6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>
/*
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "gc_implementation/shared/markSweep.inline.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.inline.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/klass.inline.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/objArrayKlass.inline.hpp"
#include "oops/objArrayOop.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oop.inline2.hpp"
#include "oops/symbol.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/copy.hpp"
#ifndef SERIALGC
#include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/parNew/parOopClosures.inline.hpp"
#include "gc_implementation/parallelScavenge/psCompactionManager.hpp"
#include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
#include "gc_implementation/parallelScavenge/psScavenge.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#endif
objArrayKlass* objArrayKlass::allocate(ClassLoaderData* loader_data, int n, KlassHandle klass_handle, Symbol* name, TRAPS) {
assert(objArrayKlass::header_size() <= InstanceKlass::header_size(),
"array klasses must be same size as InstanceKlass");
int size = arrayKlass::static_size(objArrayKlass::header_size());
return new (loader_data, size, THREAD) objArrayKlass(n, klass_handle, name);
}
Klass* objArrayKlass::allocate_objArray_klass(ClassLoaderData* loader_data,
int n, KlassHandle element_klass, TRAPS) {
// Eagerly allocate the direct array supertype.
KlassHandle super_klass = KlassHandle();
if (!Universe::is_bootstrapping() || SystemDictionary::Object_klass_loaded()) {
KlassHandle element_super (THREAD, element_klass->super());
if (element_super.not_null()) {
// The element type has a direct super. E.g., String[] has direct super of Object[].
super_klass = KlassHandle(THREAD, element_super->array_klass_or_null());
bool supers_exist = super_klass.not_null();
// Also, see if the element has secondary supertypes.
// We need an array type for each.
Array<Klass*>* element_supers = element_klass->secondary_supers();
for( int i = element_supers->length()-1; i >= 0; i-- ) {
Klass* elem_super = element_supers->at(i);
if (Klass::cast(elem_super)->array_klass_or_null() == NULL) {
supers_exist = false;
break;
}
}
if (!supers_exist) {
// Oops. Not allocated yet. Back out, allocate it, and retry.
#ifndef PRODUCT
if (WizardMode) {
tty->print_cr("Must retry array klass creation for depth %d",n);
}
#endif
KlassHandle ek;
{
MutexUnlocker mu(MultiArray_lock);
MutexUnlocker mc(Compile_lock); // for vtables
Klass* sk = element_super->array_klass(CHECK_0);
super_klass = KlassHandle(THREAD, sk);
for( int i = element_supers->length()-1; i >= 0; i-- ) {
KlassHandle elem_super (THREAD, element_supers->at(i));
elem_super->array_klass(CHECK_0);
}
// Now retry from the beginning
Klass* klass_oop = element_klass->array_klass(n, CHECK_0);
// Create a handle because the enclosing brace, when locking
// can cause a gc. Better to have this function return a Handle.
ek = KlassHandle(THREAD, klass_oop);
} // re-lock
return ek();
}
} else {
// The element type is already Object. Object[] has direct super of Object.
super_klass = KlassHandle(THREAD, SystemDictionary::Object_klass());
}
}
// Create type name for klass.
Symbol* name = NULL;
if (!element_klass->oop_is_instance() ||
(name = InstanceKlass::cast(element_klass())->array_name()) == NULL) {
ResourceMark rm(THREAD);
char *name_str = element_klass->name()->as_C_string();
int len = element_klass->name()->utf8_length();
char *new_str = NEW_RESOURCE_ARRAY(char, len + 4);
int idx = 0;
new_str[idx++] = '[';
if (element_klass->oop_is_instance()) { // it could be an array or simple type
new_str[idx++] = 'L';
}
memcpy(&new_str[idx], name_str, len * sizeof(char));
idx += len;
if (element_klass->oop_is_instance()) {
new_str[idx++] = ';';
}
new_str[idx++] = '\0';
name = SymbolTable::new_permanent_symbol(new_str, CHECK_0);
if (element_klass->oop_is_instance()) {
InstanceKlass* ik = InstanceKlass::cast(element_klass());
ik->set_array_name(name);
}
}
// Initialize instance variables
objArrayKlass* oak = objArrayKlass::allocate(loader_data, n, element_klass, name, CHECK_0);
// Add all classes to our internal class loader list here,
// including classes in the bootstrap (NULL) class loader.
