {
if (UseAdaptiveGCBoundary) {
if (size_policy()->bytes_absorbed_from_eden() != 0) {
size_policy()->reset_bytes_absorbed_from_eden();
return; // The generation changed size already.
}
gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
}
// Delegate the resize to the generation.
_young_gen->resize(eden_size, survivor_size);
}
// Before delegating the resize to the old generation,
// the reserved space for the young and old generations
// may be changed to accommodate the desired resize.
void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
if (UseAdaptiveGCBoundary) {
if (size_policy()->bytes_absorbed_from_eden() != 0) {
size_policy()->reset_bytes_absorbed_from_eden();
return; // The generation changed size already.
}
gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
}
// Delegate the resize to the generation.
_old_gen->resize(desired_free_space);
}
ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
// nothing particular
}
ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
// nothing particular
}
#ifndef PRODUCT
void ParallelScavengeHeap::record_gen_tops_before_GC() {
if (ZapUnusedHeapArea) {
young_gen()->record_spaces_top();
old_gen()->record_spaces_top();
}
}
void ParallelScavengeHeap::gen_mangle_unused_area() {
if (ZapUnusedHeapArea) {
young_gen()->eden_space()->mangle_unused_area();
young_gen()->to_space()->mangle_unused_area();
young_gen()->from_space()->mangle_unused_area();
old_gen()->object_space()->mangle_unused_area();
}
}
#endif
bool ParallelScavengeHeap::is_scavengable(oop obj) {
return is_in_young(obj);
}
void ParallelScavengeHeap::register_nmethod(nmethod* nm) {
CodeCache::register_scavenge_root_nmethod(nm);
}
void ParallelScavengeHeap::verify_nmethod(nmethod* nm) {
CodeCache::verify_scavenge_root_nmethod(nm);
}
GrowableArray<GCMemoryManager*> ParallelScavengeHeap::memory_managers() {
GrowableArray<GCMemoryManager*> memory_managers(2);
memory_managers.append(_young_manager);
memory_managers.append(_old_manager);
return memory_managers;
}
GrowableArray<MemoryPool*> ParallelScavengeHeap::memory_pools() {
GrowableArray<MemoryPool*> memory_pools(3);
memory_pools.append(_eden_pool);
memory_pools.append(_survivor_pool);
memory_pools.append(_old_pool);
return memory_pools;
}