/*
* Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterGenerator.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/interp_masm.hpp"
#include "interpreter/templateTable.hpp"
#include "oops/arrayOop.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/debug.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
#define __ _masm->
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
#ifdef _WIN64
address AbstractInterpreterGenerator::generate_slow_signature_handler() {
address entry = __ pc();
// rbx: method
// r14: pointer to locals
// c_rarg3: first stack arg - wordSize
__ mov(c_rarg3, rsp);
// adjust rsp
__ subptr(rsp, 4 * wordSize);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::slow_signature_handler),
rbx, r14, c_rarg3);
// rax: result handler
// Stack layout:
// rsp: 3 integer or float args (if static first is unused)
// 1 float/double identifiers
// return address
// stack args
// garbage
// expression stack bottom
// bcp (NULL)
// ...
// Do FP first so we can use c_rarg3 as temp
__ movl(c_rarg3, Address(rsp, 3 * wordSize)); // float/double identifiers
for ( int i= 0; i < Argument::n_int_register_parameters_c-1; i++ ) {
XMMRegister floatreg = as_XMMRegister(i+1);
Label isfloatordouble, isdouble, next;
__ testl(c_rarg3, 1 << (i*2)); // Float or Double?
__ jcc(Assembler::notZero, isfloatordouble);
// Do Int register here
switch ( i ) {
case 0:
__ movl(rscratch1, Address(rbx, Method::access_flags_offset()));
__ testl(rscratch1, JVM_ACC_STATIC);
__ cmovptr(Assembler::zero, c_rarg1, Address(rsp, 0));
break;
case 1:
__ movptr(c_rarg2, Address(rsp, wordSize));
break;
case 2:
__ movptr(c_rarg3, Address(rsp, 2 * wordSize));
break;
default:
break;
}
__ jmp (next);
__ bind(isfloatordouble);
__ testl(c_rarg3, 1 << ((i*2)+1)); // Double?
__ jcc(Assembler::notZero, isdouble);
// Do Float Here
__ movflt(floatreg, Address(rsp, i * wordSize));
__ jmp(next);
// Do Double here
__ bind(isdouble);
__ movdbl(floatreg, Address(rsp, i * wordSize));
__ bind(next);
}
// restore rsp
__ addptr(rsp, 4 * wordSize);
__ ret(0);
return entry;
}
#else
address AbstractInterpreterGenerator::generate_slow_signature_handler() {
address entry = __ pc();
// rbx: method
// r14: pointer to locals
// c_rarg3: first stack arg - wordSize
__ mov(c_rarg3, rsp);
// adjust rsp
__ subptr(rsp, 14 * wordSize);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::slow_signature_handler),
rbx, r14, c_rarg3);
// rax: result handler
// Stack layout:
// rsp: 5 integer args (if static first is unused)
// 1 float/double identifiers
// 8 double args
// return address
// stack args
// garbage
// expression stack bottom
// bcp (NULL)
// ...
// Do FP first so we can use c_rarg3 as temp
__ movl(c_rarg3, Address(rsp, 5 * wordSize)); // float/double identifiers
for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
const XMMRegister r = as_XMMRegister(i);
Label d, done;
__ testl(c_rarg3, 1 << i);
__ jcc(Assembler::notZero, d);
__ movflt(r, Address(rsp, (6 + i) * wordSize));
__ jmp(done);
__ bind(d);
__ movdbl(r, Address(rsp, (6 + i) * wordSize));
__ bind(done);
}
// Now handle integrals. Only do c_rarg1 if not static.
__ movl(c_rarg3, Address(rbx, Method::access_flags_offset()));
__ testl(c_rarg3, JVM_ACC_STATIC);
__ cmovptr(Assembler::zero, c_rarg1, Address(rsp, 0));
__ movptr(c_rarg2, Address(rsp, wordSize));
__ movptr(c_rarg3, Address(rsp, 2 * wordSize));
__ movptr(c_rarg4, Address(rsp, 3 * wordSize));
__ movptr(c_rarg5, Address(rsp, 4 * wordSize));
// restore rsp
__ addptr(rsp, 14 * wordSize);
__ ret(0);
return entry;
}
#endif
//
// Various method entries
//
address InterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
// rbx,: Method*
// rcx: scratrch
// r13: sender sp
if (!InlineIntrinsics) return NULL; // Generate a vanilla entry
address entry_point = __ pc();
// These don't need a safepoint check because they aren't virtually
// callable. We won't enter these intrinsics from compiled code.
// If in the future we added an intrinsic which was virtually callable
// we'd have to worry about how to safepoint so that this code is used.
// mathematical functions inlined by compiler
// (interpreter must provide identical implementation
// in order to avoid monotonicity bugs when switching
// from interpreter to compiler in the middle of some
// computation)
//
// stack: [ ret adr ] <-- rsp
// [ lo(arg) ]
// [ hi(arg) ]
//
// Note: For JDK 1.2 StrictMath doesn't exist and Math.sin/cos/sqrt are
// native methods. Interpreter::method_kind(...) does a check for
// native methods first before checking for intrinsic methods and
// thus will never select this entry point. Make sure it is not
// called accidentally since the SharedRuntime entry points will
// not work for JDK 1.2.
//
// We no longer need to check for JDK 1.2 since it's EOL'ed.
// The following check existed in pre 1.6 implementation,
// if (Universe::is_jdk12x_version()) {
// __ should_not_reach_here();
// }
// Universe::is_jdk12x_version() always returns false since
// the JDK version is not yet determined when this method is called.
// This method is called during interpreter_init() whereas
// JDK version is only determined when universe2_init() is called.
// Note: For JDK 1.3 StrictMath exists and Math.sin/cos/sqrt are
// java methods. Interpreter::method_kind(...) will select
// this entry point for the corresponding methods in JDK 1.3.
// get argument
if (kind == Interpreter::java_lang_math_sqrt) {
__ sqrtsd(xmm0, Address(rsp, wordSize));
} else {
__ fld_d(Address(rsp, wordSize));
switch (kind) {
case Interpreter::java_lang_math_sin :
__ trigfunc('s');
break;
case Interpreter::java_lang_math_cos :
__ trigfunc('c');
break;
case Interpreter::java_lang_math_tan :
__ trigfunc('t');
break;
case Interpreter::java_lang_math_abs:
__ fabs();
break;
case Interpreter::java_lang_math_log:
__ flog();
break;
case Interpreter::java_lang_math_log10:
__ flog10();
break;
case Interpreter::java_lang_math_pow:
__ fld_d(Address(rsp, 3*wordSize)); // second argument (one
// empty stack slot)
__ pow_with_fallback(0);
break;
case Interpreter::java_lang_math_exp:
__ exp_with_fallback(0);
break;
default :
ShouldNotReachHere();
}
// return double result in xmm0 for interpreter and compilers.
__ subptr(rsp, 2*wordSize);
// Round to 64bit precision
__ fstp_d(Address(rsp, 0));
__ movdbl(xmm0, Address(rsp, 0));
__ addptr(rsp, 2*wordSize);
}
__ pop(rax);
__ mov(rsp, r13);
__ jmp(rax);
return entry_point;
}
void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
// This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
// the days we had adapter frames. When we deoptimize a situation where a
// compiled caller calls a compiled caller will have registers it expects
// to survive the call to the callee. If we deoptimize the callee the only
// way we can restore these registers is to have the oldest interpreter
// frame that we create restore these values. That is what this routine
// will accomplish.
// At the moment we have modified c2 to not have any callee save registers
// so this problem does not exist and this routine is just a place holder.
assert(f->is_interpreted_frame(), "must be interpreted");
}