8204301: Make OrderAccess functions available to hpp rather than inline.hpp files
Summary: move orderAccess.inline.hpp into orderAccess.hpp and remove os.hpp inclusion and conditional os::is_MP() for fence on x86 platforms
Reviewed-by: dholmes, hseigel
/*
* Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "c1/c1_Compilation.hpp"
#include "c1/c1_FrameMap.hpp"
#include "c1/c1_Instruction.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_LIRGenerator.hpp"
#include "c1/c1_Runtime1.hpp"
#include "c1/c1_ValueStack.hpp"
#include "ci/ciArray.hpp"
#include "ci/ciObjArrayKlass.hpp"
#include "ci/ciTypeArrayKlass.hpp"
#include "ci/ciUtilities.hpp"
#include "gc/shared/c1/barrierSetC1.hpp"
#include "gc/shared/cardTable.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "vmreg_arm.inline.hpp"
#ifdef ASSERT
#define __ gen()->lir(__FILE__, __LINE__)->
#else
#define __ gen()->lir()->
#endif
void LIRItem::load_byte_item() {
load_item();
}
void LIRItem::load_nonconstant() {
LIR_Opr r = value()->operand();
if (_gen->can_inline_as_constant(value())) {
if (!r->is_constant()) {
r = LIR_OprFact::value_type(value()->type());
}
_result = r;
} else {
load_item();
}
}
//--------------------------------------------------------------
// LIRGenerator
//--------------------------------------------------------------
LIR_Opr LIRGenerator::exceptionOopOpr() {
return FrameMap::Exception_oop_opr;
}
LIR_Opr LIRGenerator::exceptionPcOpr() {
return FrameMap::Exception_pc_opr;
}
LIR_Opr LIRGenerator::syncLockOpr() {
return new_register(T_INT);
}
LIR_Opr LIRGenerator::syncTempOpr() {
return new_register(T_OBJECT);
}
LIR_Opr LIRGenerator::getThreadTemp() {
return LIR_OprFact::illegalOpr;
}
LIR_Opr LIRGenerator::atomicLockOpr() {
return LIR_OprFact::illegalOpr;
}
LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
LIR_Opr opr;
switch (type->tag()) {
case intTag: opr = FrameMap::Int_result_opr; break;
case objectTag: opr = FrameMap::Object_result_opr; break;
case longTag: opr = FrameMap::Long_result_opr; break;
case floatTag: opr = FrameMap::Float_result_opr; break;
case doubleTag: opr = FrameMap::Double_result_opr; break;
case addressTag:
default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
}
assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
return opr;
}
LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
return new_register(T_INT);
}
//--------- loading items into registers --------------------------------
bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
#ifdef AARCH64
if (v->type()->as_IntConstant() != NULL) {
return v->type()->as_IntConstant()->value() == 0;
} else if (v->type()->as_LongConstant() != NULL) {
return v->type()->as_LongConstant()->value() == 0;
} else if (v->type()->as_ObjectConstant() != NULL) {
return v->type()->as_ObjectConstant()->value()->is_null_object();
} else if (v->type()->as_FloatConstant() != NULL) {
return jint_cast(v->type()->as_FloatConstant()->value()) == 0;
} else if (v->type()->as_DoubleConstant() != NULL) {
return jlong_cast(v->type()->as_DoubleConstant()->value()) == 0;
}
#endif // AARCH64
return false;
}
bool LIRGenerator::can_inline_as_constant(Value v) const {
if (v->type()->as_IntConstant() != NULL) {
return Assembler::is_arith_imm_in_range(v->type()->as_IntConstant()->value());
} else if (v->type()->as_ObjectConstant() != NULL) {
return v->type()->as_ObjectConstant()->value()->is_null_object();
#ifdef AARCH64
} else if (v->type()->as_LongConstant() != NULL) {
return Assembler::is_arith_imm_in_range(v->type()->as_LongConstant()->value());
#else
} else if (v->type()->as_FloatConstant() != NULL) {
return v->type()->as_FloatConstant()->value() == 0.0f;
} else if (v->type()->as_DoubleConstant() != NULL) {
return v->type()->as_DoubleConstant()->value() == 0.0;
#endif // AARCH64
}
return false;
}
bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
ShouldNotCallThis(); // Not used on ARM
return false;
}
#ifdef AARCH64
static bool can_inline_as_constant_in_cmp(Value v) {
jlong constant;
if (v->type()->as_IntConstant() != NULL) {
constant = v->type()->as_IntConstant()->value();
} else if (v->type()->as_LongConstant() != NULL) {
constant = v->type()->as_LongConstant()->value();
} else if (v->type()->as_ObjectConstant() != NULL) {
return v->type()->as_ObjectConstant()->value()->is_null_object();
} else if (v->type()->as_FloatConstant() != NULL) {
return v->type()->as_FloatConstant()->value() == 0.0f;
} else if (v->type()->as_DoubleConstant() != NULL) {
return v->type()->as_DoubleConstant()->value() == 0.0;
} else {
return false;
}
return Assembler::is_arith_imm_in_range(constant) || Assembler::is_arith_imm_in_range(-constant);
}
static bool can_inline_as_constant_in_logic(Value v) {
if (v->type()->as_IntConstant() != NULL) {
return Assembler::LogicalImmediate(v->type()->as_IntConstant()->value(), true).is_encoded();
} else if (v->type()->as_LongConstant() != NULL) {
return Assembler::LogicalImmediate(v->type()->as_LongConstant()->value(), false).is_encoded();
}
return false;
}
#endif // AARCH64
LIR_Opr LIRGenerator::safepoint_poll_register() {
return LIR_OprFact::illegalOpr;
}
static LIR_Opr make_constant(BasicType type, jlong c) {
switch (type) {
case T_ADDRESS:
case T_OBJECT: return LIR_OprFact::intptrConst(c);
case T_LONG: return LIR_OprFact::longConst(c);
case T_INT: return LIR_OprFact::intConst(c);
default: ShouldNotReachHere();
return LIR_OprFact::intConst(-1);
}
}
#ifdef AARCH64
void LIRGenerator::add_constant(LIR_Opr src, jlong c, LIR_Opr dest) {
if (c == 0) {
__ move(src, dest);
return;
}
BasicType type = src->type();
bool is_neg = (c < 0);
c = ABS(c);
if ((c >> 24) == 0) {
for (int shift = 0; shift <= 12; shift += 12) {
int part = ((int)c) & (right_n_bits(12) << shift);
if (part != 0) {
if (is_neg) {
