hotspot/src/share/vm/opto/mathexactnode.cpp
author kvn
Fri, 21 Nov 2014 17:17:41 -0800
changeset 27704 88c9f3b507ff
parent 25930 eae8b7490d2c
child 33105 294e48b4f704
permissions -rw-r--r--
8065618: C2 RA incorrectly removes kill projections Summary: Don't remove KILL projections if their "defining" nodes have SCMemProj projection (memory side effects). Reviewed-by: iveresov

/*
 * Copyright (c) 2013, 2014, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/addnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/machnode.hpp"
#include "opto/matcher.hpp"
#include "opto/mathexactnode.hpp"
#include "opto/subnode.hpp"

template <typename OverflowOp>
class AddHelper {
public:
  typedef typename OverflowOp::TypeClass TypeClass;
  typedef typename TypeClass::NativeType NativeType;

  static bool will_overflow(NativeType value1, NativeType value2) {
    NativeType result = value1 + value2;
    // Hacker's Delight 2-12 Overflow if both arguments have the opposite sign of the result
    if (((value1 ^ result) & (value2 ^ result)) >= 0) {
      return false;
    }
    return true;
  }

  static bool can_overflow(const Type* type1, const Type* type2) {
    if (type1 == TypeClass::ZERO || type2 == TypeClass::ZERO) {
      return false;
    }
    return true;
  }
};

template <typename OverflowOp>
class SubHelper {
public:
  typedef typename OverflowOp::TypeClass TypeClass;
  typedef typename TypeClass::NativeType NativeType;

  static bool will_overflow(NativeType value1, NativeType value2) {
    NativeType result = value1 - value2;
    // hacker's delight 2-12 overflow iff the arguments have different signs and
    // the sign of the result is different than the sign of arg1
    if (((value1 ^ value2) & (value1 ^ result)) >= 0) {
      return false;
    }
    return true;
  }

  static bool can_overflow(const Type* type1, const Type* type2) {
    if (type2 == TypeClass::ZERO) {
      return false;
    }
    return true;
  }
};

template <typename OverflowOp>
class MulHelper {
public:
  typedef typename OverflowOp::TypeClass TypeClass;

  static bool can_overflow(const Type* type1, const Type* type2) {
    if (type1 == TypeClass::ZERO || type2 == TypeClass::ZERO) {
      return false;
    } else if (type1 == TypeClass::ONE || type2 == TypeClass::ONE) {
      return false;
    }
    return true;
  }
};

bool OverflowAddINode::will_overflow(jint v1, jint v2) const {
  return AddHelper<OverflowAddINode>::will_overflow(v1, v2);
}

bool OverflowSubINode::will_overflow(jint v1, jint v2) const {
  return SubHelper<OverflowSubINode>::will_overflow(v1, v2);
}

bool OverflowMulINode::will_overflow(jint v1, jint v2) const {
    jlong result = (jlong) v1 * (jlong) v2;
    if ((jint) result == result) {
      return false;
    }
    return true;
}

bool OverflowAddLNode::will_overflow(jlong v1, jlong v2) const {
  return AddHelper<OverflowAddLNode>::will_overflow(v1, v2);
}

bool OverflowSubLNode::will_overflow(jlong v1, jlong v2) const {
  return SubHelper<OverflowSubLNode>::will_overflow(v1, v2);
}

bool OverflowMulLNode::will_overflow(jlong val1, jlong val2) const {
    jlong result = val1 * val2;
    jlong ax = (val1 < 0 ? -val1 : val1);
    jlong ay = (val2 < 0 ? -val2 : val2);

    bool overflow = false;
    if ((ax | ay) & CONST64(0xFFFFFFFF00000000)) {
      // potential overflow if any bit in upper 32 bits are set
      if ((val1 == min_jlong && val2 == -1) || (val2 == min_jlong && val1 == -1)) {
        // -1 * Long.MIN_VALUE will overflow
        overflow = true;
      } else if (val2 != 0 && (result / val2 != val1)) {
        overflow = true;
      }
    }

    return overflow;
}

bool OverflowAddINode::can_overflow(const Type* t1, const Type* t2) const {
  return AddHelper<OverflowAddINode>::can_overflow(t1, t2);
}

