8194994: Remove redundant string streams used for logging
Reviewed-by: rehn, iklam, coleenp
/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "classfile/compactHashtable.inline.hpp"
#include "classfile/javaClasses.hpp"
#include "logging/logMessage.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/metaspaceShared.hpp"
#include "runtime/vmThread.hpp"
#include "utilities/numberSeq.hpp"
#include <sys/stat.h>
/////////////////////////////////////////////////////
//
// The compact hash table writer implementations
//
CompactHashtableWriter::CompactHashtableWriter(int num_buckets,
CompactHashtableStats* stats) {
assert(DumpSharedSpaces, "dump-time only");
assert(num_buckets > 0, "no buckets");
_num_buckets = num_buckets;
_num_entries = 0;
_buckets = NEW_C_HEAP_ARRAY(GrowableArray<Entry>*, _num_buckets, mtSymbol);
for (int i=0; i<_num_buckets; i++) {
_buckets[i] = new (ResourceObj::C_HEAP, mtSymbol) GrowableArray<Entry>(0, true, mtSymbol);
}
_stats = stats;
_compact_buckets = NULL;
_compact_entries = NULL;
_num_empty_buckets = 0;
_num_value_only_buckets = 0;
_num_other_buckets = 0;
}
CompactHashtableWriter::~CompactHashtableWriter() {
for (int index = 0; index < _num_buckets; index++) {
GrowableArray<Entry>* bucket = _buckets[index];
delete bucket;
}
FREE_C_HEAP_ARRAY(GrowableArray<Entry>*, _buckets);
}
// Add a symbol entry to the temporary hash table
void CompactHashtableWriter::add(unsigned int hash, u4 value) {
int index = hash % _num_buckets;
_buckets[index]->append_if_missing(Entry(hash, value));
_num_entries++;
}
void CompactHashtableWriter::allocate_table() {
int entries_space = 0;
for (int index = 0; index < _num_buckets; index++) {
GrowableArray<Entry>* bucket = _buckets[index];
int bucket_size = bucket->length();
if (bucket_size == 1) {
entries_space++;
} else {
entries_space += 2 * bucket_size;
}
}
if (entries_space & ~BUCKET_OFFSET_MASK) {
vm_exit_during_initialization("CompactHashtableWriter::allocate_table: Overflow! "
"Too many entries.");
}
_compact_buckets = MetaspaceShared::new_ro_array<u4>(_num_buckets + 1);
_compact_entries = MetaspaceShared::new_ro_array<u4>(entries_space);
_stats->bucket_count = _num_buckets;
_stats->bucket_bytes = _compact_buckets->size() * BytesPerWord;
_stats->hashentry_count = _num_entries;
_stats->hashentry_bytes = _compact_entries->size() * BytesPerWord;
}
// Write the compact table's buckets
void CompactHashtableWriter::dump_table(NumberSeq* summary) {
u4 offset = 0;
for (int index = 0; index < _num_buckets; index++) {
GrowableArray<Entry>* bucket = _buckets[index];
int bucket_size = bucket->length();
if (bucket_size == 1) {
// bucket with one entry is compacted and only has the symbol offset
_compact_buckets->at_put(index, BUCKET_INFO(offset, VALUE_ONLY_BUCKET_TYPE));
Entry ent = bucket->at(0);
_compact_entries->at_put(offset++, ent.value());
_num_value_only_buckets++;
} else {
// regular bucket, each entry is a symbol (hash, offset) pair
_compact_buckets->at_put(index, BUCKET_INFO(offset, REGULAR_BUCKET_TYPE));
for (int i=0; i<bucket_size; i++) {
Entry ent = bucket->at(i);
_compact_entries->at_put(offset++, u4(ent.hash())); // write entry hash
_compact_entries->at_put(offset++, ent.value());
}
if (bucket_size == 0) {
_num_empty_buckets++;
} else {
_num_other_buckets++;
}
}
summary->add(bucket_size);
}
// Mark the end of the buckets