__ sub(src, make_constant(type, part), dest);
} else {
__ add(src, make_constant(type, part), dest);
}
src = dest;
}
}
} else {
__ move(make_constant(type, c), dest);
if (is_neg) {
__ sub(src, dest, dest);
} else {
__ add(src, dest, dest);
}
}
}
#endif // AARCH64
void LIRGenerator::add_large_constant(LIR_Opr src, int c, LIR_Opr dest) {
assert(c != 0, "must be");
#ifdef AARCH64
add_constant(src, c, dest);
#else
// Find first non-zero bit
int shift = 0;
while ((c & (3 << shift)) == 0) {
shift += 2;
}
// Add the least significant part of the constant
int mask = 0xff << shift;
__ add(src, LIR_OprFact::intConst(c & mask), dest);
// Add up to 3 other parts of the constant;
// each of them can be represented as rotated_imm
if (c & (mask << 8)) {
__ add(dest, LIR_OprFact::intConst(c & (mask << 8)), dest);
}
if (c & (mask << 16)) {
__ add(dest, LIR_OprFact::intConst(c & (mask << 16)), dest);
}
if (c & (mask << 24)) {
__ add(dest, LIR_OprFact::intConst(c & (mask << 24)), dest);
}
#endif // AARCH64
}
static LIR_Address* make_address(LIR_Opr base, LIR_Opr index, LIR_Address::Scale scale, BasicType type) {
return new LIR_Address(base, index, scale, 0, type);
}
LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
int shift, int disp, BasicType type) {
assert(base->is_register(), "must be");
if (index->is_constant()) {
disp += index->as_constant_ptr()->as_jint() << shift;
index = LIR_OprFact::illegalOpr;
}
#ifndef AARCH64
if (base->type() == T_LONG) {
LIR_Opr tmp = new_register(T_INT);
__ convert(Bytecodes::_l2i, base, tmp);
base = tmp;
}
if (index != LIR_OprFact::illegalOpr && index->type() == T_LONG) {
LIR_Opr tmp = new_register(T_INT);
__ convert(Bytecodes::_l2i, index, tmp);
index = tmp;
}
// At this point base and index should be all ints and not constants
assert(base->is_single_cpu() && !base->is_constant(), "base should be an non-constant int");
assert(index->is_illegal() || (index->type() == T_INT && !index->is_constant()), "index should be an non-constant int");
#endif
int max_disp;
bool disp_is_in_range;
bool embedded_shift;
#ifdef AARCH64
int align = exact_log2(type2aelembytes(type, true));
assert((disp & right_n_bits(align)) == 0, "displacement is not aligned");
assert(shift == 0 || shift == align, "shift should be zero or equal to embedded align");
max_disp = (1 << 12) << align;
if (disp >= 0) {
disp_is_in_range = Assembler::is_unsigned_imm_in_range(disp, 12, align);
} else {
disp_is_in_range = Assembler::is_imm_in_range(disp, 9, 0);
}
embedded_shift = true;
#else
switch (type) {
case T_BYTE:
case T_SHORT:
case T_CHAR:
max_disp = 256; // ldrh, ldrsb encoding has 8-bit offset
embedded_shift = false;
break;
case T_FLOAT:
case T_DOUBLE:
max_disp = 1024; // flds, fldd have 8-bit offset multiplied by 4
embedded_shift = false;
break;
case T_LONG:
max_disp = 4096;
embedded_shift = false;
break;
default:
max_disp = 4096; // ldr, ldrb allow 12-bit offset
embedded_shift = true;
}
disp_is_in_range = (-max_disp < disp && disp < max_disp);
#endif // !AARCH64
if (index->is_register()) {
LIR_Opr tmp = new_pointer_register();
if (!disp_is_in_range) {
add_large_constant(base, disp, tmp);
base = tmp;
disp = 0;
}
LIR_Address* addr = make_address(base, index, (LIR_Address::Scale)shift, type);
if (disp == 0 && embedded_shift) {
// can use ldr/str instruction with register index
return addr;
} else {
LIR_Opr tmp = new_pointer_register();
__ add(base, LIR_OprFact::address(addr), tmp); // add with shifted/extended register
return new LIR_Address(tmp, disp, type);
}
}
// If the displacement is too large to be inlined into LDR instruction,
// generate large constant with additional sequence of ADD instructions
int excess_disp = disp & ~(max_disp - 1);
if (excess_disp != 0) {
LIR_Opr tmp = new_pointer_register();
add_large_constant(base, excess_disp, tmp);
base = tmp;
}
return new LIR_Address(base, disp & (max_disp - 1), type);
}
LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, BasicType type) {
int base_offset = arrayOopDesc::base_offset_in_bytes(type);
int elem_size = type2aelembytes(type);
if (index_opr->is_constant()) {
int offset = base_offset + index_opr->as_constant_ptr()->as_jint() * elem_size;
return generate_address(array_opr, offset, type);
} else {
assert(index_opr->is_register(), "must be");
int scale = exact_log2(elem_size);
return generate_address(array_opr, index_opr, scale, base_offset, type);
}
}
LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
assert(type == T_LONG || type == T_INT, "should be");
LIR_Opr r = make_constant(type, x);
#ifdef AARCH64
bool imm_in_range = Assembler::LogicalImmediate(x, type == T_INT).is_encoded();
#else
bool imm_in_range = AsmOperand::is_rotated_imm(x);
#endif // AARCH64
if (!imm_in_range) {
LIR_Opr tmp = new_register(type);
__ move(r, tmp);
return tmp;
}
return r;
}
void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
LIR_Opr pointer = new_pointer_register();
__ move(LIR_OprFact::intptrConst(counter), pointer);
LIR_Address* addr = new LIR_Address(pointer, type);
increment_counter(addr, step);
}
void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
LIR_Opr temp = new_register(addr->type());
__ move(addr, temp);
__ add(temp, make_constant(addr->type(), step), temp);
__ move(temp, addr);
}
void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
__ load(new LIR_Address(base, disp, T_INT), FrameMap::LR_opr, info);
__ cmp(condition, FrameMap::LR_opr, c);
}
void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
__ load(new LIR_Address(base, disp, type), FrameMap::LR_opr, info);
__ cmp(condition, reg, FrameMap::LR_opr);
}
bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
assert(left != result, "should be different registers");
if (is_power_of_2(c + 1)) {
#ifdef AARCH64
