6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>
/*
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "code/debugInfoRec.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "interpreter/bytecodeStream.hpp"
#include "interpreter/bytecodeTracer.hpp"
#include "interpreter/bytecodes.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/oopMapCache.hpp"
#include "memory/gcLocker.hpp"
#include "memory/generation.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/oopFactory.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "oops/symbol.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiRedefineClasses.hpp"
#include "prims/methodHandles.hpp"
#include "prims/nativeLookup.hpp"
#include "runtime/arguments.hpp"
#include "runtime/compilationPolicy.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/relocator.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/signature.hpp"
#include "utilities/quickSort.hpp"
#include "utilities/xmlstream.hpp"
// Implementation of Method
Method* Method::allocate(ClassLoaderData* loader_data,
int byte_code_size,
AccessFlags access_flags,
int compressed_line_number_size,
int localvariable_table_length,
int exception_table_length,
int checked_exceptions_length,
TRAPS) {
assert(!access_flags.is_native() || byte_code_size == 0,
"native methods should not contain byte codes");
ConstMethod* cm = ConstMethod::allocate(loader_data,
byte_code_size,
compressed_line_number_size,
localvariable_table_length,
exception_table_length,
checked_exceptions_length,
CHECK_NULL);
int size = Method::size(access_flags.is_native());
return new (loader_data, size, false, THREAD) Method(cm, access_flags, size);
}
Method::Method(ConstMethod* xconst,
AccessFlags access_flags, int size) {
No_Safepoint_Verifier no_safepoint;
set_constMethod(xconst);
set_access_flags(access_flags);
set_method_size(size);
set_name_index(0);
set_signature_index(0);
#ifdef CC_INTERP
set_result_index(T_VOID);
#endif
set_constants(NULL);
set_max_stack(0);
set_max_locals(0);
set_intrinsic_id(vmIntrinsics::_none);
set_jfr_towrite(false);
set_method_data(NULL);
set_interpreter_throwout_count(0);
set_vtable_index(Method::garbage_vtable_index);
// Fix and bury in Method*
set_interpreter_entry(NULL); // sets i2i entry and from_int
set_adapter_entry(NULL);
clear_code(); // from_c/from_i get set to c2i/i2i
if (access_flags.is_native()) {
clear_native_function();
set_signature_handler(NULL);
}
NOT_PRODUCT(set_compiled_invocation_count(0);)
set_interpreter_invocation_count(0);
invocation_counter()->init();
backedge_counter()->init();
clear_number_of_breakpoints();
#ifdef TIERED
set_rate(0);
set_prev_event_count(0);
set_prev_time(0);
#endif
}
// Release Method*. The nmethod will be gone when we get here because
// we've walked the code cache.
void Method::deallocate_contents(ClassLoaderData* loader_data) {
MetadataFactory::free_metadata(loader_data, constMethod());
set_constMethod(NULL);
MetadataFactory::free_metadata(loader_data, method_data());
set_method_data(NULL);
// The nmethod will be gone when we get here.
if (code() != NULL) _code = NULL;
}
address Method::get_i2c_entry() {
assert(_adapter != NULL, "must have");
return _adapter->get_i2c_entry();
}
address Method::get_c2i_entry() {
assert(_adapter != NULL, "must have");
return _adapter->get_c2i_entry();
}
address Method::get_c2i_unverified_entry() {
assert(_adapter != NULL, "must have");
return _adapter->get_c2i_unverified_entry();
}
char* Method::name_and_sig_as_C_string() const {
return name_and_sig_as_C_string(Klass::cast(constants()->pool_holder()), name(), signature());
}
char* Method::name_and_sig_as_C_string(char* buf, int size) const {
return name_and_sig_as_C_string(Klass::cast(constants()->pool_holder()), name(), signature(), buf, size);
}
char* Method::name_and_sig_as_C_string(Klass* klass, Symbol* method_name, Symbol* signature) {
const char* klass_name = klass->external_name();
int klass_name_len = (int)strlen(klass_name);
int method_name_len = method_name->utf8_length();
int len = klass_name_len + 1 + method_name_len + signature->utf8_length();
char* dest = NEW_RESOURCE_ARRAY(char, len + 1);
strcpy(dest, klass_name);
dest[klass_name_len] = '.';
strcpy(&dest[klass_name_len + 1], method_name->as_C_string());
strcpy(&dest[klass_name_len + 1 + method_name_len], signature->as_C_string());
dest[len] = 0;
return dest;
}
char* Method::name_and_sig_as_C_string(Klass* klass, Symbol* method_name, Symbol* signature, char* buf, int size) {
Symbol* klass_name = klass->name();
klass_name->as_klass_external_name(buf, size);
int len = (int)strlen(buf);
if (len < size - 1) {
buf[len++] = '.';
method_name->as_C_string(&(buf[len]), size - len);
len = (int)strlen(buf);
signature->as_C_string(&(buf[len]), size - len);
}
return buf;
}
int Method::fast_exception_handler_bci_for(KlassHandle ex_klass, int throw_bci, TRAPS) {
// exception table holds quadruple entries of the form (beg_bci, end_bci, handler_bci, klass_index)
// access exception table
ExceptionTable table(this);
int length = table.length();
// iterate through all entries sequentially
constantPoolHandle pool(THREAD, constants());
for (int i = 0; i < length; i ++) {
//reacquire the table in case a GC happened
ExceptionTable table(this);
int beg_bci = table.start_pc(i);
int end_bci = table.end_pc(i);
assert(beg_bci <= end_bci, "inconsistent exception table");
if (beg_bci <= throw_bci && throw_bci < end_bci) {
// exception handler bci range covers throw_bci => investigate further
int handler_bci = table.handler_pc(i);
int klass_index = table.catch_type_index(i);
if (klass_index == 0) {
return handler_bci;
} else if (ex_klass.is_null()) {
return handler_bci;
} else {
// we know the exception class => get the constraint class
// this may require loading of the constraint class; if verification
// fails or some other exception occurs, return handler_bci
Klass* k = pool->klass_at(klass_index, CHECK_(handler_bci));
KlassHandle klass = KlassHandle(THREAD, k);
assert(klass.not_null(), "klass not loaded");
if (ex_klass->is_subtype_of(klass())) {
return handler_bci;
}
}
}
}
return -1;
}
void Method::mask_for(int bci, InterpreterOopMap* mask) {
Thread* myThread = Thread::current();
methodHandle h_this(myThread, this);
#ifdef ASSERT
bool has_capability = myThread->is_VM_thread() ||
myThread->is_ConcurrentGC_thread() ||
myThread->is_GC_task_thread();
if (!has_capability) {
if (!VerifyStack && !VerifyLastFrame) {
// verify stack calls this outside VM thread
warning("oopmap should only be accessed by the "
"VM, GC task or CMS threads (or during debugging)");
InterpreterOopMap local_mask;
InstanceKlass::cast(method_holder())->mask_for(h_this, bci, &local_mask);
local_mask.print();
}
}
#endif
InstanceKlass::cast(method_holder())->mask_for(h_this, bci, mask);
return;
}
int Method::bci_from(address bcp) const {
assert(is_native() && bcp == code_base() || contains(bcp) || is_error_reported(),
err_msg("bcp doesn't belong to this method: bcp: " INTPTR_FORMAT ", method: %s", bcp, name_and_sig_as_C_string()));
return bcp - code_base();
}
// Return (int)bcx if it appears to be a valid BCI.
// Return bci_from((address)bcx) if it appears to be a valid BCP.
// Return -1 otherwise.
// Used by profiling code, when invalid data is a possibility.