_compact_buckets->at_put(_num_buckets, BUCKET_INFO(offset, TABLEEND_BUCKET_TYPE));
assert(offset == (u4)_compact_entries->length(), "sanity");
}
// Write the compact table
void CompactHashtableWriter::dump(SimpleCompactHashtable *cht, const char* table_name) {
NumberSeq summary;
allocate_table();
dump_table(&summary);
int table_bytes = _stats->bucket_bytes + _stats->hashentry_bytes;
address base_address = address(MetaspaceShared::shared_rs()->base());
cht->init(base_address, _num_entries, _num_buckets,
_compact_buckets->data(), _compact_entries->data());
LogMessage(cds, hashtables) msg;
if (msg.is_info()) {
double avg_cost = 0.0;
if (_num_entries > 0) {
avg_cost = double(table_bytes)/double(_num_entries);
}
msg.info("Shared %s table stats -------- base: " PTR_FORMAT,
table_name, (intptr_t)base_address);
msg.info("Number of entries : %9d", _num_entries);
msg.info("Total bytes used : %9d", table_bytes);
msg.info("Average bytes per entry : %9.3f", avg_cost);
msg.info("Average bucket size : %9.3f", summary.avg());
msg.info("Variance of bucket size : %9.3f", summary.variance());
msg.info("Std. dev. of bucket size: %9.3f", summary.sd());
msg.info("Empty buckets : %9d", _num_empty_buckets);
msg.info("Value_Only buckets : %9d", _num_value_only_buckets);
msg.info("Other buckets : %9d", _num_other_buckets);
}
}
/////////////////////////////////////////////////////////////
//
// Customization for dumping Symbol and String tables
void CompactSymbolTableWriter::add(unsigned int hash, Symbol *symbol) {
uintx deltax = MetaspaceShared::object_delta(symbol);
// When the symbols are stored into the archive, we already check that
// they won't be more than MAX_SHARED_DELTA from the base address, or
// else the dumping would have been aborted.
assert(deltax <= MAX_SHARED_DELTA, "must not be");
u4 delta = u4(deltax);
CompactHashtableWriter::add(hash, delta);
}
void CompactStringTableWriter::add(unsigned int hash, oop string) {
CompactHashtableWriter::add(hash, oopDesc::encode_heap_oop(string));
}
void CompactSymbolTableWriter::dump(CompactHashtable<Symbol*, char> *cht) {
CompactHashtableWriter::dump(cht, "symbol");
}
void CompactStringTableWriter::dump(CompactHashtable<oop, char> *cht) {
CompactHashtableWriter::dump(cht, "string");
}
/////////////////////////////////////////////////////////////
//
// The CompactHashtable implementation
//
void SimpleCompactHashtable::serialize(SerializeClosure* soc) {
soc->do_ptr((void**)&_base_address);
soc->do_u4(&_entry_count);
soc->do_u4(&_bucket_count);
soc->do_ptr((void**)&_buckets);
soc->do_ptr((void**)&_entries);
}
bool SimpleCompactHashtable::exists(u4 value) {
assert(!DumpSharedSpaces, "run-time only");
if (_entry_count == 0) {
return false;
}
unsigned int hash = (unsigned int)value;
int index = hash % _bucket_count;
u4 bucket_info = _buckets[index];
u4 bucket_offset = BUCKET_OFFSET(bucket_info);
int bucket_type = BUCKET_TYPE(bucket_info);
u4* entry = _entries + bucket_offset;
if (bucket_type == VALUE_ONLY_BUCKET_TYPE) {
return (entry[0] == value);
} else {
u4*entry_max = _entries + BUCKET_OFFSET(_buckets[index + 1]);
while (entry <entry_max) {
if (entry[1] == value) {
return true;
}
entry += 2;
}
return false;
}
}
template <class I>
inline void SimpleCompactHashtable::iterate(const I& iterator) {
for (u4 i = 0; i < _bucket_count; i++) {
u4 bucket_info = _buckets[i];
u4 bucket_offset = BUCKET_OFFSET(bucket_info);