__ shift_left(left, log2_intptr(c + 1), result);
__ sub(result, left, result);
#else
LIR_Address::Scale scale = (LIR_Address::Scale) log2_intptr(c + 1);
LIR_Address* addr = new LIR_Address(left, left, scale, 0, T_INT);
__ sub(LIR_OprFact::address(addr), left, result); // rsb with shifted register
#endif // AARCH64
return true;
} else if (is_power_of_2(c - 1)) {
LIR_Address::Scale scale = (LIR_Address::Scale) log2_intptr(c - 1);
LIR_Address* addr = new LIR_Address(left, left, scale, 0, T_INT);
__ add(left, LIR_OprFact::address(addr), result); // add with shifted register
return true;
}
return false;
}
void LIRGenerator::store_stack_parameter(LIR_Opr item, ByteSize offset_from_sp) {
assert(item->type() == T_INT, "other types are not expected");
__ store(item, new LIR_Address(FrameMap::SP_opr, in_bytes(offset_from_sp), item->type()));
}
void LIRGenerator::set_card(LIR_Opr value, LIR_Address* card_addr) {
assert(CardTable::dirty_card_val() == 0,
"Cannot use ZR register (aarch64) or the register containing the card table base address directly (aarch32) otherwise");
#ifdef AARCH64
// AARCH64 has a register that is constant zero. We can use that one to set the
// value in the card table to dirty.
__ move(FrameMap::ZR_opr, card_addr);
#else // AARCH64
if((ci_card_table_address_as<intx>() & 0xff) == 0) {
// If the card table base address is aligned to 256 bytes, we can use the register
// that contains the card_table_base_address.
__ move(value, card_addr);
} else {
// Otherwise we need to create a register containing that value.
LIR_Opr tmp_zero = new_register(T_INT);
__ move(LIR_OprFact::intConst(CardTable::dirty_card_val()), tmp_zero);
__ move(tmp_zero, card_addr);
}
#endif // AARCH64
}
void LIRGenerator::CardTableBarrierSet_post_barrier_helper(LIR_OprDesc* addr, LIR_Const* card_table_base) {
assert(addr->is_register(), "must be a register at this point");
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
CardTable* ct = ctbs->card_table();
LIR_Opr tmp = FrameMap::LR_ptr_opr;
// TODO-AARCH64: check performance
bool load_card_table_base_const = AARCH64_ONLY(false) NOT_AARCH64(VM_Version::supports_movw());
if (load_card_table_base_const) {
__ move((LIR_Opr)card_table_base, tmp);
} else {
__ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
}
#ifdef AARCH64
LIR_Address* shifted_reg_operand = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTable::card_shift, 0, T_BYTE);
LIR_Opr tmp2 = tmp;
__ add(tmp, LIR_OprFact::address(shifted_reg_operand), tmp2); // tmp2 = tmp + (addr >> CardTable::card_shift)
LIR_Address* card_addr = new LIR_Address(tmp2, T_BYTE);
#else
// Use unsigned type T_BOOLEAN here rather than (signed) T_BYTE since signed load
// byte instruction does not support the addressing mode we need.
LIR_Address* card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTable::card_shift, 0, T_BOOLEAN);
#endif
if (UseCondCardMark) {
if (ct->scanned_concurrently()) {
__ membar_storeload();
}
LIR_Opr cur_value = new_register(T_INT);
__ move(card_addr, cur_value);
LabelObj* L_already_dirty = new LabelObj();
__ cmp(lir_cond_equal, cur_value, LIR_OprFact::intConst(CardTable::dirty_card_val()));
__ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
set_card(tmp, card_addr);
__ branch_destination(L_already_dirty->label());
} else {
if (ct->scanned_concurrently()) {
__ membar_storestore();
}
set_card(tmp, card_addr);
}
}
void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
LIR_Opr tmp1 = FrameMap::R0_oop_opr;
LIR_Opr tmp2 = FrameMap::R1_oop_opr;
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
__ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
}
//----------------------------------------------------------------------
// visitor functions
//----------------------------------------------------------------------
void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
assert(x->is_pinned(),"");
LIRItem obj(x->obj(), this);
obj.load_item();
set_no_result(x);
LIR_Opr lock = new_pointer_register();
LIR_Opr hdr = new_pointer_register();
// Need a scratch register for biased locking on arm
LIR_Opr scratch = LIR_OprFact::illegalOpr;
if(UseBiasedLocking) {
scratch = new_pointer_register();
} else {
scratch = atomicLockOpr();
}
CodeEmitInfo* info_for_exception = NULL;
if (x->needs_null_check()) {
info_for_exception = state_for(x);
}
CodeEmitInfo* info = state_for(x, x->state(), true);
monitor_enter(obj.result(), lock, hdr, scratch,
x->monitor_no(), info_for_exception, info);
}
void LIRGenerator::do_MonitorExit(MonitorExit* x) {
assert(x->is_pinned(),"");
LIRItem obj(x->obj(), this);
obj.dont_load_item();
set_no_result(x);
LIR_Opr obj_temp = new_pointer_register();
LIR_Opr lock = new_pointer_register();
LIR_Opr hdr = new_pointer_register();
monitor_exit(obj_temp, lock, hdr, atomicLockOpr(), x->monitor_no());
}
// _ineg, _lneg, _fneg, _dneg
void LIRGenerator::do_NegateOp(NegateOp* x) {
#ifdef __SOFTFP__
address runtime_func = NULL;
ValueTag tag = x->type()->tag();
if (tag == floatTag) {
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::fneg);
} else if (tag == doubleTag) {
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dneg);
}
if (runtime_func != NULL) {
set_result(x, call_runtime(x->x(), runtime_func, x->type(), NULL));
return;
}
#endif // __SOFTFP__
LIRItem value(x->x(), this);
value.load_item();
LIR_Opr reg = rlock_result(x);
__ negate(value.result(), reg);
}
// for _fadd, _fmul, _fsub, _fdiv, _frem
// _dadd, _dmul, _dsub, _ddiv, _drem
void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
address runtime_func;
switch (x->op()) {
case Bytecodes::_frem:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
break;
case Bytecodes::_drem:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
break;
#ifdef __SOFTFP__
// Call function compiled with -msoft-float.