// The caller is responsible for validating the Method* itself.
int Method::validate_bci_from_bcx(intptr_t bcx) const {
// keep bci as -1 if not a valid bci
int bci = -1;
if (bcx == 0 || (address)bcx == code_base()) {
// code_size() may return 0 and we allow 0 here
// the method may be native
bci = 0;
} else if (frame::is_bci(bcx)) {
if (bcx < code_size()) {
bci = (int)bcx;
}
} else if (contains((address)bcx)) {
bci = (address)bcx - code_base();
}
// Assert that if we have dodged any asserts, bci is negative.
assert(bci == -1 || bci == bci_from(bcp_from(bci)), "sane bci if >=0");
return bci;
}
address Method::bcp_from(int bci) const {
assert((is_native() && bci == 0) || (!is_native() && 0 <= bci && bci < code_size()), "illegal bci");
address bcp = code_base() + bci;
assert(is_native() && bcp == code_base() || contains(bcp), "bcp doesn't belong to this method");
return bcp;
}
int Method::size(bool is_native) {
// If native, then include pointers for native_function and signature_handler
int extra_bytes = (is_native) ? 2*sizeof(address*) : 0;
int extra_words = align_size_up(extra_bytes, BytesPerWord) / BytesPerWord;
return align_object_size(header_size() + extra_words);
}
Symbol* Method::klass_name() const {
Klass* k = method_holder();
assert(k->is_klass(), "must be klass");
InstanceKlass* ik = (InstanceKlass*) k;
return ik->name();
}
void Method::set_interpreter_kind() {
int kind = Interpreter::method_kind(this);
assert(kind != Interpreter::invalid,
"interpreter entry must be valid");
set_interpreter_kind(kind);
}
// Attempt to return method oop to original state. Clear any pointers
// (to objects outside the shared spaces). We won't be able to predict
// where they should point in a new JVM. Further initialize some
// entries now in order allow them to be write protected later.
void Method::remove_unshareable_info() {
unlink_method();
set_interpreter_kind();
}
bool Method::was_executed_more_than(int n) {
// Invocation counter is reset when the Method* is compiled.
// If the method has compiled code we therefore assume it has
// be excuted more than n times.
if (is_accessor() || is_empty_method() || (code() != NULL)) {
// interpreter doesn't bump invocation counter of trivial methods
// compiler does not bump invocation counter of compiled methods
return true;
}
else if (_invocation_counter.carry() || (method_data() != NULL && method_data()->invocation_counter()->carry())) {
// The carry bit is set when the counter overflows and causes
// a compilation to occur. We don't know how many times
// the counter has been reset, so we simply assume it has
// been executed more than n times.
return true;
} else {
return invocation_count() > n;
}
}
#ifndef PRODUCT
void Method::print_invocation_count() {
if (is_static()) tty->print("static ");
if (is_final()) tty->print("final ");
if (is_synchronized()) tty->print("synchronized ");
if (is_native()) tty->print("native ");
method_holder()->name()->print_symbol_on(tty);
tty->print(".");
name()->print_symbol_on(tty);
signature()->print_symbol_on(tty);
if (WizardMode) {
// dump the size of the byte codes
tty->print(" {%d}", code_size());
}
tty->cr();
tty->print_cr (" interpreter_invocation_count: %8d ", interpreter_invocation_count());
tty->print_cr (" invocation_counter: %8d ", invocation_count());
tty->print_cr (" backedge_counter: %8d ", backedge_count());
if (CountCompiledCalls) {
tty->print_cr (" compiled_invocation_count: %8d ", compiled_invocation_count());
}
}
#endif
// Build a MethodData* object to hold information about this method
// collected in the interpreter.
void Method::build_interpreter_method_data(methodHandle method, TRAPS) {
// Do not profile method if current thread holds the pending list lock,
// which avoids deadlock for acquiring the MethodData_lock.
if (instanceRefKlass::owns_pending_list_lock((JavaThread*)THREAD)) {
return;
}
// Grab a lock here to prevent multiple
// MethodData*s from being created.
MutexLocker ml(MethodData_lock, THREAD);
if (method->method_data() == NULL) {
ClassLoaderData* loader_data = method->method_holder()->class_loader_data();
MethodData* method_data = MethodData::allocate(loader_data, method, CHECK);
method->set_method_data(method_data);
if (PrintMethodData && (Verbose || WizardMode)) {
ResourceMark rm(THREAD);
tty->print("build_interpreter_method_data for ");
method->print_name(tty);
tty->cr();
// At the end of the run, the MDO, full of data, will be dumped.
}
}
}
void Method::cleanup_inline_caches() {
// The current system doesn't use inline caches in the interpreter
// => nothing to do (keep this method around for future use)
}
int Method::extra_stack_words() {
// not an inline function, to avoid a header dependency on Interpreter
return extra_stack_entries() * Interpreter::stackElementSize;
}
void Method::compute_size_of_parameters(Thread *thread) {
ArgumentSizeComputer asc(signature());
set_size_of_parameters(asc.size() + (is_static() ? 0 : 1));
}
#ifdef CC_INTERP
void Method::set_result_index(BasicType type) {
_result_index = Interpreter::BasicType_as_index(type);
}
#endif
BasicType Method::result_type() const {
ResultTypeFinder rtf(signature());
return rtf.type();
}
bool Method::is_empty_method() const {
return code_size() == 1
&& *code_base() == Bytecodes::_return;
}
bool Method::is_vanilla_constructor() const {
// Returns true if this method is a vanilla constructor, i.e. an "<init>" "()V" method
// which only calls the superclass vanilla constructor and possibly does stores of
// zero constants to local fields:
//
// aload_0
// invokespecial
// indexbyte1
// indexbyte2
//
// followed by an (optional) sequence of:
//
// aload_0
// aconst_null / iconst_0 / fconst_0 / dconst_0
// putfield
// indexbyte1
// indexbyte2
//
// followed by:
//
// return
assert(name() == vmSymbols::object_initializer_name(), "Should only be called for default constructors");
assert(signature() == vmSymbols::void_method_signature(), "Should only be called for default constructors");
int size = code_size();
// Check if size match
if (size == 0 || size % 5 != 0) return false;
address cb = code_base();
int last = size - 1;
if (cb[0] != Bytecodes::_aload_0 || cb[1] != Bytecodes::_invokespecial || cb[last] != Bytecodes::_return) {
// Does not call superclass default constructor
return false;
}
// Check optional sequence
for (int i = 4; i < last; i += 5) {
if (cb[i] != Bytecodes::_aload_0) return false;
if (!Bytecodes::is_zero_const(Bytecodes::cast(cb[i+1]))) return false;
if (cb[i+2] != Bytecodes::_putfield) return false;
}
return true;
}
bool Method::compute_has_loops_flag() {
BytecodeStream bcs(this);
Bytecodes::Code bc;
while ((bc = bcs.next()) >= 0) {
switch( bc ) {
case Bytecodes::_ifeq:
case Bytecodes::_ifnull:
case Bytecodes::_iflt:
case Bytecodes::_ifle:
case Bytecodes::_ifne:
case Bytecodes::_ifnonnull:
case Bytecodes::_ifgt:
case Bytecodes::_ifge:
case Bytecodes::_if_icmpeq:
case Bytecodes::_if_icmpne:
case Bytecodes::_if_icmplt:
case Bytecodes::_if_icmpgt:
case Bytecodes::_if_icmple:
case Bytecodes::_if_icmpge:
case Bytecodes::_if_acmpeq:
case Bytecodes::_if_acmpne:
case Bytecodes::_goto:
case Bytecodes::_jsr:
if( bcs.dest() < bcs.next_bci() ) _access_flags.set_has_loops();
break;
case Bytecodes::_goto_w:
case Bytecodes::_jsr_w:
if( bcs.dest_w() < bcs.next_bci() ) _access_flags.set_has_loops();
break;
}
}
_access_flags.set_loops_flag_init();
return _access_flags.has_loops();
}
bool Method::is_final_method() const {
// %%% Should return true for private methods also,
// since there is no way to override them.