// GC walks these as strong roots.
loader_data->add_class(oak);
// Call complete_create_array_klass after all instance variables has been initialized.
arrayKlass::complete_create_array_klass(oak, super_klass, CHECK_0);
return oak;
}
objArrayKlass::objArrayKlass(int n, KlassHandle element_klass, Symbol* name) : arrayKlass(name) {
this->set_dimension(n);
this->set_element_klass(element_klass());
// decrement refcount because object arrays are not explicitly freed. The
// InstanceKlass array_name() keeps the name counted while the klass is
// loaded.
name->decrement_refcount();
Klass* bk;
if (element_klass->oop_is_objArray()) {
bk = objArrayKlass::cast(element_klass())->bottom_klass();
} else {
bk = element_klass();
}
assert(bk != NULL && (Klass::cast(bk)->oop_is_instance() || Klass::cast(bk)->oop_is_typeArray()), "invalid bottom klass");
this->set_bottom_klass(bk);
this->set_class_loader_data(bk->class_loader_data());
this->set_layout_helper(array_layout_helper(T_OBJECT));
assert(this->oop_is_array(), "sanity");
assert(this->oop_is_objArray(), "sanity");
}
int objArrayKlass::oop_size(oop obj) const {
assert(obj->is_objArray(), "must be object array");
return objArrayOop(obj)->object_size();
}
objArrayOop objArrayKlass::allocate(int length, TRAPS) {
if (length >= 0) {
if (length <= arrayOopDesc::max_array_length(T_OBJECT)) {
int size = objArrayOopDesc::object_size(length);
KlassHandle h_k(THREAD, this);
return (objArrayOop)CollectedHeap::array_allocate(h_k, size, length, CHECK_NULL);
} else {
report_java_out_of_memory("Requested array size exceeds VM limit");
JvmtiExport::post_array_size_exhausted();
THROW_OOP_0(Universe::out_of_memory_error_array_size());
}
} else {
THROW_0(vmSymbols::java_lang_NegativeArraySizeException());
}
}
static int multi_alloc_counter = 0;
oop objArrayKlass::multi_allocate(int rank, jint* sizes, TRAPS) {
int length = *sizes;
// Call to lower_dimension uses this pointer, so most be called before a
// possible GC
KlassHandle h_lower_dimension(THREAD, lower_dimension());
// If length < 0 allocate will throw an exception.
objArrayOop array = allocate(length, CHECK_NULL);
objArrayHandle h_array (THREAD, array);
if (rank > 1) {
if (length != 0) {
for (int index = 0; index < length; index++) {
arrayKlass* ak = arrayKlass::cast(h_lower_dimension());
oop sub_array = ak->multi_allocate(rank-1, &sizes[1], CHECK_NULL);
h_array->obj_at_put(index, sub_array);
}
} else {
// Since this array dimension has zero length, nothing will be
// allocated, however the lower dimension values must be checked
// for illegal values.
for (int i = 0; i < rank - 1; ++i) {
sizes += 1;
if (*sizes < 0) {
THROW_0(vmSymbols::java_lang_NegativeArraySizeException());
}
}
}
}
return h_array();
}
// Either oop or narrowOop depending on UseCompressedOops.
template <class T> void objArrayKlass::do_copy(arrayOop s, T* src,
arrayOop d, T* dst, int length, TRAPS) {
BarrierSet* bs = Universe::heap()->barrier_set();
// For performance reasons, we assume we are that the write barrier we
// are using has optimized modes for arrays of references. At least one
// of the asserts below will fail if this is not the case.
assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
if (s == d) {
// since source and destination are equal we do not need conversion checks.
assert(length > 0, "sanity check");
bs->write_ref_array_pre(dst, length);
Copy::conjoint_oops_atomic(src, dst, length);
} else {
// We have to make sure all elements conform to the destination array
Klass* bound = objArrayKlass::cast(d->klass())->element_klass();
Klass* stype = objArrayKlass::cast(s->klass())->element_klass();
if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
// elements are guaranteed to be subtypes, so no check necessary
bs->write_ref_array_pre(dst, length);
Copy::conjoint_oops_atomic(src, dst, length);
} else {
// slow case: need individual subtype checks
// note: don't use obj_at_put below because it includes a redundant store check
T* from = src;
T* end = from + length;
for (T* p = dst; from < end; from++, p++) {
// XXX this is going to be slow.