int bucket_type = BUCKET_TYPE(bucket_info);
u4* entry = _entries + bucket_offset;
if (bucket_type == VALUE_ONLY_BUCKET_TYPE) {
iterator.do_value(_base_address, entry[0]);
} else {
u4*entry_max = _entries + BUCKET_OFFSET(_buckets[i + 1]);
while (entry < entry_max) {
iterator.do_value(_base_address, entry[1]);
entry += 2;
}
}
}
}
template <class T, class N> void CompactHashtable<T, N>::serialize(SerializeClosure* soc) {
SimpleCompactHashtable::serialize(soc);
soc->do_u4(&_type);
}
class CompactHashtable_SymbolIterator {
SymbolClosure* const _closure;
public:
CompactHashtable_SymbolIterator(SymbolClosure *cl) : _closure(cl) {}
inline void do_value(address base_address, u4 offset) const {
Symbol* sym = (Symbol*)((void*)(base_address + offset));
_closure->do_symbol(&sym);
}
};
template <class T, class N> void CompactHashtable<T, N>::symbols_do(SymbolClosure *cl) {
CompactHashtable_SymbolIterator iterator(cl);
iterate(iterator);
}
class CompactHashtable_OopIterator {
OopClosure* const _closure;
public:
CompactHashtable_OopIterator(OopClosure *cl) : _closure(cl) {}
inline void do_value(address base_address, u4 offset) const {
narrowOop o = (narrowOop)offset;
_closure->do_oop(&o);
}
};
template <class T, class N> void CompactHashtable<T, N>::oops_do(OopClosure* cl) {
assert(_type == _string_table || _bucket_count == 0, "sanity");
CompactHashtable_OopIterator iterator(cl);
iterate(iterator);
}
// Explicitly instantiate these types
template class CompactHashtable<Symbol*, char>;
template class CompactHashtable<oop, char>;
#ifndef O_BINARY // if defined (Win32) use binary files.
#define O_BINARY 0 // otherwise do nothing.
#endif
////////////////////////////////////////////////////////
//
// HashtableTextDump
//
HashtableTextDump::HashtableTextDump(const char* filename) : _fd(-1) {
struct stat st;
if (os::stat(filename, &st) != 0) {
quit("Unable to get hashtable dump file size", filename);
}
_size = st.st_size;
_fd = open(filename, O_RDONLY | O_BINARY, 0);
if (_fd < 0) {
quit("Unable to open hashtable dump file", filename);
}
_base = os::map_memory(_fd, filename, 0, NULL, _size, true, false);
if (_base == NULL) {
quit("Unable to map hashtable dump file", filename);
}
_p = _base;
_end = _base + st.st_size;
_filename = filename;
_prefix_type = Unknown;
_line_no = 1;
}
HashtableTextDump::~HashtableTextDump() {
os::unmap_memory((char*)_base, _size);
if (_fd >= 0) {
close(_fd);
}
}
void HashtableTextDump::quit(const char* err, const char* msg) {
vm_exit_during_initialization(err, msg);
}
void HashtableTextDump::corrupted(const char *p, const char* msg) {
char info[100];
jio_snprintf(info, sizeof(info),
"%s. Corrupted at line %d (file pos %d)",
msg, _line_no, (int)(p - _base));
quit(info, _filename);
}
bool HashtableTextDump::skip_newline() {
if (_p[0] == '\r' && _p[1] == '\n') {
_p += 2;
} else if (_p[0] == '\n') {
_p += 1;
} else {
corrupted(_p, "Unexpected character");
}
_line_no++;
return true;
}
int HashtableTextDump::skip(char must_be_char) {
corrupted_if(remain() < 1, "Truncated");
corrupted_if(*_p++ != must_be_char, "Unexpected character");
return 0;
}
void HashtableTextDump::skip_past(char c) {
for (;;) {
corrupted_if(remain() < 1, "Truncated");
if (*_p++ == c) {
return;
}
}
}
void HashtableTextDump::check_version(const char* ver) {
int len = (int)strlen(ver);
corrupted_if(remain() < len, "Truncated");