return is_final() || Klass::cast(method_holder())->is_final();
}
bool Method::is_strict_method() const {
return is_strict();
}
bool Method::can_be_statically_bound() const {
if (is_final_method()) return true;
return vtable_index() == nonvirtual_vtable_index;
}
bool Method::is_accessor() const {
if (code_size() != 5) return false;
if (size_of_parameters() != 1) return false;
if (java_code_at(0) != Bytecodes::_aload_0 ) return false;
if (java_code_at(1) != Bytecodes::_getfield) return false;
if (java_code_at(4) != Bytecodes::_areturn &&
java_code_at(4) != Bytecodes::_ireturn ) return false;
return true;
}
bool Method::is_initializer() const {
return name() == vmSymbols::object_initializer_name() || is_static_initializer();
}
bool Method::has_valid_initializer_flags() const {
return (is_static() ||
InstanceKlass::cast(method_holder())->major_version() < 51);
}
bool Method::is_static_initializer() const {
// For classfiles version 51 or greater, ensure that the clinit method is
// static. Non-static methods with the name "<clinit>" are not static
// initializers. (older classfiles exempted for backward compatibility)
return name() == vmSymbols::class_initializer_name() &&
has_valid_initializer_flags();
}
objArrayHandle Method::resolved_checked_exceptions_impl(Method* this_oop, TRAPS) {
int length = this_oop->checked_exceptions_length();
if (length == 0) { // common case
return objArrayHandle(THREAD, Universe::the_empty_class_klass_array());
} else {
methodHandle h_this(THREAD, this_oop);
objArrayOop m_oop = oopFactory::new_objArray(SystemDictionary::Class_klass(), length, CHECK_(objArrayHandle()));
objArrayHandle mirrors (THREAD, m_oop);
for (int i = 0; i < length; i++) {
CheckedExceptionElement* table = h_this->checked_exceptions_start(); // recompute on each iteration, not gc safe
Klass* k = h_this->constants()->klass_at(table[i].class_cp_index, CHECK_(objArrayHandle()));
assert(Klass::cast(k)->is_subclass_of(SystemDictionary::Throwable_klass()), "invalid exception class");
mirrors->obj_at_put(i, Klass::cast(k)->java_mirror());
}
return mirrors;
}
};
int Method::line_number_from_bci(int bci) const {
if (bci == SynchronizationEntryBCI) bci = 0;
assert(bci == 0 || 0 <= bci && bci < code_size(), "illegal bci");
int best_bci = 0;
int best_line = -1;
if (has_linenumber_table()) {
// The line numbers are a short array of 2-tuples [start_pc, line_number].
// Not necessarily sorted and not necessarily one-to-one.
CompressedLineNumberReadStream stream(compressed_linenumber_table());
while (stream.read_pair()) {
if (stream.bci() == bci) {
// perfect match
return stream.line();
} else {
// update best_bci/line
if (stream.bci() < bci && stream.bci() >= best_bci) {
best_bci = stream.bci();
best_line = stream.line();
}
}
}
}
return best_line;
}
bool Method::is_klass_loaded_by_klass_index(int klass_index) const {
if( constants()->tag_at(klass_index).is_unresolved_klass() ) {
Thread *thread = Thread::current();
Symbol* klass_name = constants()->klass_name_at(klass_index);
Handle loader(thread, InstanceKlass::cast(method_holder())->class_loader());
Handle prot (thread, Klass::cast(method_holder())->protection_domain());
return SystemDictionary::find(klass_name, loader, prot, thread) != NULL;
} else {
return true;
}
}
bool Method::is_klass_loaded(int refinfo_index, bool must_be_resolved) const {
int klass_index = constants()->klass_ref_index_at(refinfo_index);
if (must_be_resolved) {
// Make sure klass is resolved in constantpool.
if (constants()->tag_at(klass_index).is_unresolved_klass()) return false;
}
return is_klass_loaded_by_klass_index(klass_index);
}
void Method::set_native_function(address function, bool post_event_flag) {
assert(function != NULL, "use clear_native_function to unregister natives");
assert(!is_method_handle_intrinsic() || function == SharedRuntime::native_method_throw_unsatisfied_link_error_entry(), "");
address* native_function = native_function_addr();
// We can see racers trying to place the same native function into place. Once
// is plenty.
address current = *native_function;
if (current == function) return;
if (post_event_flag && JvmtiExport::should_post_native_method_bind() &&
function != NULL) {
// native_method_throw_unsatisfied_link_error_entry() should only
// be passed when post_event_flag is false.
assert(function !=
SharedRuntime::native_method_throw_unsatisfied_link_error_entry(),
"post_event_flag mis-match");
// post the bind event, and possible change the bind function
JvmtiExport::post_native_method_bind(this, &function);
}
*native_function = function;
// This function can be called more than once. We must make sure that we always
// use the latest registered method -> check if a stub already has been generated.
// If so, we have to make it not_entrant.
nmethod* nm = code(); // Put it into local variable to guard against concurrent updates
if (nm != NULL) {
nm->make_not_entrant();
}
}
bool Method::has_native_function() const {
if (is_method_handle_intrinsic())
return false; // special-cased in SharedRuntime::generate_native_wrapper
address func = native_function();
return (func != NULL && func != SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
}
void Method::clear_native_function() {
// Note: is_method_handle_intrinsic() is allowed here.
set_native_function(
SharedRuntime::native_method_throw_unsatisfied_link_error_entry(),
!native_bind_event_is_interesting);
clear_code();
}
address Method::critical_native_function() {
methodHandle mh(this);
return NativeLookup::lookup_critical_entry(mh);
}
void Method::set_signature_handler(address handler) {
address* signature_handler = signature_handler_addr();
*signature_handler = handler;
}
bool Method::is_not_compilable(int comp_level) const {
if (number_of_breakpoints() > 0) {
return true;
}
if (is_method_handle_intrinsic()) {
return !is_synthetic(); // the generated adapters must be compiled
}
if (comp_level == CompLevel_any) {
return is_not_c1_compilable() || is_not_c2_compilable();
}
if (is_c1_compile(comp_level)) {
return is_not_c1_compilable();
}
if (is_c2_compile(comp_level)) {
return is_not_c2_compilable();
}
return false;
}
// call this when compiler finds that this method is not compilable
void Method::set_not_compilable(int comp_level, bool report) {
if (PrintCompilation && report) {
ttyLocker ttyl;
tty->print("made not compilable ");
this->print_short_name(tty);
int size = this->code_size();
if (size > 0)
tty->print(" (%d bytes)", size);
tty->cr();
}
if ((TraceDeoptimization || LogCompilation) && (xtty != NULL)) {
ttyLocker ttyl;
xtty->begin_elem("make_not_compilable thread='%d'", (int) os::current_thread_id());
xtty->method(this);
xtty->stamp();
xtty->end_elem();
}
if (comp_level == CompLevel_all) {
set_not_c1_compilable();
set_not_c2_compilable();
} else {
if (is_c1_compile(comp_level)) {
set_not_c1_compilable();
} else
if (is_c2_compile(comp_level)) {
set_not_c2_compilable();
}
}
CompilationPolicy::policy()->disable_compilation(this);
}
// Revert to using the interpreter and clear out the nmethod
void Method::clear_code() {
// this may be NULL if c2i adapters have not been made yet
// Only should happen at allocate time.
if (_adapter == NULL) {
_from_compiled_entry = NULL;
} else {
_from_compiled_entry = _adapter->get_c2i_entry();
}
OrderAccess::storestore();
_from_interpreted_entry = _i2i_entry;
OrderAccess::storestore();
_code = NULL;
}
// Called by class data sharing to remove any entry points (which are not shared)
void Method::unlink_method() {
_code = NULL;
_i2i_entry = NULL;
_from_interpreted_entry = NULL;
if (is_native()) {
*native_function_addr() = NULL;
set_signature_handler(NULL);
}
NOT_PRODUCT(set_compiled_invocation_count(0);)
invocation_counter()->reset();
backedge_counter()->reset();
_adapter = NULL;
_from_compiled_entry = NULL;
assert(_method_data == NULL, "unexpected method data?");
set_method_data(NULL);
set_interpreter_throwout_count(0);
set_interpreter_invocation_count(0);
}
// Called when the method_holder is getting linked. Setup entrypoints so the method
// is ready to be called from interpreter, compiler, and vtables.
void Method::link_method(methodHandle h_method, TRAPS) {
// If the code cache is full, we may reenter this function for the
// leftover methods that weren't linked.
if (_i2i_entry != NULL) return;
assert(_adapter == NULL, "init'd to NULL" );
assert( _code == NULL, "nothing compiled yet" );
// Setup interpreter entrypoint
assert(this == h_method(), "wrong h_method()" );
address entry = Interpreter::entry_for_method(h_method);
assert(entry != NULL, "interpreter entry must be non-null");
// Sets both _i2i_entry and _from_interpreted_entry
set_interpreter_entry(entry);
if (is_native() && !is_method_handle_intrinsic()) {
set_native_function(
SharedRuntime::native_method_throw_unsatisfied_link_error_entry(),
!native_bind_event_is_interesting);
}
// Setup compiler entrypoint. This is made eagerly, so we do not need
// special handling of vtables. An alternative is to make adapters more
// lazily by calling make_adapter() from from_compiled_entry() for the
// normal calls. For vtable calls life gets more complicated. When a
// call-site goes mega-morphic we need adapters in all methods which can be
// called from the vtable. We need adapters on such methods that get loaded
// later. Ditto for mega-morphic itable calls. If this proves to be a
// problem we'll make these lazily later.