T element = *from;
// even slower now
bool element_is_null = oopDesc::is_null(element);
oop new_val = element_is_null ? oop(NULL)
: oopDesc::decode_heap_oop_not_null(element);
if (element_is_null ||
Klass::cast((new_val->klass()))->is_subtype_of(bound)) {
bs->write_ref_field_pre(p, new_val);
*p = *from;
} else {
// We must do a barrier to cover the partial copy.
const size_t pd = pointer_delta(p, dst, (size_t)heapOopSize);
// pointer delta is scaled to number of elements (length field in
// objArrayOop) which we assume is 32 bit.
assert(pd == (size_t)(int)pd, "length field overflow");
bs->write_ref_array((HeapWord*)dst, pd);
THROW(vmSymbols::java_lang_ArrayStoreException());
return;
}
}
}
}
bs->write_ref_array((HeapWord*)dst, length);
}
void objArrayKlass::copy_array(arrayOop s, int src_pos, arrayOop d,
int dst_pos, int length, TRAPS) {
assert(s->is_objArray(), "must be obj array");
if (!d->is_objArray()) {
THROW(vmSymbols::java_lang_ArrayStoreException());
}
// Check is all offsets and lengths are non negative
if (src_pos < 0 || dst_pos < 0 || length < 0) {
THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
}
// Check if the ranges are valid
if ( (((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length())
|| (((unsigned int) length + (unsigned int) dst_pos) > (unsigned int) d->length()) ) {
THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
}
// Special case. Boundary cases must be checked first
// This allows the following call: copy_array(s, s.length(), d.length(), 0).
// This is correct, since the position is supposed to be an 'in between point', i.e., s.length(),
// points to the right of the last element.
if (length==0) {
return;
}
if (UseCompressedOops) {
narrowOop* const src = objArrayOop(s)->obj_at_addr<narrowOop>(src_pos);
narrowOop* const dst = objArrayOop(d)->obj_at_addr<narrowOop>(dst_pos);
do_copy<narrowOop>(s, src, d, dst, length, CHECK);
} else {
oop* const src = objArrayOop(s)->obj_at_addr<oop>(src_pos);
oop* const dst = objArrayOop(d)->obj_at_addr<oop>(dst_pos);
do_copy<oop> (s, src, d, dst, length, CHECK);
}
}
Klass* objArrayKlass::array_klass_impl(bool or_null, int n, TRAPS) {
assert(dimension() <= n, "check order of chain");
int dim = dimension();
if (dim == n) return this;
if (higher_dimension() == NULL) {
if (or_null) return NULL;
ResourceMark rm;
JavaThread *jt = (JavaThread *)THREAD;
{
MutexLocker mc(Compile_lock, THREAD); // for vtables
// Ensure atomic creation of higher dimensions
MutexLocker mu(MultiArray_lock, THREAD);
// Check if another thread beat us
if (higher_dimension() == NULL) {
// Create multi-dim klass object and link them together
Klass* k =
objArrayKlass::allocate_objArray_klass(class_loader_data(), dim + 1, this, CHECK_NULL);
objArrayKlass* ak = objArrayKlass::cast(k);
ak->set_lower_dimension(this);
OrderAccess::storestore();
set_higher_dimension(ak);
assert(ak->oop_is_objArray(), "incorrect initialization of objArrayKlass");
}
}
} else {
CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
}
objArrayKlass *ak = objArrayKlass::cast(higher_dimension());
if (or_null) {
return ak->array_klass_or_null(n);
}
return ak->array_klass(n, CHECK_NULL);
}
Klass* objArrayKlass::array_klass_impl(bool or_null, TRAPS) {
return array_klass_impl(or_null, dimension() + 1, CHECK_NULL);
}
bool objArrayKlass::can_be_primary_super_slow() const {
if (!bottom_klass()->can_be_primary_super())
// array of interfaces
return false;
else
return Klass::can_be_primary_super_slow();
}
GrowableArray<Klass*>* objArrayKlass::compute_secondary_supers(int num_extra_slots) {
// interfaces = { cloneable_klass, serializable_klass, elemSuper[], ... };
Array<Klass*>* elem_supers = Klass::cast(element_klass())->secondary_supers();
int num_elem_supers = elem_supers == NULL ? 0 : elem_supers->length();
int num_secondaries = num_extra_slots + 2 + num_elem_supers;
if (num_secondaries == 2) {
// Must share this for correct bootstrapping!
