8195142: Refactor out card table from CardTableModRefBS to flatten the BarrierSet hierarchy
Reviewed-by: stefank, coleenp, kvn, ehelin
/*
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/g1/heapRegionBounds.inline.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/g1/sparsePRT.hpp"
#include "gc/shared/cardTableModRefBS.hpp"
#include "gc/shared/space.inline.hpp"
#include "memory/allocation.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/mutexLocker.hpp"
// Check that the size of the SparsePRTEntry is evenly divisible by the maximum
// member type to avoid SIGBUS when accessing them.
STATIC_ASSERT(sizeof(SparsePRTEntry) % sizeof(int) == 0);
void SparsePRTEntry::init(RegionIdx_t region_ind) {
// Check that the card array element type can represent all cards in the region.
// Choose a large SparsePRTEntry::card_elem_t (e.g. CardIdx_t) if required.
assert(((size_t)1 << (sizeof(SparsePRTEntry::card_elem_t) * BitsPerByte)) *
G1CardTable::card_size >= HeapRegionBounds::max_size(), "precondition");
assert(G1RSetSparseRegionEntries > 0, "precondition");
_region_ind = region_ind;
_next_index = RSHashTable::NullEntry;
_next_null = 0;
}
bool SparsePRTEntry::contains_card(CardIdx_t card_index) const {
for (int i = 0; i < num_valid_cards(); i++) {
if (card(i) == card_index) {
return true;
}
}
return false;
}
SparsePRTEntry::AddCardResult SparsePRTEntry::add_card(CardIdx_t card_index) {
for (int i = 0; i < num_valid_cards(); i++) {
if (card(i) == card_index) {
return found;
}
}
if (num_valid_cards() < cards_num() - 1) {
_cards[_next_null] = (card_elem_t)card_index;
_next_null++;
return added;
}
// Otherwise, we're full.
return overflow;
}
void SparsePRTEntry::copy_cards(card_elem_t* cards) const {
memcpy(cards, _cards, cards_num() * sizeof(card_elem_t));
}
void SparsePRTEntry::copy_cards(SparsePRTEntry* e) const {
copy_cards(e->_cards);
assert(_next_null >= 0, "invariant");
assert(_next_null <= cards_num(), "invariant");
e->_next_null = _next_null;
}
// ----------------------------------------------------------------------
float RSHashTable::TableOccupancyFactor = 0.5f;
RSHashTable::RSHashTable(size_t capacity) :
_capacity(capacity), _capacity_mask(capacity-1),
_occupied_entries(0), _occupied_cards(0),
_entries(NULL),
_buckets(NEW_C_HEAP_ARRAY(int, capacity, mtGC)),
_free_list(NullEntry), _free_region(0)
{
_num_entries = (capacity * TableOccupancyFactor) + 1;
_entries = (SparsePRTEntry*)NEW_C_HEAP_ARRAY(char, _num_entries * SparsePRTEntry::size(), mtGC);
clear();
}
RSHashTable::~RSHashTable() {
if (_entries != NULL) {
FREE_C_HEAP_ARRAY(SparsePRTEntry, _entries);
_entries = NULL;
}
if (_buckets != NULL) {
FREE_C_HEAP_ARRAY(int, _buckets);
_buckets = NULL;
}
}
void RSHashTable::clear() {
_occupied_entries = 0;
_occupied_cards = 0;
guarantee(_entries != NULL, "INV");
guarantee(_buckets != NULL, "INV");
guarantee(_capacity <= ((size_t)1 << (sizeof(int)*BitsPerByte-1)) - 1,
"_capacity too large");
// This will put -1 == NullEntry in the key field of all entries.
memset((void*)_entries, NullEntry, _num_entries * SparsePRTEntry::size());
memset((void*)_buckets, NullEntry, _capacity * sizeof(int));
_free_list = NullEntry;
_free_region = 0;
}
bool RSHashTable::add_card(RegionIdx_t region_ind, CardIdx_t card_index) {
SparsePRTEntry* e = entry_for_region_ind_create(region_ind);
assert(e != NULL && e->r_ind() == region_ind,
"Postcondition of call above.");
SparsePRTEntry::AddCardResult res = e->add_card(card_index);
if (res == SparsePRTEntry::added) _occupied_cards++;
assert(e->num_valid_cards() > 0, "Postcondition");
return res != SparsePRTEntry::overflow;
}
SparsePRTEntry* RSHashTable::get_entry(RegionIdx_t region_ind) const {
int ind = (int) (region_ind & capacity_mask());
int cur_ind = _buckets[ind];
SparsePRTEntry* cur;
while (cur_ind != NullEntry &&
(cur = entry(cur_ind))->r_ind() != region_ind) {
cur_ind = cur->next_index();
}
if (cur_ind == NullEntry) return NULL;
// Otherwise...
