8195142: Refactor out card table from CardTableModRefBS to flatten the BarrierSet hierarchy
Reviewed-by: stefank, coleenp, kvn, ehelin
/*
* Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP
#define SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP
#include "gc/g1/g1BlockOffsetTable.inline.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1ConcurrentMarkBitMap.inline.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/shared/space.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/prefetch.inline.hpp"
#include "utilities/align.hpp"
inline HeapWord* G1ContiguousSpace::allocate_impl(size_t min_word_size,
size_t desired_word_size,
size_t* actual_size) {
HeapWord* obj = top();
size_t available = pointer_delta(end(), obj);
size_t want_to_allocate = MIN2(available, desired_word_size);
if (want_to_allocate >= min_word_size) {
HeapWord* new_top = obj + want_to_allocate;
set_top(new_top);
assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
*actual_size = want_to_allocate;
return obj;
} else {
return NULL;
}
}
inline HeapWord* G1ContiguousSpace::par_allocate_impl(size_t min_word_size,
size_t desired_word_size,
size_t* actual_size) {
do {
HeapWord* obj = top();
size_t available = pointer_delta(end(), obj);
size_t want_to_allocate = MIN2(available, desired_word_size);
if (want_to_allocate >= min_word_size) {
HeapWord* new_top = obj + want_to_allocate;
HeapWord* result = Atomic::cmpxchg(new_top, top_addr(), obj);
// result can be one of two:
// the old top value: the exchange succeeded
// otherwise: the new value of the top is returned.
if (result == obj) {
assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
*actual_size = want_to_allocate;
return obj;
}
} else {
return NULL;
}
} while (true);
}
inline HeapWord* G1ContiguousSpace::allocate(size_t min_word_size,
size_t desired_word_size,
size_t* actual_size) {
HeapWord* res = allocate_impl(min_word_size, desired_word_size, actual_size);
if (res != NULL) {
_bot_part.alloc_block(res, *actual_size);
}
return res;
}
inline HeapWord* G1ContiguousSpace::allocate(size_t word_size) {
size_t temp;
return allocate(word_size, word_size, &temp);
}
inline HeapWord* G1ContiguousSpace::par_allocate(size_t word_size) {
size_t temp;
return par_allocate(word_size, word_size, &temp);
}
// Because of the requirement of keeping "_offsets" up to date with the
// allocations, we sequentialize these with a lock. Therefore, best if
// this is used for larger LAB allocations only.
inline HeapWord* G1ContiguousSpace::par_allocate(size_t min_word_size,
size_t desired_word_size,
size_t* actual_size) {
MutexLocker x(&_par_alloc_lock);
return allocate(min_word_size, desired_word_size, actual_size);
}
inline HeapWord* G1ContiguousSpace::block_start(const void* p) {
return _bot_part.block_start(p);
}
inline HeapWord*
G1ContiguousSpace::block_start_const(const void* p) const {
return _bot_part.block_start_const(p);
}
inline bool HeapRegion::is_obj_dead_with_size(const oop obj, const G1CMBitMap* const prev_bitmap, size_t* size) const {
HeapWord* addr = (HeapWord*) obj;
assert(addr < top(), "must be");
assert(!is_closed_archive(),
"Closed archive regions should not have references into other regions");
assert(!is_humongous(), "Humongous objects not handled here");
bool obj_is_dead = is_obj_dead(obj, prev_bitmap);
if (ClassUnloadingWithConcurrentMark && obj_is_dead) {
assert(!block_is_obj(addr), "must be");
*size = block_size_using_bitmap(addr, prev_bitmap);
} else {
assert(block_is_obj(addr), "must be");
*size = obj->size();
}
return obj_is_dead;
}
inline bool
HeapRegion::block_is_obj(const HeapWord* p) const {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
if (!this->is_in(p)) {
assert(is_continues_humongous(), "This case can only happen for humongous regions");
return (p == humongous_start_region()->bottom());
}
if (ClassUnloadingWithConcurrentMark) {
return !g1h->is_obj_dead(oop(p), this);
}
return p < top();
}
inline size_t HeapRegion::block_size_using_bitmap(const HeapWord* addr, const G1CMBitMap* const prev_bitmap) const {
assert(ClassUnloadingWithConcurrentMark,
"All blocks should be objects if class unloading isn't used, so this method should not be called. "
"HR: [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ") "
"addr: " PTR_FORMAT,
p2i(bottom()), p2i(top()), p2i(end()), p2i(addr));
// Old regions' dead objects may have dead classes
// We need to find the next live object using the bitmap
HeapWord* next = prev_bitmap->get_next_marked_addr(addr, prev_top_at_mark_start());
assert(next > addr, "must get the next live object");
return pointer_delta(next, addr);
}
inline bool HeapRegion::is_obj_dead(const oop obj, const G1CMBitMap* const prev_bitmap) const {
assert(is_in_reserved(obj), "Object " PTR_FORMAT " must be in region", p2i(obj));
return !obj_allocated_since_prev_marking(obj) &&
!prev_bitmap->is_marked((HeapWord*)obj) &&
!is_open_archive();
}
inline size_t HeapRegion::block_size(const HeapWord *addr) const {
if (addr == top()) {
return pointer_delta(end(), addr);
}
if (block_is_obj(addr)) {
return oop(addr)->size();
}
return block_size_using_bitmap(addr, G1CollectedHeap::heap()->concurrent_mark()->prev_mark_bitmap());
}
inline void HeapRegion::complete_compaction() {
// Reset space and bot after compaction is complete if needed.