(void) make_adapters(h_method, CHECK);
// ONLY USE the h_method now as make_adapter may have blocked
}
address Method::make_adapters(methodHandle mh, TRAPS) {
// Adapters for compiled code are made eagerly here. They are fairly
// small (generally < 100 bytes) and quick to make (and cached and shared)
// so making them eagerly shouldn't be too expensive.
AdapterHandlerEntry* adapter = AdapterHandlerLibrary::get_adapter(mh);
if (adapter == NULL ) {
THROW_MSG_NULL(vmSymbols::java_lang_VirtualMachineError(), "out of space in CodeCache for adapters");
}
mh->set_adapter_entry(adapter);
mh->_from_compiled_entry = adapter->get_c2i_entry();
return adapter->get_c2i_entry();
}
// The verified_code_entry() must be called when a invoke is resolved
// on this method.
// It returns the compiled code entry point, after asserting not null.
// This function is called after potential safepoints so that nmethod
// or adapter that it points to is still live and valid.
// This function must not hit a safepoint!
address Method::verified_code_entry() {
debug_only(No_Safepoint_Verifier nsv;)
nmethod *code = (nmethod *)OrderAccess::load_ptr_acquire(&_code);
if (code == NULL && UseCodeCacheFlushing) {
nmethod *saved_code = CodeCache::find_and_remove_saved_code(this);
if (saved_code != NULL) {
methodHandle method(this);
assert( ! saved_code->is_osr_method(), "should not get here for osr" );
set_code( method, saved_code );
}
}
assert(_from_compiled_entry != NULL, "must be set");
return _from_compiled_entry;
}
// Check that if an nmethod ref exists, it has a backlink to this or no backlink at all
// (could be racing a deopt).
// Not inline to avoid circular ref.
bool Method::check_code() const {
// cached in a register or local. There's a race on the value of the field.
nmethod *code = (nmethod *)OrderAccess::load_ptr_acquire(&_code);
return code == NULL || (code->method() == NULL) || (code->method() == (Method*)this && !code->is_osr_method());
}
// Install compiled code. Instantly it can execute.
void Method::set_code(methodHandle mh, nmethod *code) {
assert( code, "use clear_code to remove code" );
assert( mh->check_code(), "" );
guarantee(mh->adapter() != NULL, "Adapter blob must already exist!");
// These writes must happen in this order, because the interpreter will
// directly jump to from_interpreted_entry which jumps to an i2c adapter
// which jumps to _from_compiled_entry.
mh->_code = code; // Assign before allowing compiled code to exec
int comp_level = code->comp_level();
// In theory there could be a race here. In practice it is unlikely
// and not worth worrying about.
if (comp_level > mh->highest_comp_level()) {
mh->set_highest_comp_level(comp_level);
}
OrderAccess::storestore();
#ifdef SHARK
mh->_from_interpreted_entry = code->insts_begin();
#else //!SHARK
mh->_from_compiled_entry = code->verified_entry_point();
OrderAccess::storestore();
// Instantly compiled code can execute.
if (!mh->is_method_handle_intrinsic())
mh->_from_interpreted_entry = mh->get_i2c_entry();
#endif //!SHARK
}
bool Method::is_overridden_in(Klass* k) const {
InstanceKlass* ik = InstanceKlass::cast(k);
if (ik->is_interface()) return false;
// If method is an interface, we skip it - except if it
// is a miranda method
if (InstanceKlass::cast(method_holder())->is_interface()) {
// Check that method is not a miranda method
if (ik->lookup_method(name(), signature()) == NULL) {
// No implementation exist - so miranda method
return false;
}
return true;
}
assert(ik->is_subclass_of(method_holder()), "should be subklass");
assert(ik->vtable() != NULL, "vtable should exist");
if (vtable_index() == nonvirtual_vtable_index) {
return false;
} else {
Method* vt_m = ik->method_at_vtable(vtable_index());
return vt_m != this;
}
}
// give advice about whether this Method* should be cached or not
bool Method::should_not_be_cached() const {
if (is_old()) {
// This method has been redefined. It is either EMCP or obsolete
// and we don't want to cache it because that would pin the method
// down and prevent it from being collectible if and when it
// finishes executing.
return true;
}
// caching this method should be just fine
return false;
}
// Constant pool structure for invoke methods:
enum {
_imcp_invoke_name = 1, // utf8: 'invokeExact', etc.
_imcp_invoke_signature, // utf8: (variable Symbol*)
_imcp_limit
};
// Test if this method is an MH adapter frame generated by Java code.
// Cf. java/lang/invoke/InvokerBytecodeGenerator
bool Method::is_compiled_lambda_form() const {
return intrinsic_id() == vmIntrinsics::_compiledLambdaForm;
}
// Test if this method is an internal MH primitive method.
bool Method::is_method_handle_intrinsic() const {
vmIntrinsics::ID iid = intrinsic_id();
return (MethodHandles::is_signature_polymorphic(iid) &&
MethodHandles::is_signature_polymorphic_intrinsic(iid));
}
bool Method::has_member_arg() const {
vmIntrinsics::ID iid = intrinsic_id();
return (MethodHandles::is_signature_polymorphic(iid) &&
MethodHandles::has_member_arg(iid));
}
// Make an instance of a signature-polymorphic internal MH primitive.
methodHandle Method::make_method_handle_intrinsic(vmIntrinsics::ID iid,
Symbol* signature,
TRAPS) {
ResourceMark rm;
methodHandle empty;
KlassHandle holder = SystemDictionary::MethodHandle_klass();
Symbol* name = MethodHandles::signature_polymorphic_intrinsic_name(iid);
assert(iid == MethodHandles::signature_polymorphic_name_id(name), "");
if (TraceMethodHandles) {
tty->print_cr("make_method_handle_intrinsic MH.%s%s", name->as_C_string(), signature->as_C_string());
}
// invariant: cp->symbol_at_put is preceded by a refcount increment (more usually a lookup)
name->increment_refcount();
signature->increment_refcount();
int cp_length = _imcp_limit;
ClassLoaderData* loader_data = holder->class_loader_data();
constantPoolHandle cp;
{
ConstantPool* cp_oop = ConstantPool::allocate(loader_data, cp_length, CHECK_(empty));
cp = constantPoolHandle(THREAD, cp_oop);
}
cp->set_pool_holder(holder());
cp->symbol_at_put(_imcp_invoke_name, name);
cp->symbol_at_put(_imcp_invoke_signature, signature);
cp->set_preresolution();
// decide on access bits: public or not?