assert(cur->r_ind() == region_ind, "Postcondition of loop + test above.");
assert(cur->num_valid_cards() > 0, "Inv");
return cur;
}
bool RSHashTable::delete_entry(RegionIdx_t region_ind) {
int ind = (int) (region_ind & capacity_mask());
int* prev_loc = &_buckets[ind];
int cur_ind = *prev_loc;
SparsePRTEntry* cur;
while (cur_ind != NullEntry &&
(cur = entry(cur_ind))->r_ind() != region_ind) {
prev_loc = cur->next_index_addr();
cur_ind = *prev_loc;
}
if (cur_ind == NullEntry) return false;
// Otherwise, splice out "cur".
*prev_loc = cur->next_index();
_occupied_cards -= cur->num_valid_cards();
free_entry(cur_ind);
_occupied_entries--;
return true;
}
SparsePRTEntry*
RSHashTable::entry_for_region_ind_create(RegionIdx_t region_ind) {
SparsePRTEntry* res = get_entry(region_ind);
if (res == NULL) {
int new_ind = alloc_entry();
res = entry(new_ind);
res->init(region_ind);
// Insert at front.
int ind = (int) (region_ind & capacity_mask());
res->set_next_index(_buckets[ind]);
_buckets[ind] = new_ind;
_occupied_entries++;
}
return res;
}
int RSHashTable::alloc_entry() {
int res;
if (_free_list != NullEntry) {
res = _free_list;
_free_list = entry(res)->next_index();
return res;
} else if ((size_t)_free_region < _num_entries) {
res = _free_region;
_free_region++;
return res;
} else {
return NullEntry;
}
}
void RSHashTable::free_entry(int fi) {
entry(fi)->set_next_index(_free_list);
_free_list = fi;
}
void RSHashTable::add_entry(SparsePRTEntry* e) {
assert(e->num_valid_cards() > 0, "Precondition.");
SparsePRTEntry* e2 = entry_for_region_ind_create(e->r_ind());
e->copy_cards(e2);
_occupied_cards += e2->num_valid_cards();
assert(e2->num_valid_cards() > 0, "Postcondition.");
}
CardIdx_t RSHashTableIter::find_first_card_in_list() {
while (_bl_ind != RSHashTable::NullEntry) {
SparsePRTEntry* sparse_entry = _rsht->entry(_bl_ind);
if (sparse_entry->num_valid_cards() > 0) {
return sparse_entry->card(0);
} else {
_bl_ind = sparse_entry->next_index();
}
}
// Otherwise, none found:
return NoCardFound;
}
size_t RSHashTableIter::compute_card_ind(CardIdx_t ci) {
return (_rsht->entry(_bl_ind)->r_ind() * HeapRegion::CardsPerRegion) + ci;
}
bool RSHashTableIter::has_next(size_t& card_index) {
_card_ind++;
if (_bl_ind >= 0) {
SparsePRTEntry* e = _rsht->entry(_bl_ind);
if (_card_ind < e->num_valid_cards()) {
CardIdx_t ci = e->card(_card_ind);
card_index = compute_card_ind(ci);
return true;
}
}
// Otherwise, must find the next valid entry.
_card_ind = 0;
if (_bl_ind != RSHashTable::NullEntry) {
_bl_ind = _rsht->entry(_bl_ind)->next_index();
CardIdx_t ci = find_first_card_in_list();
if (ci != NoCardFound) {
card_index = compute_card_ind(ci);
return true;
}
}
// If we didn't return above, must go to the next non-null table index.
_tbl_ind++;
while ((size_t)_tbl_ind < _rsht->capacity()) {
_bl_ind = _rsht->_buckets[_tbl_ind];
CardIdx_t ci = find_first_card_in_list();
if (ci != NoCardFound) {
card_index = compute_card_ind(ci);
return true;
}
// Otherwise, try next entry.