set_secondary_supers(Universe::the_array_interfaces_array());
return NULL;
} else {
GrowableArray<Klass*>* secondaries = new GrowableArray<Klass*>(num_elem_supers+2);
secondaries->push(SystemDictionary::Cloneable_klass());
secondaries->push(SystemDictionary::Serializable_klass());
for (int i = 0; i < num_elem_supers; i++) {
Klass* elem_super = (Klass*) elem_supers->at(i);
Klass* array_super = elem_super->array_klass_or_null();
assert(array_super != NULL, "must already have been created");
secondaries->push(array_super);
}
return secondaries;
}
}
bool objArrayKlass::compute_is_subtype_of(Klass* k) {
if (!k->oop_is_objArray())
return arrayKlass::compute_is_subtype_of(k);
objArrayKlass* oak = objArrayKlass::cast(k);
return element_klass()->is_subtype_of(oak->element_klass());
}
void objArrayKlass::initialize(TRAPS) {
Klass::cast(bottom_klass())->initialize(THREAD); // dispatches to either InstanceKlass or typeArrayKlass
}
#define ObjArrayKlass_SPECIALIZED_OOP_ITERATE(T, a, p, do_oop) \
{ \
T* p = (T*)(a)->base(); \
T* const end = p + (a)->length(); \
while (p < end) { \
do_oop; \
p++; \
} \
}
#define ObjArrayKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(T, a, p, low, high, do_oop) \
{ \
T* const l = (T*)(low); \
T* const h = (T*)(high); \
T* p = (T*)(a)->base(); \
T* end = p + (a)->length(); \
if (p < l) p = l; \
if (end > h) end = h; \
while (p < end) { \
do_oop; \
++p; \
} \
}
#define ObjArrayKlass_OOP_ITERATE(a, p, do_oop) \
if (UseCompressedOops) { \
ObjArrayKlass_SPECIALIZED_OOP_ITERATE(narrowOop, \
a, p, do_oop) \
} else { \
ObjArrayKlass_SPECIALIZED_OOP_ITERATE(oop, \
a, p, do_oop) \
}
#define ObjArrayKlass_BOUNDED_OOP_ITERATE(a, p, low, high, do_oop) \
if (UseCompressedOops) { \
ObjArrayKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(narrowOop, \
a, p, low, high, do_oop) \
} else { \
ObjArrayKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(oop, \
a, p, low, high, do_oop) \
}
void objArrayKlass::oop_follow_contents(oop obj) {
assert (obj->is_array(), "obj must be array");
MarkSweep::follow_klass(obj->klass());
if (UseCompressedOops) {
objarray_follow_contents<narrowOop>(obj, 0);
} else {
objarray_follow_contents<oop>(obj, 0);
}
}
#ifndef SERIALGC
void objArrayKlass::oop_follow_contents(ParCompactionManager* cm,
oop obj) {
assert(obj->is_array(), "obj must be array");
PSParallelCompact::follow_klass(cm, obj->klass());
if (UseCompressedOops) {
objarray_follow_contents<narrowOop>(cm, obj, 0);
} else {
objarray_follow_contents<oop>(cm, obj, 0);
}
}
#endif // SERIALGC
#define if_do_metadata_checked(closure, nv_suffix) \
/* Make sure the non-virtual and the virtual versions match. */ \
assert(closure->do_metadata##nv_suffix() == closure->do_metadata(), \
"Inconsistency in do_metadata"); \
if (closure->do_metadata##nv_suffix())
#define ObjArrayKlass_OOP_OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \
\
int objArrayKlass::oop_oop_iterate##nv_suffix(oop obj, \
OopClosureType* closure) { \
SpecializationStats::record_iterate_call##nv_suffix(SpecializationStats::oa); \
assert (obj->is_array(), "obj must be array"); \
objArrayOop a = objArrayOop(obj); \
/* Get size before changing pointers. */ \
/* Don't call size() or oop_size() since that is a virtual call. */ \
int size = a->object_size(); \
if_do_metadata_checked(closure, nv_suffix) { \
closure->do_klass##nv_suffix(obj->klass()); \
} \
ObjArrayKlass_OOP_ITERATE(a, p, (closure)->do_oop##nv_suffix(p)) \
return size; \
}
#define ObjArrayKlass_OOP_OOP_ITERATE_DEFN_m(OopClosureType, nv_suffix) \
\
int objArrayKlass::oop_oop_iterate##nv_suffix##_m(oop obj, \
OopClosureType* closure, \
MemRegion mr) { \
SpecializationStats::record_iterate_call##nv_suffix(SpecializationStats::oa); \
assert(obj->is_array(), "obj must be array"); \
objArrayOop a = objArrayOop(obj); \
/* Get size before changing pointers. */ \
/* Don't call size() or oop_size() since that is a virtual call */ \
int size = a->object_size(); \
if_do_metadata_checked(closure, nv_suffix) { \
/* SSS: Do we need to pass down mr here? */ \
closure->do_klass##nv_suffix(a->klass()); \
} \
ObjArrayKlass_BOUNDED_OOP_ITERATE( \
a, p, mr.start(), mr.end(), (closure)->do_oop##nv_suffix(p)) \
return size; \
}
// Like oop_oop_iterate but only iterates over a specified range and only used
// for objArrayOops.