int flags_bits = (JVM_ACC_NATIVE | JVM_ACC_SYNTHETIC | JVM_ACC_FINAL);
bool must_be_static = MethodHandles::is_signature_polymorphic_static(iid);
if (must_be_static) flags_bits |= JVM_ACC_STATIC;
assert((flags_bits & JVM_ACC_PUBLIC) == 0, "do not expose these methods");
methodHandle m;
{
Method* m_oop = Method::allocate(loader_data, 0, accessFlags_from(flags_bits),
0, 0, 0, 0, CHECK_(empty));
m = methodHandle(THREAD, m_oop);
}
m->set_constants(cp());
m->set_name_index(_imcp_invoke_name);
m->set_signature_index(_imcp_invoke_signature);
assert(MethodHandles::is_signature_polymorphic_name(m->name()), "");
assert(m->signature() == signature, "");
#ifdef CC_INTERP
ResultTypeFinder rtf(signature);
m->set_result_index(rtf.type());
#endif
m->compute_size_of_parameters(THREAD);
m->init_intrinsic_id();
assert(m->is_method_handle_intrinsic(), "");
#ifdef ASSERT
if (!MethodHandles::is_signature_polymorphic(m->intrinsic_id())) m->print();
assert(MethodHandles::is_signature_polymorphic(m->intrinsic_id()), "must be an invoker");
assert(m->intrinsic_id() == iid, "correctly predicted iid");
#endif //ASSERT
// Finally, set up its entry points.
assert(m->can_be_statically_bound(), "");
m->set_vtable_index(Method::nonvirtual_vtable_index);
m->link_method(m, CHECK_(empty));
if (TraceMethodHandles && (Verbose || WizardMode))
m->print_on(tty);
return m;
}
Klass* Method::check_non_bcp_klass(Klass* klass) {
if (klass != NULL && Klass::cast(klass)->class_loader() != NULL) {
if (Klass::cast(klass)->oop_is_objArray())
klass = objArrayKlass::cast(klass)->bottom_klass();
return klass;
}
return NULL;
}
methodHandle Method::clone_with_new_data(methodHandle m, u_char* new_code, int new_code_length,
u_char* new_compressed_linenumber_table, int new_compressed_linenumber_size, TRAPS) {
// Code below does not work for native methods - they should never get rewritten anyway
assert(!m->is_native(), "cannot rewrite native methods");
// Allocate new Method*
AccessFlags flags = m->access_flags();
int checked_exceptions_len = m->checked_exceptions_length();
int localvariable_len = m->localvariable_table_length();
int exception_table_len = m->exception_table_length();
ClassLoaderData* loader_data = m()->method_holder()->class_loader_data();
Method* newm_oop = Method::allocate(loader_data,
new_code_length,
flags,
new_compressed_linenumber_size,
localvariable_len,
exception_table_len,
checked_exceptions_len,
CHECK_(methodHandle()));
methodHandle newm (THREAD, newm_oop);
int new_method_size = newm->method_size();
// Create a shallow copy of Method part, but be careful to preserve the new ConstMethod*
ConstMethod* newcm = newm->constMethod();
int new_const_method_size = newm->constMethod()->size();
memcpy(newm(), m(), sizeof(Method));
// Create shallow copy of ConstMethod.
memcpy(newcm, m->constMethod(), sizeof(ConstMethod));
// Reset correct method/const method, method size, and parameter info
newm->set_constMethod(newcm);
newm->constMethod()->set_code_size(new_code_length);
newm->constMethod()->set_constMethod_size(new_const_method_size);
newm->set_method_size(new_method_size);
assert(newm->code_size() == new_code_length, "check");
assert(newm->checked_exceptions_length() == checked_exceptions_len, "check");
assert(newm->exception_table_length() == exception_table_len, "check");
assert(newm->localvariable_table_length() == localvariable_len, "check");
// Copy new byte codes
memcpy(newm->code_base(), new_code, new_code_length);
// Copy line number table
if (new_compressed_linenumber_size > 0) {
memcpy(newm->compressed_linenumber_table(),
new_compressed_linenumber_table,
new_compressed_linenumber_size);
}
// Copy checked_exceptions
if (checked_exceptions_len > 0) {
memcpy(newm->checked_exceptions_start(),
m->checked_exceptions_start(),
checked_exceptions_len * sizeof(CheckedExceptionElement));
}
// Copy exception table
if (exception_table_len > 0) {
memcpy(newm->exception_table_start(),
m->exception_table_start(),
exception_table_len * sizeof(ExceptionTableElement));
}
// Copy local variable number table
if (localvariable_len > 0) {
memcpy(newm->localvariable_table_start(),
m->localvariable_table_start(),
localvariable_len * sizeof(LocalVariableTableElement));
}
// Copy stackmap table
if (m->has_stackmap_table()) {
int code_attribute_length = m->stackmap_data()->length();
Array<u1>* stackmap_data =
MetadataFactory::new_array<u1>(loader_data, code_attribute_length, 0, CHECK_NULL);
memcpy((void*)stackmap_data->adr_at(0),
(void*)m->stackmap_data()->adr_at(0), code_attribute_length);
newm->set_stackmap_data(stackmap_data);
}
return newm;
}
vmSymbols::SID Method::klass_id_for_intrinsics(Klass* holder) {
// if loader is not the default loader (i.e., != NULL), we can't know the intrinsics
// because we are not loading from core libraries
if (InstanceKlass::cast(holder)->class_loader() != NULL)
return vmSymbols::NO_SID; // regardless of name, no intrinsics here
// see if the klass name is well-known:
Symbol* klass_name = InstanceKlass::cast(holder)->name();
return vmSymbols::find_sid(klass_name);
}
void Method::init_intrinsic_id() {
assert(_intrinsic_id == vmIntrinsics::_none, "do this just once");
const uintptr_t max_id_uint = right_n_bits((int)(sizeof(_intrinsic_id) * BitsPerByte));
assert((uintptr_t)vmIntrinsics::ID_LIMIT <= max_id_uint, "else fix size");
assert(intrinsic_id_size_in_bytes() == sizeof(_intrinsic_id), "");
// the klass name is well-known:
vmSymbols::SID klass_id = klass_id_for_intrinsics(method_holder());
assert(klass_id != vmSymbols::NO_SID, "caller responsibility");
// ditto for method and signature:
vmSymbols::SID name_id = vmSymbols::find_sid(name());
if (klass_id != vmSymbols::VM_SYMBOL_ENUM_NAME(java_lang_invoke_MethodHandle)
&& name_id == vmSymbols::NO_SID)
return;
vmSymbols::SID sig_id = vmSymbols::find_sid(signature());
if (klass_id != vmSymbols::VM_SYMBOL_ENUM_NAME(java_lang_invoke_MethodHandle)
&& sig_id == vmSymbols::NO_SID) return;
jshort flags = access_flags().as_short();
vmIntrinsics::ID id = vmIntrinsics::find_id(klass_id, name_id, sig_id, flags);
if (id != vmIntrinsics::_none) {
set_intrinsic_id(id);
return;
}
// A few slightly irregular cases:
switch (klass_id) {
case vmSymbols::VM_SYMBOL_ENUM_NAME(java_lang_StrictMath):
// Second chance: check in regular Math.
switch (name_id) {
case vmSymbols::VM_SYMBOL_ENUM_NAME(min_name):
case vmSymbols::VM_SYMBOL_ENUM_NAME(max_name):
case vmSymbols::VM_SYMBOL_ENUM_NAME(sqrt_name):
// pretend it is the corresponding method in the non-strict class:
klass_id = vmSymbols::VM_SYMBOL_ENUM_NAME(java_lang_Math);
id = vmIntrinsics::find_id(klass_id, name_id, sig_id, flags);
break;
}
break;
// Signature-polymorphic methods: MethodHandle.invoke*, InvokeDynamic.*.
case vmSymbols::VM_SYMBOL_ENUM_NAME(java_lang_invoke_MethodHandle):
if (!is_native()) break;
id = MethodHandles::signature_polymorphic_name_id(method_holder(), name());
if (is_static() != MethodHandles::is_signature_polymorphic_static(id))
id = vmIntrinsics::_none;
break;
}
if (id != vmIntrinsics::_none) {
// Set up its iid. It is an alias method.
set_intrinsic_id(id);
return;
}
}
// These two methods are static since a GC may move the Method
bool Method::load_signature_classes(methodHandle m, TRAPS) {
if (THREAD->is_Compiler_thread()) {
// There is nothing useful this routine can do from within the Compile thread.
// Hopefully, the signature contains only well-known classes.
