/*
* Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2015 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/assembler.inline.hpp"
#include "code/relocInfo.hpp"
#include "nativeInst_ppc.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/safepoint.hpp"
void Relocation::pd_set_data_value(address x, intptr_t o, bool verify_only) {
// The following comment is from the declaration of DataRelocation:
//
// "The "o" (displacement) argument is relevant only to split relocations
// on RISC machines. In some CPUs (SPARC), the set-hi and set-lo ins'ns
// can encode more than 32 bits between them. This allows compilers to
// share set-hi instructions between addresses that differ by a small
// offset (e.g., different static variables in the same class).
// On such machines, the "x" argument to set_value on all set-lo
// instructions must be the same as the "x" argument for the
// corresponding set-hi instructions. The "o" arguments for the
// set-hi instructions are ignored, and must not affect the high-half
// immediate constant. The "o" arguments for the set-lo instructions are
// added into the low-half immediate constant, and must not overflow it."
//
// Currently we don't support splitting of relocations, so o must be
// zero:
assert(o == 0, "tried to split relocations");
if (!verify_only) {
if (format() != 1) {
nativeMovConstReg_at(addr())->set_data_plain(((intptr_t)x), code());
} else {
assert(type() == relocInfo::oop_type || type() == relocInfo::metadata_type,
"how to encode else?");
narrowOop no = (type() == relocInfo::oop_type) ?
oopDesc::encode_heap_oop((oop)x) : Klass::encode_klass((Klass*)x);
nativeMovConstReg_at(addr())->set_narrow_oop(no, code());
}
} else {
assert((address) (nativeMovConstReg_at(addr())->data()) == x, "data must match");
}
}
address Relocation::pd_call_destination(address orig_addr) {
intptr_t adj = 0;
address inst_loc = addr();
if (orig_addr != NULL) {
// We just moved this call instruction from orig_addr to addr().
// This means its target will appear to have grown by addr() - orig_addr.
adj = -(inst_loc - orig_addr);
}
if (NativeFarCall::is_far_call_at(inst_loc)) {
NativeFarCall* call = nativeFarCall_at(inst_loc);
return call->destination() + (intptr_t)(call->is_pcrelative() ? adj : 0);
} else if (NativeJump::is_jump_at(inst_loc)) {
NativeJump* jump = nativeJump_at(inst_loc);
return jump->jump_destination() + (intptr_t)(jump->is_pcrelative() ? adj : 0);
} else if (NativeConditionalFarBranch::is_conditional_far_branch_at(inst_loc)) {
NativeConditionalFarBranch* branch = NativeConditionalFarBranch_at(inst_loc);
return branch->branch_destination();
} else {
// There are two instructions at the beginning of a stub, therefore we
// load at orig_addr + 8.
orig_addr = nativeCall_at(inst_loc)->get_trampoline();
if (orig_addr == NULL) {
return (address) -1;
} else {
return (address) nativeMovConstReg_at(orig_addr + 8)->data();
}
}
}
void Relocation::pd_set_call_destination(address x) {
address inst_loc = addr();
if (NativeFarCall::is_far_call_at(inst_loc)) {
NativeFarCall* call = nativeFarCall_at(inst_loc);
call->set_destination(x);
} else if (NativeJump::is_jump_at(inst_loc)) {
NativeJump* jump= nativeJump_at(inst_loc);
jump->set_jump_destination(x);
} else if (NativeConditionalFarBranch::is_conditional_far_branch_at(inst_loc)) {
NativeConditionalFarBranch* branch = NativeConditionalFarBranch_at(inst_loc);
branch->set_branch_destination(x);
} else {
NativeCall* call = nativeCall_at(inst_loc);
call->set_destination_mt_safe(x, false);
}
}
address* Relocation::pd_address_in_code() {
ShouldNotReachHere();
return 0;
}
address Relocation::pd_get_address_from_code() {
return (address)(nativeMovConstReg_at(addr())->data());
}
void poll_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
}
void poll_return_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
}
void metadata_Relocation::pd_fix_value(address x) {
}