_tbl_ind++;
}
// Otherwise, there were no entry.
return false;
}
bool RSHashTable::contains_card(RegionIdx_t region_index, CardIdx_t card_index) const {
SparsePRTEntry* e = get_entry(region_index);
return (e != NULL && e->contains_card(card_index));
}
size_t RSHashTable::mem_size() const {
return sizeof(RSHashTable) +
_num_entries * (SparsePRTEntry::size() + sizeof(int));
}
// ----------------------------------------------------------------------
SparsePRT* volatile SparsePRT::_head_expanded_list = NULL;
void SparsePRT::add_to_expanded_list(SparsePRT* sprt) {
// We could expand multiple times in a pause -- only put on list once.
if (sprt->expanded()) return;
sprt->set_expanded(true);
SparsePRT* hd = _head_expanded_list;
while (true) {
sprt->_next_expanded = hd;
SparsePRT* res = Atomic::cmpxchg(sprt, &_head_expanded_list, hd);
if (res == hd) return;
else hd = res;
}
}
SparsePRT* SparsePRT::get_from_expanded_list() {
SparsePRT* hd = _head_expanded_list;
while (hd != NULL) {
SparsePRT* next = hd->next_expanded();
SparsePRT* res = Atomic::cmpxchg(next, &_head_expanded_list, hd);
if (res == hd) {
hd->set_next_expanded(NULL);
return hd;
} else {
hd = res;
}
}
return NULL;
}
void SparsePRT::reset_for_cleanup_tasks() {
_head_expanded_list = NULL;
}
void SparsePRT::do_cleanup_work(SparsePRTCleanupTask* sprt_cleanup_task) {
if (should_be_on_expanded_list()) {
sprt_cleanup_task->add(this);
}
}
void SparsePRT::finish_cleanup_task(SparsePRTCleanupTask* sprt_cleanup_task) {
assert(ParGCRareEvent_lock->owned_by_self(), "pre-condition");
SparsePRT* head = sprt_cleanup_task->head();
SparsePRT* tail = sprt_cleanup_task->tail();
if (head != NULL) {
assert(tail != NULL, "if head is not NULL, so should tail");
tail->set_next_expanded(_head_expanded_list);
_head_expanded_list = head;
} else {
assert(tail == NULL, "if head is NULL, so should tail");
}
}
bool SparsePRT::should_be_on_expanded_list() {
if (_expanded) {
assert(_cur != _next, "if _expanded is true, cur should be != _next");
} else {
assert(_cur == _next, "if _expanded is false, cur should be == _next");
}
return expanded();
}
void SparsePRT::cleanup_all() {
// First clean up all expanded tables so they agree on next and cur.
SparsePRT* sprt = get_from_expanded_list();
while (sprt != NULL) {
sprt->cleanup();
sprt = get_from_expanded_list();
}
}
SparsePRT::SparsePRT(HeapRegion* hr) :
_hr(hr), _expanded(false), _next_expanded(NULL)
{
_cur = new RSHashTable(InitialCapacity);
_next = _cur;
}
SparsePRT::~SparsePRT() {
assert(_next != NULL && _cur != NULL, "Inv");
if (_cur != _next) { delete _cur; }
delete _next;
}
size_t SparsePRT::mem_size() const {
// We ignore "_cur" here, because it either = _next, or else it is
// on the deleted list.
return sizeof(SparsePRT) + _next->mem_size();
}
bool SparsePRT::add_card(RegionIdx_t region_id, CardIdx_t card_index) {
if (_next->should_expand()) {
expand();
}
return _next->add_card(region_id, card_index);
}
SparsePRTEntry* SparsePRT::get_entry(RegionIdx_t region_id) {
return _next->get_entry(region_id);
}
bool SparsePRT::delete_entry(RegionIdx_t region_id) {
return _next->delete_entry(region_id);
}
void SparsePRT::clear() {
// If they differ, _next is bigger then cur, so next has no chance of
// being the initial size.
if (_next != _cur) {
delete _next;
}
if (_cur->capacity() != InitialCapacity) {
delete _cur;
_cur = new RSHashTable(InitialCapacity);
} else {
_cur->clear();
}
_next = _cur;
_expanded = false;
}
void SparsePRT::cleanup() {
// Make sure that the current and next tables agree.
if (_cur != _next) {
delete _cur;
}
_cur = _next;
set_expanded(false);
}
void SparsePRT::expand() {
RSHashTable* last = _next;
_next = new RSHashTable(last->capacity() * 2);
for (size_t i = 0; i < last->num_entries(); i++) {
SparsePRTEntry* e = last->entry((int)i);
if (e->valid_entry()) {
_next->add_entry(e);
}
}
if (last != _cur) {
delete last;
}
add_to_expanded_list(this);
}
void SparsePRTCleanupTask::add(SparsePRT* sprt) {
assert(sprt->should_be_on_expanded_list(), "pre-condition");
sprt->set_next_expanded(NULL);
if (_tail != NULL) {
_tail->set_next_expanded(sprt);
} else {
_head = sprt;
}
_tail = sprt;
}