// We could scan for this and return true/false, but the caller won't care.
return false;
}
bool sig_is_loaded = true;
Handle class_loader(THREAD, InstanceKlass::cast(m->method_holder())->class_loader());
Handle protection_domain(THREAD, Klass::cast(m->method_holder())->protection_domain());
ResourceMark rm(THREAD);
Symbol* signature = m->signature();
for(SignatureStream ss(signature); !ss.is_done(); ss.next()) {
if (ss.is_object()) {
Symbol* sym = ss.as_symbol(CHECK_(false));
Symbol* name = sym;
Klass* klass = SystemDictionary::resolve_or_null(name, class_loader,
protection_domain, THREAD);
// We are loading classes eagerly. If a ClassNotFoundException or
// a LinkageError was generated, be sure to ignore it.
if (HAS_PENDING_EXCEPTION) {
if (PENDING_EXCEPTION->is_a(SystemDictionary::ClassNotFoundException_klass()) ||
PENDING_EXCEPTION->is_a(SystemDictionary::LinkageError_klass())) {
CLEAR_PENDING_EXCEPTION;
} else {
return false;
}
}
if( klass == NULL) { sig_is_loaded = false; }
}
}
return sig_is_loaded;
}
bool Method::has_unloaded_classes_in_signature(methodHandle m, TRAPS) {
Handle class_loader(THREAD, InstanceKlass::cast(m->method_holder())->class_loader());
Handle protection_domain(THREAD, Klass::cast(m->method_holder())->protection_domain());
ResourceMark rm(THREAD);
Symbol* signature = m->signature();
for(SignatureStream ss(signature); !ss.is_done(); ss.next()) {
if (ss.type() == T_OBJECT) {
Symbol* name = ss.as_symbol_or_null();
if (name == NULL) return true;
Klass* klass = SystemDictionary::find(name, class_loader, protection_domain, THREAD);
if (klass == NULL) return true;
}
}
return false;
}
// Exposed so field engineers can debug VM
void Method::print_short_name(outputStream* st) {
ResourceMark rm;
#ifdef PRODUCT
st->print(" %s::", method_holder()->external_name());
#else
st->print(" %s::", method_holder()->internal_name());
#endif
name()->print_symbol_on(st);
if (WizardMode) signature()->print_symbol_on(st);
else if (MethodHandles::is_signature_polymorphic(intrinsic_id()))
MethodHandles::print_as_basic_type_signature_on(st, signature(), true);
}
// This is only done during class loading, so it is OK to assume method_idnum matches the methods() array
static void reorder_based_on_method_index(Array<Method*>* methods,
Array<AnnotationArray*>* annotations,
GrowableArray<AnnotationArray*>* temp_array) {
if (annotations == NULL) {
return;
}
int length = methods->length();
int i;
// Copy to temp array
temp_array->clear();
for (i = 0; i < length; i++) {
temp_array->append(annotations->at(i));
}
// Copy back using old method indices
for (i = 0; i < length; i++) {
Method* m = methods->at(i);
annotations->at_put(i, temp_array->at(m->method_idnum()));
}
}
// Comparer for sorting an object array containing
// Method*s.
static int method_comparator(Method* a, Method* b) {
return a->name()->fast_compare(b->name());
}
// This is only done during class loading, so it is OK to assume method_idnum matches the methods() array
void Method::sort_methods(Array<Method*>* methods,
Array<AnnotationArray*>* methods_annotations,
Array<AnnotationArray*>* methods_parameter_annotations,
Array<AnnotationArray*>* methods_default_annotations,
bool idempotent) {
int length = methods->length();
if (length > 1) {
bool do_annotations = false;
if (methods_annotations != NULL ||
methods_parameter_annotations != NULL ||
methods_default_annotations != NULL) {
do_annotations = true;
}
if (do_annotations) {
// Remember current method ordering so we can reorder annotations
for (int i = 0; i < length; i++) {
Method* m = methods->at(i);
m->set_method_idnum(i);
}
}
{
No_Safepoint_Verifier nsv;
QuickSort::sort<Method*>(methods->data(), length, method_comparator, idempotent);
}
// Sort annotations if necessary
assert(methods_annotations == NULL || methods_annotations->length() == methods->length(), "");
assert(methods_parameter_annotations == NULL || methods_parameter_annotations->length() == methods->length(), "");
assert(methods_default_annotations == NULL || methods_default_annotations->length() == methods->length(), "");
if (do_annotations) {
ResourceMark rm;
// Allocate temporary storage
GrowableArray<AnnotationArray*>* temp_array = new GrowableArray<AnnotationArray*>(length);
reorder_based_on_method_index(methods, methods_annotations, temp_array);
reorder_based_on_method_index(methods, methods_parameter_annotations, temp_array);
reorder_based_on_method_index(methods, methods_default_annotations, temp_array);
}
// Reset method ordering
for (int i = 0; i < length; i++) {
Method* m = methods->at(i);
m->set_method_idnum(i);
}
}
}
//-----------------------------------------------------------------------------------
// Non-product code
#ifndef PRODUCT
class SignatureTypePrinter : public SignatureTypeNames {
private:
outputStream* _st;
bool _use_separator;
void type_name(const char* name) {
if (_use_separator) _st->print(", ");
_st->print(name);
_use_separator = true;
}
public:
SignatureTypePrinter(Symbol* signature, outputStream* st) : SignatureTypeNames(signature) {
_st = st;
_use_separator = false;
}
void print_parameters() { _use_separator = false; iterate_parameters(); }
void print_returntype() { _use_separator = false; iterate_returntype(); }
};
void Method::print_name(outputStream* st) {
Thread *thread = Thread::current();
ResourceMark rm(thread);
SignatureTypePrinter sig(signature(), st);
st->print("%s ", is_static() ? "static" : "virtual");
sig.print_returntype();
st->print(" %s.", method_holder()->internal_name());
name()->print_symbol_on(st);
st->print("(");
sig.print_parameters();
st->print(")");
}
void Method::print_codes_on(outputStream* st) const {
print_codes_on(0, code_size(), st);
}
void Method::print_codes_on(int from, int to, outputStream* st) const {
Thread *thread = Thread::current();
ResourceMark rm(thread);
methodHandle mh (thread, (Method*)this);
BytecodeStream s(mh);
s.set_interval(from, to);
BytecodeTracer::set_closure(BytecodeTracer::std_closure());
while (s.next() >= 0) BytecodeTracer::trace(mh, s.bcp(), st);
}
#endif // not PRODUCT
// Simple compression of line number tables. We use a regular compressed stream, except that we compress deltas
// between (bci,line) pairs since they are smaller. If (bci delta, line delta) fits in (5-bit unsigned, 3-bit unsigned)
// we save it as one byte, otherwise we write a 0xFF escape character and use regular compression. 0x0 is used
// as end-of-stream terminator.
void CompressedLineNumberWriteStream::write_pair_regular(int bci_delta, int line_delta) {
// bci and line number does not compress into single byte.
// Write out escape character and use regular compression for bci and line number.
write_byte((jubyte)0xFF);
write_signed_int(bci_delta);
write_signed_int(line_delta);
}
// See comment in method.hpp which explains why this exists.