#define ObjArrayKlass_OOP_OOP_ITERATE_DEFN_r(OopClosureType, nv_suffix) \
\
int objArrayKlass::oop_oop_iterate_range##nv_suffix(oop obj, \
OopClosureType* closure, \
int start, int end) { \
SpecializationStats::record_iterate_call##nv_suffix(SpecializationStats::oa); \
assert(obj->is_array(), "obj must be array"); \
objArrayOop a = objArrayOop(obj); \
/* Get size before changing pointers. */ \
/* Don't call size() or oop_size() since that is a virtual call */ \
int size = a->object_size(); \
if (UseCompressedOops) { \
HeapWord* low = start == 0 ? (HeapWord*)a : (HeapWord*)a->obj_at_addr<narrowOop>(start);\
/* this might be wierd if end needs to be aligned on HeapWord boundary */ \
HeapWord* high = (HeapWord*)((narrowOop*)a->base() + end); \
MemRegion mr(low, high); \
if_do_metadata_checked(closure, nv_suffix) { \
/* SSS: Do we need to pass down mr here? */ \
closure->do_klass##nv_suffix(a->klass()); \
} \
ObjArrayKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(narrowOop, \
a, p, low, high, (closure)->do_oop##nv_suffix(p)) \
} else { \
HeapWord* low = start == 0 ? (HeapWord*)a : (HeapWord*)a->obj_at_addr<oop>(start); \
HeapWord* high = (HeapWord*)((oop*)a->base() + end); \
MemRegion mr(low, high); \
if_do_metadata_checked(closure, nv_suffix) { \
/* SSS: Do we need to pass down mr here? */ \
closure->do_klass##nv_suffix(a->klass()); \
} \
ObjArrayKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(oop, \
a, p, low, high, (closure)->do_oop##nv_suffix(p)) \
} \
return size; \
}
ALL_OOP_OOP_ITERATE_CLOSURES_1(ObjArrayKlass_OOP_OOP_ITERATE_DEFN)
ALL_OOP_OOP_ITERATE_CLOSURES_2(ObjArrayKlass_OOP_OOP_ITERATE_DEFN)
ALL_OOP_OOP_ITERATE_CLOSURES_1(ObjArrayKlass_OOP_OOP_ITERATE_DEFN_m)
ALL_OOP_OOP_ITERATE_CLOSURES_2(ObjArrayKlass_OOP_OOP_ITERATE_DEFN_m)
ALL_OOP_OOP_ITERATE_CLOSURES_1(ObjArrayKlass_OOP_OOP_ITERATE_DEFN_r)
ALL_OOP_OOP_ITERATE_CLOSURES_2(ObjArrayKlass_OOP_OOP_ITERATE_DEFN_r)
int objArrayKlass::oop_adjust_pointers(oop obj) {
assert(obj->is_objArray(), "obj must be obj array");
objArrayOop a = objArrayOop(obj);
// Get size before changing pointers.