// __aeabi_XXXX_glibc: Imported code from glibc soft-fp bundle for calculation accuracy improvement. See CR 6757269.
case Bytecodes::_fadd:
runtime_func = CAST_FROM_FN_PTR(address, __aeabi_fadd_glibc);
break;
case Bytecodes::_fmul:
runtime_func = CAST_FROM_FN_PTR(address, __aeabi_fmul);
break;
case Bytecodes::_fsub:
runtime_func = CAST_FROM_FN_PTR(address, __aeabi_fsub_glibc);
break;
case Bytecodes::_fdiv:
runtime_func = CAST_FROM_FN_PTR(address, __aeabi_fdiv);
break;
case Bytecodes::_dadd:
runtime_func = CAST_FROM_FN_PTR(address, __aeabi_dadd_glibc);
break;
case Bytecodes::_dmul:
runtime_func = CAST_FROM_FN_PTR(address, __aeabi_dmul);
break;
case Bytecodes::_dsub:
runtime_func = CAST_FROM_FN_PTR(address, __aeabi_dsub_glibc);
break;
case Bytecodes::_ddiv:
runtime_func = CAST_FROM_FN_PTR(address, __aeabi_ddiv);
break;
default:
ShouldNotReachHere();
#else // __SOFTFP__
default: {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
right.load_item();
rlock_result(x);
arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
return;
}
#endif // __SOFTFP__
}
LIR_Opr result = call_runtime(x->x(), x->y(), runtime_func, x->type(), NULL);
set_result(x, result);
}
void LIRGenerator::make_div_by_zero_check(LIR_Opr right_arg, BasicType type, CodeEmitInfo* info) {
assert(right_arg->is_register(), "must be");
__ cmp(lir_cond_equal, right_arg, make_constant(type, 0));
__ branch(lir_cond_equal, type, new DivByZeroStub(info));
}
// for _ladd, _lmul, _lsub, _ldiv, _lrem
void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
CodeEmitInfo* info = NULL;
if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
info = state_for(x);
}
#ifdef AARCH64
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
LIRItem* left_arg = &left;
LIRItem* right_arg = &right;
// Test if instr is commutative and if we should swap
if (x->is_commutative() && left.is_constant()) {
left_arg = &right;
right_arg = &left;
}
left_arg->load_item();
switch (x->op()) {
case Bytecodes::_ldiv:
right_arg->load_item();
make_div_by_zero_check(right_arg->result(), T_LONG, info);
__ idiv(left_arg->result(), right_arg->result(), rlock_result(x), LIR_OprFact::illegalOpr, NULL);
break;
case Bytecodes::_lrem: {
right_arg->load_item();
make_div_by_zero_check(right_arg->result(), T_LONG, info);
// a % b is implemented with 2 instructions:
// tmp = a/b (sdiv)
// res = a - b*tmp (msub)
LIR_Opr tmp = FrameMap::as_long_opr(Rtemp);
__ irem(left_arg->result(), right_arg->result(), rlock_result(x), tmp, NULL);
break;
}
case Bytecodes::_lmul:
if (right_arg->is_constant() && is_power_of_2_long(right_arg->get_jlong_constant())) {
right_arg->dont_load_item();
__ shift_left(left_arg->result(), exact_log2_long(right_arg->get_jlong_constant()), rlock_result(x));
} else {
right_arg->load_item();
__ mul(left_arg->result(), right_arg->result(), rlock_result(x));
}
break;
case Bytecodes::_ladd:
case Bytecodes::_lsub:
if (right_arg->is_constant()) {
jlong c = right_arg->get_jlong_constant();
add_constant(left_arg->result(), (x->op() == Bytecodes::_ladd) ? c : -c, rlock_result(x));
} else {
right_arg->load_item();
arithmetic_op_long(x->op(), rlock_result(x), left_arg->result(), right_arg->result(), NULL);
}
break;
default:
ShouldNotReachHere();
}
#else
switch (x->op()) {
case Bytecodes::_ldiv:
case Bytecodes::_lrem: {
LIRItem right(x->y(), this);
right.load_item();
make_div_by_zero_check(right.result(), T_LONG, info);
}
// Fall through
case Bytecodes::_lmul: {
address entry;
switch (x->op()) {
case Bytecodes::_lrem:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
break;
case Bytecodes::_ldiv:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
break;
case Bytecodes::_lmul:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
break;
default:
ShouldNotReachHere();
}
LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
set_result(x, result);
break;
}
case Bytecodes::_ladd:
case Bytecodes::_lsub: {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
right.load_item();
rlock_result(x);
arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
break;
}
default:
ShouldNotReachHere();
}
#endif // AARCH64
}
// for: _iadd, _imul, _isub, _idiv, _irem
void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
LIRItem* left_arg = &left;
LIRItem* right_arg = &right;
// Test if instr is commutative and if we should swap
if (x->is_commutative() && left.is_constant()) {
left_arg = &right;
right_arg = &left;
}
if (is_div_rem) {
CodeEmitInfo* info = state_for(x);
if (x->op() == Bytecodes::_idiv && right_arg->is_constant() && is_power_of_2(right_arg->get_jint_constant())) {
left_arg->load_item();
right_arg->dont_load_item();
LIR_Opr tmp = LIR_OprFact::illegalOpr;
LIR_Opr result = rlock_result(x);
__ idiv(left_arg->result(), right_arg->result(), result, tmp, info);
} else {
#ifdef AARCH64
left_arg->load_item();
right_arg->load_item();
make_div_by_zero_check(right_arg->result(), T_INT, info);
if (x->op() == Bytecodes::_idiv) {
__ idiv(left_arg->result(), right_arg->result(), rlock_result(x), LIR_OprFact::illegalOpr, NULL);
} else {