if (strncmp(_p, ver, len) != 0) {
quit("wrong version of hashtable dump file", _filename);
}
_p += len;
skip_newline();
}
void HashtableTextDump::scan_prefix_type() {
_p++;
if (strncmp(_p, "SECTION: String", 15) == 0) {
_p += 15;
_prefix_type = StringPrefix;
} else if (strncmp(_p, "SECTION: Symbol", 15) == 0) {
_p += 15;
_prefix_type = SymbolPrefix;
} else {
_prefix_type = Unknown;
}
skip_newline();
}
int HashtableTextDump::scan_prefix(int* utf8_length) {
if (*_p == '@') {
scan_prefix_type();
}
switch (_prefix_type) {
case SymbolPrefix:
*utf8_length = scan_symbol_prefix(); break;
case StringPrefix:
*utf8_length = scan_string_prefix(); break;
default:
tty->print_cr("Shared input data type: Unknown.");
corrupted(_p, "Unknown data type");
}
return _prefix_type;
}
int HashtableTextDump::scan_string_prefix() {
// Expect /[0-9]+: /
int utf8_length = 0;
get_num(':', &utf8_length);
if (*_p != ' ') {
corrupted(_p, "Wrong prefix format for string");
}
_p++;
return utf8_length;
}
int HashtableTextDump::scan_symbol_prefix() {
// Expect /[0-9]+ (-|)[0-9]+: /
int utf8_length = 0;
get_num(' ', &utf8_length);
if (*_p == '-') {
_p++;
}
int ref_num;
get_num(':', &ref_num);
if (*_p != ' ') {
corrupted(_p, "Wrong prefix format for symbol");
}
_p++;
return utf8_length;
}
jchar HashtableTextDump::unescape(const char* from, const char* end, int count) {
jchar value = 0;
corrupted_if(from + count > end, "Truncated");
for (int i=0; i<count; i++) {
char c = *from++;
switch (c) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
value = (value << 4) + c - '0';
break;
case 'a': case 'b': case 'c':
case 'd': case 'e': case 'f':
value = (value << 4) + 10 + c - 'a';
break;
case 'A': case 'B': case 'C':
case 'D': case 'E': case 'F':
value = (value << 4) + 10 + c - 'A';
break;
default:
ShouldNotReachHere();
}
}
return value;
}
void HashtableTextDump::get_utf8(char* utf8_buffer, int utf8_length) {
// cache in local vars
const char* from = _p;
const char* end = _end;
char* to = utf8_buffer;
int n = utf8_length;
for (; n > 0 && from < end; n--) {
if (*from != '\\') {
*to++ = *from++;
} else {
corrupted_if(from + 2 > end, "Truncated");
char c = from[1];
from += 2;
switch (c) {
case 'x':
{
jchar value = unescape(from, end, 2);
from += 2;
assert(value <= 0xff, "sanity");
*to++ = (char)(value & 0xff);
}
break;
case 't': *to++ = '\t'; break;
case 'n': *to++ = '\n'; break;
case 'r': *to++ = '\r'; break;
case '\\': *to++ = '\\'; break;
default:
corrupted(_p, "Unsupported character");
}
}
}
corrupted_if(n > 0, "Truncated"); // expected more chars but file has ended
_p = from;
skip_newline();
}
// NOTE: the content is NOT the same as
// UTF8::as_quoted_ascii(const char* utf8_str, int utf8_length, char* buf, int buflen).
// We want to escape \r\n\t so that output [1] is more readable; [2] can be more easily
// parsed by scripts; [3] quickly processed by HashtableTextDump::get_utf8()
void HashtableTextDump::put_utf8(outputStream* st, const char* utf8_string, int utf8_length) {
const char *c = utf8_string;
const char *end = c + utf8_length;
for (; c < end; c++) {
switch (*c) {
case '\t': st->print("\\t"); break;
case '\r': st->print("\\r"); break;
case '\n': st->print("\\n"); break;
case '\\': st->print("\\\\"); break;
default:
if (isprint(*c)) {
st->print("%c", *c);
} else {
st->print("\\x%02x", ((unsigned int)*c) & 0xff);
}
}
}
}