bool OverflowSubINode::can_overflow(const Type* t1, const Type* t2) const {
  if (in(1) == in(2)) {
    return false;
  }
  return SubHelper<OverflowSubINode>::can_overflow(t1, t2);
}

bool OverflowMulINode::can_overflow(const Type* t1, const Type* t2) const {
  return MulHelper<OverflowMulINode>::can_overflow(t1, t2);
}

bool OverflowAddLNode::can_overflow(const Type* t1, const Type* t2) const {
  return AddHelper<OverflowAddLNode>::can_overflow(t1, t2);
}

bool OverflowSubLNode::can_overflow(const Type* t1, const Type* t2) const {
  if (in(1) == in(2)) {
    return false;
  }
  return SubHelper<OverflowSubLNode>::can_overflow(t1, t2);
}

bool OverflowMulLNode::can_overflow(const Type* t1, const Type* t2) const {
  return MulHelper<OverflowMulLNode>::can_overflow(t1, t2);
}

const Type* OverflowNode::sub(const Type* t1, const Type* t2) const {
  fatal(err_msg_res("sub() should not be called for '%s'", NodeClassNames[this->Opcode()]));
  return TypeInt::CC;
}

template <typename OverflowOp>
struct IdealHelper {
  typedef typename OverflowOp::TypeClass TypeClass; // TypeInt, TypeLong
  typedef typename TypeClass::NativeType NativeType;

  static Node* Ideal(const OverflowOp* node, PhaseGVN* phase, bool can_reshape) {
    Node* arg1 = node->in(1);
    Node* arg2 = node->in(2);
    const Type* type1 = phase->type(arg1);
    const Type* type2 = phase->type(arg2);

    if (type1 == NULL || type2 == NULL) {
      return NULL;
    }

    if (type1 != Type::TOP && type1->singleton() &&
        type2 != Type::TOP && type2->singleton()) {
      NativeType val1 = TypeClass::as_self(type1)->get_con();
      NativeType val2 = TypeClass::as_self(type2)->get_con();
      if (node->will_overflow(val1, val2) == false) {
        Node* con_result = ConINode::make(0);
        return con_result;
      }
      return NULL;
    }
    return NULL;
  }

  static const Type* Value(const OverflowOp* node, PhaseTransform* phase) {
    const Type *t1 = phase->type( node->in(1) );
    const Type *t2 = phase->type( node->in(2) );
    if( t1 == Type::TOP ) return Type::TOP;
    if( t2 == Type::TOP ) return Type::TOP;

    const TypeClass* i1 = TypeClass::as_self(t1);
    const TypeClass* i2 = TypeClass::as_self(t2);

    if (i1 == NULL || i2 == NULL) {
      return TypeInt::CC;
    }

    if (t1->singleton() && t2->singleton()) {
      NativeType val1 = i1->get_con();
      NativeType val2 = i2->get_con();
      if (node->will_overflow(val1, val2)) {
        return TypeInt::CC;
      }
      return TypeInt::ZERO;
    } else if (i1 != TypeClass::TYPE_DOMAIN && i2 != TypeClass::TYPE_DOMAIN) {
      if (node->will_overflow(i1->_lo, i2->_lo)) {
        return TypeInt::CC;
      } else if (node->will_overflow(i1->_lo, i2->_hi)) {
        return TypeInt::CC;
      } else if (node->will_overflow(i1->_hi, i2->_lo)) {
        return TypeInt::CC;
      } else if (node->will_overflow(i1->_hi, i2->_hi)) {
        return TypeInt::CC;
      }
      return TypeInt::ZERO;
    }

    if (!node->can_overflow(t1, t2)) {
      return TypeInt::ZERO;
    }
    return TypeInt::CC;
  }
};

Node* OverflowINode::Ideal(PhaseGVN* phase, bool can_reshape) {
  return IdealHelper<OverflowINode>::Ideal(this, phase, can_reshape);
}

Node* OverflowLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
  return IdealHelper<OverflowLNode>::Ideal(this, phase, can_reshape);
}

const Type* OverflowINode::Value(PhaseTransform* phase) const {
  return IdealHelper<OverflowINode>::Value(this, phase);
}

const Type* OverflowLNode::Value(PhaseTransform* phase) const {
  return IdealHelper<OverflowLNode>::Value(this, phase);
}