#if defined(_M_AMD64) && _MSC_VER >= 1400
#pragma optimize("", off)
void CompressedLineNumberWriteStream::write_pair(int bci, int line) {
write_pair_inline(bci, line);
}
#pragma optimize("", on)
#endif
CompressedLineNumberReadStream::CompressedLineNumberReadStream(u_char* buffer) : CompressedReadStream(buffer) {
_bci = 0;
_line = 0;
};
bool CompressedLineNumberReadStream::read_pair() {
jubyte next = read_byte();
// Check for terminator
if (next == 0) return false;
if (next == 0xFF) {
// Escape character, regular compression used
_bci += read_signed_int();
_line += read_signed_int();
} else {
// Single byte compression used
_bci += next >> 3;
_line += next & 0x7;
}
return true;
}
Bytecodes::Code Method::orig_bytecode_at(int bci) const {
BreakpointInfo* bp = InstanceKlass::cast(method_holder())->breakpoints();
for (; bp != NULL; bp = bp->next()) {
if (bp->match(this, bci)) {
return bp->orig_bytecode();
}
}
ShouldNotReachHere();
return Bytecodes::_shouldnotreachhere;
}
void Method::set_orig_bytecode_at(int bci, Bytecodes::Code code) {
assert(code != Bytecodes::_breakpoint, "cannot patch breakpoints this way");
BreakpointInfo* bp = InstanceKlass::cast(method_holder())->breakpoints();
for (; bp != NULL; bp = bp->next()) {
if (bp->match(this, bci)) {
bp->set_orig_bytecode(code);
// and continue, in case there is more than one
}
}
}
void Method::set_breakpoint(int bci) {
InstanceKlass* ik = InstanceKlass::cast(method_holder());
BreakpointInfo *bp = new BreakpointInfo(this, bci);
bp->set_next(ik->breakpoints());
ik->set_breakpoints(bp);
// do this last:
bp->set(this);
}
static void clear_matches(Method* m, int bci) {
InstanceKlass* ik = InstanceKlass::cast(m->method_holder());
BreakpointInfo* prev_bp = NULL;
BreakpointInfo* next_bp;
for (BreakpointInfo* bp = ik->breakpoints(); bp != NULL; bp = next_bp) {
next_bp = bp->next();
// bci value of -1 is used to delete all breakpoints in method m (ex: clear_all_breakpoint).
if (bci >= 0 ? bp->match(m, bci) : bp->match(m)) {
// do this first:
bp->clear(m);
// unhook it
if (prev_bp != NULL)
prev_bp->set_next(next_bp);
else
ik->set_breakpoints(next_bp);
delete bp;
// When class is redefined JVMTI sets breakpoint in all versions of EMCP methods
// at same location. So we have multiple matching (method_index and bci)
// BreakpointInfo nodes in BreakpointInfo list. We should just delete one
// breakpoint for clear_breakpoint request and keep all other method versions
// BreakpointInfo for future clear_breakpoint request.
// bcivalue of -1 is used to clear all breakpoints (see clear_all_breakpoints)
// which is being called when class is unloaded. We delete all the Breakpoint
// information for all versions of method. We may not correctly restore the original
// bytecode in all method versions, but that is ok. Because the class is being unloaded
// so these methods won't be used anymore.
if (bci >= 0) {
break;
}
} else {
// This one is a keeper.
prev_bp = bp;
}
}
}
void Method::clear_breakpoint(int bci) {
assert(bci >= 0, "");
clear_matches(this, bci);
}
void Method::clear_all_breakpoints() {
clear_matches(this, -1);
}
int Method::invocation_count() {
if (TieredCompilation) {
MethodData* const mdo = method_data();
if (invocation_counter()->carry() || ((mdo != NULL) ? mdo->invocation_counter()->carry() : false)) {
return InvocationCounter::count_limit;
} else {
return invocation_counter()->count() + ((mdo != NULL) ? mdo->invocation_counter()->count() : 0);
}
} else {
return invocation_counter()->count();
}
}
int Method::backedge_count() {
if (TieredCompilation) {
MethodData* const mdo = method_data();
if (backedge_counter()->carry() || ((mdo != NULL) ? mdo->backedge_counter()->carry() : false)) {
return InvocationCounter::count_limit;
} else {
return backedge_counter()->count() + ((mdo != NULL) ? mdo->backedge_counter()->count() : 0);
}
} else {
return backedge_counter()->count();
}
}
int Method::highest_comp_level() const {
MethodData* mdo = method_data();
if (mdo != NULL) {
return mdo->highest_comp_level();
} else {
return CompLevel_none;
}
}
int Method::highest_osr_comp_level() const {
MethodData* mdo = method_data();
if (mdo != NULL) {
return mdo->highest_osr_comp_level();
} else {
return CompLevel_none;
}
}
void Method::set_highest_comp_level(int level) {
MethodData* mdo = method_data();
if (mdo != NULL) {
mdo->set_highest_comp_level(level);
}
}
void Method::set_highest_osr_comp_level(int level) {
MethodData* mdo = method_data();
if (mdo != NULL) {
mdo->set_highest_osr_comp_level(level);
}
}
BreakpointInfo::BreakpointInfo(Method* m, int bci) {
_bci = bci;
_name_index = m->name_index();
_signature_index = m->signature_index();
_orig_bytecode = (Bytecodes::Code) *m->bcp_from(_bci);
if (_orig_bytecode == Bytecodes::_breakpoint)
_orig_bytecode = m->orig_bytecode_at(_bci);
_next = NULL;
}
void BreakpointInfo::set(Method* method) {
#ifdef ASSERT
{
Bytecodes::Code code = (Bytecodes::Code) *method->bcp_from(_bci);
if (code == Bytecodes::_breakpoint)
code = method->orig_bytecode_at(_bci);
assert(orig_bytecode() == code, "original bytecode must be the same");
}
#endif
*method->bcp_from(_bci) = Bytecodes::_breakpoint;
method->incr_number_of_breakpoints();
SystemDictionary::notice_modification();
{
// Deoptimize all dependents on this method
Thread *thread = Thread::current();
HandleMark hm(thread);
methodHandle mh(thread, method);
Universe::flush_dependents_on_method(mh);
}
}
void BreakpointInfo::clear(Method* method) {
*method->bcp_from(_bci) = orig_bytecode();
assert(method->number_of_breakpoints() > 0, "must not go negative");
method->decr_number_of_breakpoints();
}
// jmethodID handling
// This is a block allocating object, sort of like JNIHandleBlock, only a
// lot simpler. There aren't many of these, they aren't long, they are rarely
// deleted and so we can do some suboptimal things.
// It's allocated on the CHeap because once we allocate a jmethodID, we can
// never get rid of it.
// It would be nice to be able to parameterize the number of methods for
// the null_class_loader but then we'd have to turn this and ClassLoaderData
// into templates.
// I feel like this brain dead class should exist somewhere in the STL
class JNIMethodBlock : public CHeapObj<mtClass> {
enum { number_of_methods = 8 };
Method* _methods[number_of_methods];
int _top;
JNIMethodBlock* _next;
public:
static Method* const _free_method;
JNIMethodBlock() : _next(NULL), _top(0) {
for (int i = 0; i< number_of_methods; i++) _methods[i] = _free_method;
}
Method** add_method(Method* m) {
if (_top < number_of_methods) {
// top points to the next free entry.
int i = _top;
_methods[i] = m;
_top++;
return &_methods[i];
} else if (_top == number_of_methods) {
// if the next free entry ran off the block see if there's a free entry
for (int i = 0; i< number_of_methods; i++) {
if (_methods[i] == _free_method) {
_methods[i] = m;
return &_methods[i];
}
}
// Only check each block once for frees. They're very unlikely.
// Increment top past the end of the block.
_top++;
}
// need to allocate a next block.
if (_next == NULL) {
_next = new JNIMethodBlock();
}
return _next->add_method(m);
}
bool contains(Method** m) {
for (JNIMethodBlock* b = this; b != NULL; b = b->_next) {
for (int i = 0; i< number_of_methods; i++) {
if (&(b->_methods[i]) == m) {
return true;
}
}
}
return false; // not found
}
// Doesn't really destroy it, just marks it as free so it can be reused.
void destroy_method(Method** m) {
#ifdef ASSERT
assert(contains(m), "should be a methodID");
#endif // ASSERT
*m = _free_method;
}
// During class unloading the methods are cleared, which is different
// than freed.
void clear_all_methods() {
for (JNIMethodBlock* b = this; b != NULL; b = b->_next) {
for (int i = 0; i< number_of_methods; i++) {
_methods[i] = NULL;
}
}
}
#ifndef PRODUCT
int count_methods() {
// count all allocated methods
int count = 0;
for (JNIMethodBlock* b = this; b != NULL; b = b->_next) {
for (int i = 0; i< number_of_methods; i++) {
if (_methods[i] != _free_method) count++;
}
}
return count;
}
#endif // PRODUCT
};
// Something that can't be mistaken for an address or a markOop
Method* const JNIMethodBlock::_free_method = (Method*)55;
// Add a method id to the jmethod_ids
jmethodID Method::make_jmethod_id(ClassLoaderData* loader_data, Method* m) {
ClassLoaderData* cld = loader_data;
if (!SafepointSynchronize::is_at_safepoint()) {
// Have to add jmethod_ids() to class loader data thread-safely.