// a % b is implemented with 2 instructions:
// tmp = a/b (sdiv)
// res = a - b*tmp (msub)
LIR_Opr tmp = FrameMap::as_opr(Rtemp);
__ irem(left_arg->result(), right_arg->result(), rlock_result(x), tmp, NULL);
}
#else
left_arg->load_item_force(FrameMap::R0_opr);
right_arg->load_item_force(FrameMap::R2_opr);
LIR_Opr tmp = FrameMap::R1_opr;
LIR_Opr result = rlock_result(x);
LIR_Opr out_reg;
if (x->op() == Bytecodes::_irem) {
out_reg = FrameMap::R0_opr;
__ irem(left_arg->result(), right_arg->result(), out_reg, tmp, info);
} else if (x->op() == Bytecodes::_idiv) {
out_reg = FrameMap::R1_opr;
__ idiv(left_arg->result(), right_arg->result(), out_reg, tmp, info);
}
__ move(out_reg, result);
#endif // AARCH64
}
#ifdef AARCH64
} else if (((x->op() == Bytecodes::_iadd) || (x->op() == Bytecodes::_isub)) && right_arg->is_constant()) {
left_arg->load_item();
jint c = right_arg->get_jint_constant();
right_arg->dont_load_item();
add_constant(left_arg->result(), (x->op() == Bytecodes::_iadd) ? c : -c, rlock_result(x));
#endif // AARCH64
} else {
left_arg->load_item();
if (x->op() == Bytecodes::_imul && right_arg->is_constant()) {
jint c = right_arg->get_jint_constant();
if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) {
right_arg->dont_load_item();
} else {
right_arg->load_item();
}
} else {
AARCH64_ONLY(assert(!right_arg->is_constant(), "constant right_arg is already handled by this moment");)
right_arg->load_nonconstant();
}
rlock_result(x);
assert(right_arg->is_constant() || right_arg->is_register(), "wrong state of right");
arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), NULL);
}
}
void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
ValueTag tag = x->type()->tag();
assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
switch (tag) {
case floatTag:
case doubleTag: do_ArithmeticOp_FPU(x); return;
case longTag: do_ArithmeticOp_Long(x); return;
case intTag: do_ArithmeticOp_Int(x); return;
}
ShouldNotReachHere();
}
// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
void LIRGenerator::do_ShiftOp(ShiftOp* x) {
LIRItem value(x->x(), this);
LIRItem count(x->y(), this);
#ifndef AARCH64
if (value.type()->is_long()) {
count.set_destroys_register();
}
#endif // !AARCH64
if (count.is_constant()) {
assert(count.type()->as_IntConstant() != NULL, "should be");
count.dont_load_item();
} else {
count.load_item();
}
value.load_item();
LIR_Opr res = rlock_result(x);
shift_op(x->op(), res, value.result(), count.result(), LIR_OprFact::illegalOpr);
}
// _iand, _land, _ior, _lor, _ixor, _lxor
void LIRGenerator::do_LogicOp(LogicOp* x) {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
#ifdef AARCH64
if (right.is_constant() && can_inline_as_constant_in_logic(right.value())) {
right.dont_load_item();
} else {
right.load_item();
}
#else
right.load_nonconstant();
#endif // AARCH64
logic_op(x->op(), rlock_result(x), left.result(), right.result());
}
// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
void LIRGenerator::do_CompareOp(CompareOp* x) {
#ifdef __SOFTFP__
address runtime_func;
switch (x->op()) {
case Bytecodes::_fcmpl:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::fcmpl);
break;
case Bytecodes::_fcmpg:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::fcmpg);
break;
case Bytecodes::_dcmpl:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dcmpl);
break;
case Bytecodes::_dcmpg:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dcmpg);
break;
case Bytecodes::_lcmp: {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
right.load_nonconstant();
LIR_Opr reg = rlock_result(x);
__ lcmp2int(left.result(), right.result(), reg);
return;
}
default:
ShouldNotReachHere();
}
LIR_Opr result = call_runtime(x->x(), x->y(), runtime_func, x->type(), NULL);
set_result(x, result);
#else // __SOFTFP__
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
#ifdef AARCH64
if (right.is_constant() && can_inline_as_constant_in_cmp(right.value())) {
right.dont_load_item();
} else {
right.load_item();
}
#else
right.load_nonconstant();
#endif // AARCH64
LIR_Opr reg = rlock_result(x);
if (x->x()->type()->is_float_kind()) {
Bytecodes::Code code = x->op();
__ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
} else if (x->x()->type()->tag() == longTag) {
__ lcmp2int(left.result(), right.result(), reg);
} else {
ShouldNotReachHere();
}
#endif // __SOFTFP__
}
LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience
LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
new_value.load_item();
cmp_value.load_item();
LIR_Opr result = new_register(T_INT);
if (type == T_OBJECT || type == T_ARRAY) {
#ifdef AARCH64
if (UseCompressedOops) {
tmp1 = new_pointer_register();
tmp2 = new_pointer_register();
}
#endif
__ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result);
} else if (type == T_INT) {
__ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), tmp1, tmp1, result);
} else if (type == T_LONG) {
#ifndef AARCH64
tmp1 = new_register(T_LONG);
#endif // !AARCH64
__ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), tmp1, tmp2, result);
} else {
ShouldNotReachHere();
}
return result;
}
LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
bool is_oop = type == T_OBJECT || type == T_ARRAY;
LIR_Opr result = new_register(type);
value.load_item();
assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type");
LIR_Opr tmp = (UseCompressedOops && is_oop) ? new_pointer_register() : LIR_OprFact::illegalOpr;
__ xchg(addr, value.result(), result, tmp);
return result;
}
LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
LIR_Opr result = new_register(type);
value.load_item();
assert(type == T_INT LP64_ONLY( || type == T_LONG), "unexpected type");
LIR_Opr tmp = new_register(type);
__ xadd(addr, value.result(), result, tmp);
return result;
}
void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
address runtime_func;
switch (x->id()) {
case vmIntrinsics::_dabs: {
#ifdef __SOFTFP__
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dabs);
break;
#else
assert(x->number_of_arguments() == 1, "wrong type");
LIRItem value(x->argument_at(0), this);
value.load_item();
__ abs(value.result(), rlock_result(x), LIR_OprFact::illegalOpr);
return;
#endif // __SOFTFP__
}
case vmIntrinsics::_dsqrt: {
#ifdef __SOFTFP__
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt);
break;
#else
assert(x->number_of_arguments() == 1, "wrong type");
LIRItem value(x->argument_at(0), this);
value.load_item();
__ sqrt(value.result(), rlock_result(x), LIR_OprFact::illegalOpr);
return;
#endif // __SOFTFP__
}
case vmIntrinsics::_dsin:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
break;
case vmIntrinsics::_dcos:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
break;
case vmIntrinsics::_dtan:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
break;
case vmIntrinsics::_dlog:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
break;
case vmIntrinsics::_dlog10:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
break;
case vmIntrinsics::_dexp:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
break;
case vmIntrinsics::_dpow:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
break;
default:
ShouldNotReachHere();
return;
}
LIR_Opr result;
if (x->number_of_arguments() == 1) {
result = call_runtime(x->argument_at(0), runtime_func, x->type(), NULL);
} else {
assert(x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow, "unexpected intrinsic");
result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_func, x->type(), NULL);
}
set_result(x, result);
}
void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
fatal("FMA intrinsic is not implemented on this platform");
}
void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
fatal("vectorizedMismatch intrinsic is not implemented on this platform");
}
void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
CodeEmitInfo* info = state_for(x, x->state());
assert(x->number_of_arguments() == 5, "wrong type");
LIRItem src(x->argument_at(0), this);
LIRItem src_pos(x->argument_at(1), this);
LIRItem dst(x->argument_at(2), this);
LIRItem dst_pos(x->argument_at(3), this);
LIRItem length(x->argument_at(4), this);
// We put arguments into the same registers which are used for a Java call.
// Note: we used fixed registers for all arguments because all registers
// are caller-saved, so register allocator treats them all as used.
src.load_item_force (FrameMap::R0_oop_opr);
src_pos.load_item_force(FrameMap::R1_opr);
dst.load_item_force (FrameMap::R2_oop_opr);
dst_pos.load_item_force(FrameMap::R3_opr);
length.load_item_force (FrameMap::R4_opr);
LIR_Opr tmp = (FrameMap::R5_opr);
set_no_result(x);
int flags;
ciArrayKlass* expected_type;
arraycopy_helper(x, &flags, &expected_type);
__ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(),
tmp, expected_type, flags, info);
}
void LIRGenerator::do_update_CRC32(Intrinsic* x) {
fatal("CRC32 intrinsic is not implemented on this platform");
}
void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
Unimplemented();
}
void LIRGenerator::do_Convert(Convert* x) {
address runtime_func;
switch (x->op()) {
#ifndef AARCH64
case Bytecodes::_l2f:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
break;
case Bytecodes::_l2d:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::l2d);
break;
case Bytecodes::_f2l:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::f2l);
break;
case Bytecodes::_d2l:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::d2l);
break;
#ifdef __SOFTFP__
case Bytecodes::_f2d:
runtime_func = CAST_FROM_FN_PTR(address, __aeabi_f2d);
break;
case Bytecodes::_d2f:
runtime_func = CAST_FROM_FN_PTR(address, __aeabi_d2f);
break;
case Bytecodes::_i2f:
runtime_func = CAST_FROM_FN_PTR(address, __aeabi_i2f);
break;
case Bytecodes::_i2d:
runtime_func = CAST_FROM_FN_PTR(address, __aeabi_i2d);
break;
case Bytecodes::_f2i:
runtime_func = CAST_FROM_FN_PTR(address, __aeabi_f2iz);
break;
case Bytecodes::_d2i:
// This is implemented in hard float in assembler on arm but a call
// on other platforms.