// Don't call size() or oop_size() since that is a virtual call.
int size = a->object_size();
MarkSweep::adjust_klass(a->klass());
ObjArrayKlass_OOP_ITERATE(a, p, MarkSweep::adjust_pointer(p))
return size;
}
#ifndef SERIALGC
void objArrayKlass::oop_push_contents(PSPromotionManager* pm, oop obj) {
assert(obj->is_objArray(), "obj must be obj array");
ObjArrayKlass_OOP_ITERATE( \
objArrayOop(obj), p, \
if (PSScavenge::should_scavenge(p)) { \
pm->claim_or_forward_depth(p); \
})
}
int objArrayKlass::oop_update_pointers(ParCompactionManager* cm, oop obj) {
assert (obj->is_objArray(), "obj must be obj array");
objArrayOop a = objArrayOop(obj);
int size = a->object_size();
a->update_header(cm);
ObjArrayKlass_OOP_ITERATE(a, p, PSParallelCompact::adjust_pointer(p))
return size;
}
#endif // SERIALGC
// JVM support
jint objArrayKlass::compute_modifier_flags(TRAPS) const {
// The modifier for an objectArray is the same as its element
if (element_klass() == NULL) {
assert(Universe::is_bootstrapping(), "partial objArray only at startup");
return JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC;
}
// Return the flags of the bottom element type.
jint element_flags = Klass::cast(bottom_klass())->compute_modifier_flags(CHECK_0);
return (element_flags & (JVM_ACC_PUBLIC | JVM_ACC_PRIVATE | JVM_ACC_PROTECTED))
| (JVM_ACC_ABSTRACT | JVM_ACC_FINAL);
}
// Printing
void objArrayKlass::print_on(outputStream* st) const {
#ifndef PRODUCT
Klass::print_on(st);
st->print(" - instance klass: ");
element_klass()->print_value_on(st);
st->cr();
#endif //PRODUCT
}
void objArrayKlass::print_value_on(outputStream* st) const {
assert(is_klass(), "must be klass");
element_klass()->print_value_on(st);
st->print("[]");
}
#ifndef PRODUCT
void objArrayKlass::oop_print_on(oop obj, outputStream* st) {
arrayKlass::oop_print_on(obj, st);
assert(obj->is_objArray(), "must be objArray");
objArrayOop oa = objArrayOop(obj);
int print_len = MIN2((intx) oa->length(), MaxElementPrintSize);
for(int index = 0; index < print_len; index++) {
st->print(" - %3d : ", index);
oa->obj_at(index)->print_value_on(st);
st->cr();
}
int remaining = oa->length() - print_len;
if (remaining > 0) {
tty->print_cr(" - <%d more elements, increase MaxElementPrintSize to print>", remaining);
}
}
#endif //PRODUCT
static int max_objArray_print_length = 4;
void objArrayKlass::oop_print_value_on(oop obj, outputStream* st) {
assert(obj->is_objArray(), "must be objArray");
st->print("a ");
element_klass()->print_value_on(st);
int len = objArrayOop(obj)->length();
st->print("[%d] ", len);
obj->print_address_on(st);
if (NOT_PRODUCT(PrintOopAddress ||) PrintMiscellaneous && (WizardMode || Verbose)) {
st->print("{");
for (int i = 0; i < len; i++) {
if (i > max_objArray_print_length) {
st->print("..."); break;
}
st->print(" "INTPTR_FORMAT, (intptr_t)(void*)objArrayOop(obj)->obj_at(i));
}
st->print(" }");
}
}
const char* objArrayKlass::internal_name() const {
return external_name();
}
// Verification
void objArrayKlass::verify_on(outputStream* st) {
arrayKlass::verify_on(st);
guarantee(element_klass()->is_metadata(), "should be in metaspace");
guarantee(element_klass()->is_klass(), "should be klass");
guarantee(bottom_klass()->is_metadata(), "should be in metaspace");
guarantee(bottom_klass()->is_klass(), "should be klass");
Klass* bk = Klass::cast(bottom_klass());
guarantee(bk->oop_is_instance() || bk->oop_is_typeArray(), "invalid bottom klass");
}
void objArrayKlass::oop_verify_on(oop obj, outputStream* st) {
arrayKlass::oop_verify_on(obj, st);
guarantee(obj->is_objArray(), "must be objArray");
objArrayOop oa = objArrayOop(obj);
for(int index = 0; index < oa->length(); index++) {
guarantee(oa->obj_at(index)->is_oop_or_null(), "should be oop");
}
}