// Also have to add the method to the list safely, which the cld lock
// protects as well.
MutexLockerEx ml(cld->metaspace_lock(), Mutex::_no_safepoint_check_flag);
if (cld->jmethod_ids() == NULL) {
cld->set_jmethod_ids(new JNIMethodBlock());
}
// jmethodID is a pointer to Method*
return (jmethodID)cld->jmethod_ids()->add_method(m);
} else {
// At safepoint, we are single threaded and can set this.
if (cld->jmethod_ids() == NULL) {
cld->set_jmethod_ids(new JNIMethodBlock());
}
// jmethodID is a pointer to Method*
return (jmethodID)cld->jmethod_ids()->add_method(m);
}
}
// Mark a jmethodID as free. This is called when there is a data race in
// InstanceKlass while creating the jmethodID cache.
void Method::destroy_jmethod_id(ClassLoaderData* loader_data, jmethodID m) {
ClassLoaderData* cld = loader_data;
Method** ptr = (Method**)m;
assert(cld->jmethod_ids() != NULL, "should have method handles");
cld->jmethod_ids()->destroy_method(ptr);
}
void Method::change_method_associated_with_jmethod_id(jmethodID jmid, Method* new_method) {
// Can't assert the method_holder is the same because the new method has the
// scratch method holder.
assert(resolve_jmethod_id(jmid)->method_holder()->class_loader()
== new_method->method_holder()->class_loader(),
"changing to a different class loader");
// Just change the method in place, jmethodID pointer doesn't change.
*((Method**)jmid) = new_method;
}
bool Method::is_method_id(jmethodID mid) {
Method* m = resolve_jmethod_id(mid);
assert(m != NULL, "should be called with non-null method");
InstanceKlass* ik = InstanceKlass::cast(m->method_holder());
ClassLoaderData* cld = ik->class_loader_data();
if (cld->jmethod_ids() == NULL) return false;
return (cld->jmethod_ids()->contains((Method**)mid));
}
Method* Method::checked_resolve_jmethod_id(jmethodID mid) {
if (mid == NULL) return NULL;
Method* o = resolve_jmethod_id(mid);
if (o == NULL || o == JNIMethodBlock::_free_method || !((Metadata*)o)->is_method()) {
return NULL;
}
return o;
};
void Method::set_on_stack(const bool value) {
// Set both the method itself and its constant pool. The constant pool
// on stack means some method referring to it is also on the stack.
_access_flags.set_on_stack(value);
constants()->set_on_stack(value);
if (value) MetadataOnStackMark::record(this);
}
// Called when the class loader is unloaded to make all methods weak.
void Method::clear_jmethod_ids(ClassLoaderData* loader_data) {
loader_data->jmethod_ids()->clear_all_methods();
}
#ifndef PRODUCT
void Method::print_jmethod_ids(ClassLoaderData* loader_data, outputStream* out) {
out->print_cr("jni_method_id count = %d", loader_data->jmethod_ids()->count_methods());
}
#endif // PRODUCT
// Printing
#ifndef PRODUCT
void Method::print_on(outputStream* st) const {
ResourceMark rm;
assert(is_method(), "must be method");
st->print_cr(internal_name());
// get the effect of PrintOopAddress, always, for methods:
st->print_cr(" - this oop: "INTPTR_FORMAT, (intptr_t)this);
st->print (" - method holder: "); method_holder()->print_value_on(st); st->cr();
st->print (" - constants: "INTPTR_FORMAT" ", (address)constants());
constants()->print_value_on(st); st->cr();
st->print (" - access: 0x%x ", access_flags().as_int()); access_flags().print_on(st); st->cr();
st->print (" - name: "); name()->print_value_on(st); st->cr();
st->print (" - signature: "); signature()->print_value_on(st); st->cr();
st->print_cr(" - max stack: %d", max_stack());
st->print_cr(" - max locals: %d", max_locals());
st->print_cr(" - size of params: %d", size_of_parameters());
st->print_cr(" - method size: %d", method_size());
if (intrinsic_id() != vmIntrinsics::_none)
st->print_cr(" - intrinsic id: %d %s", intrinsic_id(), vmIntrinsics::name_at(intrinsic_id()));
if (highest_comp_level() != CompLevel_none)
st->print_cr(" - highest level: %d", highest_comp_level());
st->print_cr(" - vtable index: %d", _vtable_index);
st->print_cr(" - i2i entry: " INTPTR_FORMAT, interpreter_entry());
st->print( " - adapters: ");
AdapterHandlerEntry* a = ((Method*)this)->adapter();
if (a == NULL)
st->print_cr(INTPTR_FORMAT, a);
else
a->print_adapter_on(st);
st->print_cr(" - compiled entry " INTPTR_FORMAT, from_compiled_entry());
st->print_cr(" - code size: %d", code_size());
if (code_size() != 0) {
st->print_cr(" - code start: " INTPTR_FORMAT, code_base());
st->print_cr(" - code end (excl): " INTPTR_FORMAT, code_base() + code_size());
}
if (method_data() != NULL) {
st->print_cr(" - method data: " INTPTR_FORMAT, (address)method_data());
}
st->print_cr(" - checked ex length: %d", checked_exceptions_length());
if (checked_exceptions_length() > 0) {
CheckedExceptionElement* table = checked_exceptions_start();
st->print_cr(" - checked ex start: " INTPTR_FORMAT, table);
if (Verbose) {
for (int i = 0; i < checked_exceptions_length(); i++) {
st->print_cr(" - throws %s", constants()->printable_name_at(table[i].class_cp_index));
}
}
}
if (has_linenumber_table()) {
u_char* table = compressed_linenumber_table();
st->print_cr(" - linenumber start: " INTPTR_FORMAT, table);
if (Verbose) {
CompressedLineNumberReadStream stream(table);
while (stream.read_pair()) {
st->print_cr(" - line %d: %d", stream.line(), stream.bci());
}
}
}
st->print_cr(" - localvar length: %d", localvariable_table_length());
if (localvariable_table_length() > 0) {
LocalVariableTableElement* table = localvariable_table_start();
st->print_cr(" - localvar start: " INTPTR_FORMAT, table);
if (Verbose) {
for (int i = 0; i < localvariable_table_length(); i++) {
int bci = table[i].start_bci;
int len = table[i].length;
const char* name = constants()->printable_name_at(table[i].name_cp_index);
const char* desc = constants()->printable_name_at(table[i].descriptor_cp_index);
int slot = table[i].slot;
st->print_cr(" - %s %s bci=%d len=%d slot=%d", desc, name, bci, len, slot);
}
}
}
if (code() != NULL) {
st->print (" - compiled code: ");
code()->print_value_on(st);
}
if (is_native()) {
st->print_cr(" - native function: " INTPTR_FORMAT, native_function());
st->print_cr(" - signature handler: " INTPTR_FORMAT, signature_handler());
}
}
#endif //PRODUCT
void Method::print_value_on(outputStream* st) const {
assert(is_method(), "must be method");
st->print_cr(internal_name());
print_address_on(st);
st->print(" ");
name()->print_value_on(st);
st->print(" ");
signature()->print_value_on(st);
st->print(" in ");
method_holder()->print_value_on(st);
if (WizardMode) st->print("[%d,%d]", size_of_parameters(), max_locals());
if (WizardMode && code() != NULL) st->print(" ((nmethod*)%p)", code());
}
// Verification
void Method::verify_on(outputStream* st) {
guarantee(is_method(), "object must be method");
guarantee(is_metadata(), "should be metadata");
guarantee(constants()->is_constantPool(), "should be constant pool");
guarantee(constants()->is_metadata(), "should be metadata");
guarantee(constMethod()->is_constMethod(), "should be ConstMethod*");
guarantee(constMethod()->is_metadata(), "should be metadata");
MethodData* md = method_data();
guarantee(md == NULL ||
md->is_metadata(), "should be in permspace");
guarantee(md == NULL ||
md->is_methodData(), "should be method data");
}