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
break;
#endif // __SOFTFP__
#endif // !AARCH64
default: {
LIRItem value(x->value(), this);
value.load_item();
LIR_Opr reg = rlock_result(x);
__ convert(x->op(), value.result(), reg, NULL);
return;
}
}
LIR_Opr result = call_runtime(x->value(), runtime_func, x->type(), NULL);
set_result(x, result);
}
void LIRGenerator::do_NewInstance(NewInstance* x) {
print_if_not_loaded(x);
CodeEmitInfo* info = state_for(x, x->state());
LIR_Opr reg = result_register_for(x->type()); // R0 is required by runtime call in NewInstanceStub::emit_code
LIR_Opr klass_reg = FrameMap::R1_metadata_opr; // R1 is required by runtime call in NewInstanceStub::emit_code
LIR_Opr tmp1 = new_register(objectType);
LIR_Opr tmp2 = new_register(objectType);
LIR_Opr tmp3 = FrameMap::LR_oop_opr;
new_instance(reg, x->klass(), x->is_unresolved(), tmp1, tmp2, tmp3,
LIR_OprFact::illegalOpr, klass_reg, info);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
// Evaluate state_for() first, because it can emit code
// with the same fixed registers that are used here (R1, R2)
CodeEmitInfo* info = state_for(x, x->state());
LIRItem length(x->length(), this);
length.load_item_force(FrameMap::R2_opr); // R2 is required by runtime call in NewTypeArrayStub::emit_code
LIR_Opr len = length.result();
LIR_Opr reg = result_register_for(x->type()); // R0 is required by runtime call in NewTypeArrayStub::emit_code
LIR_Opr klass_reg = FrameMap::R1_metadata_opr; // R1 is required by runtime call in NewTypeArrayStub::emit_code
LIR_Opr tmp1 = new_register(objectType);
LIR_Opr tmp2 = new_register(objectType);
LIR_Opr tmp3 = FrameMap::LR_oop_opr;
LIR_Opr tmp4 = LIR_OprFact::illegalOpr;
BasicType elem_type = x->elt_type();
__ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
// Evaluate state_for() first, because it can emit code
// with the same fixed registers that are used here (R1, R2)
CodeEmitInfo* info = state_for(x, x->state());
LIRItem length(x->length(), this);
length.load_item_force(FrameMap::R2_opr); // R2 is required by runtime call in NewObjectArrayStub::emit_code
LIR_Opr len = length.result();
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for(x, x->state_before());
}
LIR_Opr reg = result_register_for(x->type()); // R0 is required by runtime call in NewObjectArrayStub::emit_code
LIR_Opr klass_reg = FrameMap::R1_metadata_opr; // R1 is required by runtime call in NewObjectArrayStub::emit_code
LIR_Opr tmp1 = new_register(objectType);
LIR_Opr tmp2 = new_register(objectType);
LIR_Opr tmp3 = FrameMap::LR_oop_opr;
LIR_Opr tmp4 = LIR_OprFact::illegalOpr;
CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
ciMetadata* obj = ciObjArrayKlass::make(x->klass());
if (obj == ciEnv::unloaded_ciobjarrayklass()) {
BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
}
klass2reg_with_patching(klass_reg, obj, patching_info);
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
Values* dims = x->dims();
int i = dims->length();
LIRItemList* items = new LIRItemList(i, i, NULL);
while (i-- > 0) {
LIRItem* size = new LIRItem(dims->at(i), this);
items->at_put(i, size);
}
// Need to get the info before, as the items may become invalid through item_free
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for(x, x->state_before());
// Cannot re-use same xhandlers for multiple CodeEmitInfos, so
// clone all handlers (NOTE: Usually this is handled transparently
// by the CodeEmitInfo cloning logic in CodeStub constructors but
// is done explicitly here because a stub isn't being used).
x->set_exception_handlers(new XHandlers(x->exception_handlers()));
}
i = dims->length();
while (i-- > 0) {
LIRItem* size = items->at(i);
size->load_item();
LIR_Opr sz = size->result();
assert(sz->type() == T_INT, "should be");
store_stack_parameter(sz, in_ByteSize(i * BytesPerInt));
}
CodeEmitInfo* info = state_for(x, x->state());
LIR_Opr klass_reg = FrameMap::R0_metadata_opr;
klass2reg_with_patching(klass_reg, x->klass(), patching_info);
LIR_Opr rank = FrameMap::R2_opr;
__ move(LIR_OprFact::intConst(x->rank()), rank);
LIR_Opr varargs = FrameMap::SP_opr;
LIR_OprList* args = new LIR_OprList(3);
args->append(klass_reg);
args->append(rank);
args->append(varargs);
LIR_Opr reg = result_register_for(x->type());
__ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
LIR_OprFact::illegalOpr, reg, args, info);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_BlockBegin(BlockBegin* x) {
// nothing to do for now
}
void LIRGenerator::do_CheckCast(CheckCast* x) {
LIRItem obj(x->obj(), this);
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
patching_info = state_for(x, x->state_before());
}
obj.load_item();
CodeEmitInfo* info_for_exception =
(x->needs_exception_state() ? state_for(x) :
state_for(x, x->state_before(), true /*ignore_xhandler*/));
CodeStub* stub;
if (x->is_incompatible_class_change_check()) {
assert(patching_info == NULL, "can't patch this");
stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id,
LIR_OprFact::illegalOpr, info_for_exception);
} else if (x->is_invokespecial_receiver_check()) {
assert(patching_info == NULL, "can't patch this");
stub = new DeoptimizeStub(info_for_exception,
Deoptimization::Reason_class_check,
Deoptimization::Action_none);
} else {
stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id,
LIR_OprFact::illegalOpr, info_for_exception);
}
LIR_Opr out_reg = rlock_result(x);
LIR_Opr tmp1 = FrameMap::R0_oop_opr;
LIR_Opr tmp2 = FrameMap::R1_oop_opr;
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
__ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3, x->direct_compare(),
info_for_exception, patching_info, stub, x->profiled_method(), x->profiled_bci());
}
void LIRGenerator::do_InstanceOf(InstanceOf* x) {
LIRItem obj(x->obj(), this);
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for(x, x->state_before());
}
obj.load_item();
LIR_Opr out_reg = rlock_result(x);
LIR_Opr tmp1 = FrameMap::R0_oop_opr;
LIR_Opr tmp2 = FrameMap::R1_oop_opr;
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
__ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
}
#ifdef __SOFTFP__
// Turn operator if (f <op> g) into runtime call:
// call _aeabi_fcmp<op>(f, g)
// cmp(eq, 1)
// branch(eq, true path).
void LIRGenerator::do_soft_float_compare(If* x) {
assert(x->number_of_sux() == 2, "inconsistency");
ValueTag tag = x->x()->type()->tag();
If::Condition cond = x->cond();
address runtime_func;
// unordered comparison gets the wrong answer because aeabi functions
// return false.
bool unordered_is_true = x->unordered_is_true();
// reverse of condition for ne
bool compare_to_zero = false;
switch (lir_cond(cond)) {
case lir_cond_notEqual:
compare_to_zero = true; // fall through
case lir_cond_equal:
runtime_func = tag == floatTag ?
CAST_FROM_FN_PTR(address, __aeabi_fcmpeq):
CAST_FROM_FN_PTR(address, __aeabi_dcmpeq);
break;
case lir_cond_less:
if (unordered_is_true) {
runtime_func = tag == floatTag ?
CAST_FROM_FN_PTR(address, SharedRuntime::unordered_fcmplt):
CAST_FROM_FN_PTR(address, SharedRuntime::unordered_dcmplt);
} else {
runtime_func = tag == floatTag ?
CAST_FROM_FN_PTR(address, __aeabi_fcmplt):
CAST_FROM_FN_PTR(address, __aeabi_dcmplt);
}
break;
case lir_cond_lessEqual:
if (unordered_is_true) {
runtime_func = tag == floatTag ?
CAST_FROM_FN_PTR(address, SharedRuntime::unordered_fcmple):
CAST_FROM_FN_PTR(address, SharedRuntime::unordered_dcmple);
} else {
runtime_func = tag == floatTag ?
CAST_FROM_FN_PTR(address, __aeabi_fcmple):
CAST_FROM_FN_PTR(address, __aeabi_dcmple);
}
break;
case lir_cond_greaterEqual:
if (unordered_is_true) {
runtime_func = tag == floatTag ?
CAST_FROM_FN_PTR(address, SharedRuntime::unordered_fcmpge):
CAST_FROM_FN_PTR(address, SharedRuntime::unordered_dcmpge);
} else {
runtime_func = tag == floatTag ?
CAST_FROM_FN_PTR(address, __aeabi_fcmpge):
CAST_FROM_FN_PTR(address, __aeabi_dcmpge);
}
break;
case lir_cond_greater:
if (unordered_is_true) {
runtime_func = tag == floatTag ?
CAST_FROM_FN_PTR(address, SharedRuntime::unordered_fcmpgt):
CAST_FROM_FN_PTR(address, SharedRuntime::unordered_dcmpgt);
} else {
runtime_func = tag == floatTag ?
CAST_FROM_FN_PTR(address, __aeabi_fcmpgt):
CAST_FROM_FN_PTR(address, __aeabi_dcmpgt);
}
break;
case lir_cond_aboveEqual:
case lir_cond_belowEqual:
ShouldNotReachHere(); // We're not going to get these.
default:
assert(lir_cond(cond) == lir_cond_always, "must be");
ShouldNotReachHere();
}
set_no_result(x);
// add safepoint before generating condition code so it can be recomputed
if (x->is_safepoint()) {
increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
__ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
}
// Call float compare function, returns (1,0) if true or false.
LIR_Opr result = call_runtime(x->x(), x->y(), runtime_func, intType, NULL);
__ cmp(lir_cond_equal, result,
compare_to_zero ?
LIR_OprFact::intConst(0) : LIR_OprFact::intConst(1));
profile_branch(x, cond);
move_to_phi(x->state());
__ branch(lir_cond_equal, T_INT, x->tsux());
}
#endif // __SOFTFP__
void LIRGenerator::do_If(If* x) {
assert(x->number_of_sux() == 2, "inconsistency");
ValueTag tag = x->x()->type()->tag();
#ifdef __SOFTFP__
if (tag == floatTag || tag == doubleTag) {
do_soft_float_compare(x);
assert(x->default_sux() == x->fsux(), "wrong destination above");
__ jump(x->default_sux());
return;
}
#endif // __SOFTFP__
LIRItem xitem(x->x(), this);
LIRItem yitem(x->y(), this);
LIRItem* xin = &xitem;
LIRItem* yin = &yitem;
If::Condition cond = x->cond();
#ifndef AARCH64
if (tag == longTag) {
if (cond == If::gtr || cond == If::leq) {
cond = Instruction::mirror(cond);
xin = &yitem;
yin = &xitem;
}
xin->set_destroys_register();
}
#endif // !AARCH64
xin->load_item();
LIR_Opr left = xin->result();
LIR_Opr right;
#ifdef AARCH64
if (yin->is_constant() && can_inline_as_constant_in_cmp(yin->value())) {
yin->dont_load_item();
} else {
yin->load_item();
}
right = yin->result();
#else
if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
(cond == If::eql || cond == If::neq)) {
// inline long zero
right = LIR_OprFact::value_type(yin->value()->type());
} else {
yin->load_nonconstant();
right = yin->result();
}
#endif // AARCH64
set_no_result(x);
// add safepoint before generating condition code so it can be recomputed
if (x->is_safepoint()) {
increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
__ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
}
__ cmp(lir_cond(cond), left, right);
profile_branch(x, cond);
move_to_phi(x->state());
if (x->x()->type()->is_float_kind()) {
__ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
} else {
__ branch(lir_cond(cond), right->type(), x->tsux());
}
assert(x->default_sux() == x->fsux(), "wrong destination above");
__ jump(x->default_sux());
}
LIR_Opr LIRGenerator::getThreadPointer() {
return FrameMap::Rthread_opr;
}
void LIRGenerator::trace_block_entry(BlockBegin* block) {
__ move(LIR_OprFact::intConst(block->block_id()), FrameMap::R0_opr);
LIR_OprList* args = new LIR_OprList(1);
args->append(FrameMap::R0_opr);
address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
__ call_runtime_leaf(func, getThreadTemp(), LIR_OprFact::illegalOpr, args);
}
void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
CodeEmitInfo* info) {
#ifndef AARCH64
if (value->is_double_cpu()) {
assert(address->index()->is_illegal(), "should have a constant displacement");
LIR_Opr tmp = new_pointer_register();
add_large_constant(address->base(), address->disp(), tmp);
__ volatile_store_mem_reg(value, new LIR_Address(tmp, (intx)0, address->type()), info);
return;
}
#endif // !AARCH64
// TODO-AARCH64 implement with stlr instruction
__ store(value, address, info, lir_patch_none);
}
void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
CodeEmitInfo* info) {
#ifndef AARCH64
if (result->is_double_cpu()) {
assert(address->index()->is_illegal(), "should have a constant displacement");
LIR_Opr tmp = new_pointer_register();
add_large_constant(address->base(), address->disp(), tmp);
__ volatile_load_mem_reg(new LIR_Address(tmp, (intx)0, address->type()), result, info);
return;
}
#endif // !AARCH64
// TODO-AARCH64 implement with ldar instruction
__ load(address, result, info, lir_patch_none);
}