reset_after_compaction();
if (used_region().is_empty()) {
reset_bot();
}
// After a compaction the mark bitmap is invalid, so we must
// treat all objects as being inside the unmarked area.
zero_marked_bytes();
init_top_at_mark_start();
// Clear unused heap memory in debug builds.
if (ZapUnusedHeapArea) {
mangle_unused_area();
}
}
template<typename ApplyToMarkedClosure>
inline void HeapRegion::apply_to_marked_objects(G1CMBitMap* bitmap, ApplyToMarkedClosure* closure) {
HeapWord* limit = scan_limit();
HeapWord* next_addr = bottom();
while (next_addr < limit) {
Prefetch::write(next_addr, PrefetchScanIntervalInBytes);
// This explicit is_marked check is a way to avoid
// some extra work done by get_next_marked_addr for
// the case where next_addr is marked.
if (bitmap->is_marked(next_addr)) {
oop current = oop(next_addr);
next_addr += closure->apply(current);
} else {
next_addr = bitmap->get_next_marked_addr(next_addr, limit);
}
}
assert(next_addr == limit, "Should stop the scan at the limit.");
}
inline HeapWord* HeapRegion::par_allocate_no_bot_updates(size_t min_word_size,
size_t desired_word_size,
size_t* actual_word_size) {
assert(is_young(), "we can only skip BOT updates on young regions");
return par_allocate_impl(min_word_size, desired_word_size, actual_word_size);
}
inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t word_size) {
size_t temp;
return allocate_no_bot_updates(word_size, word_size, &temp);
}
inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t min_word_size,
size_t desired_word_size,
size_t* actual_word_size) {
assert(is_young(), "we can only skip BOT updates on young regions");
return allocate_impl(min_word_size, desired_word_size, actual_word_size);
}
inline void HeapRegion::note_start_of_marking() {
_next_marked_bytes = 0;
_next_top_at_mark_start = top();
}
inline void HeapRegion::note_end_of_marking() {
_prev_top_at_mark_start = _next_top_at_mark_start;
_prev_marked_bytes = _next_marked_bytes;
_next_marked_bytes = 0;
}
inline void HeapRegion::note_start_of_copying(bool during_initial_mark) {
if (is_survivor()) {
// This is how we always allocate survivors.
assert(_next_top_at_mark_start == bottom(), "invariant");
} else {
if (during_initial_mark) {
// During initial-mark we'll explicitly mark any objects on old
// regions that are pointed to by roots. Given that explicit
// marks only make sense under NTAMS it'd be nice if we could
// check that condition if we wanted to. Given that we don't
// know where the top of this region will end up, we simply set
// NTAMS to the end of the region so all marks will be below
// NTAMS. We'll set it to the actual top when we retire this region.
_next_top_at_mark_start = end();
} else {
// We could have re-used this old region as to-space over a
// couple of GCs since the start of the concurrent marking
// cycle. This means that [bottom,NTAMS) will contain objects
// copied up to and including initial-mark and [NTAMS, top)
// will contain objects copied during the concurrent marking cycle.
assert(top() >= _next_top_at_mark_start, "invariant");
}
}
}
inline void HeapRegion::note_end_of_copying(bool during_initial_mark) {
if (is_survivor()) {
// This is how we always allocate survivors.
assert(_next_top_at_mark_start == bottom(), "invariant");
} else {
if (during_initial_mark) {
// See the comment for note_start_of_copying() for the details
// on this.
assert(_next_top_at_mark_start == end(), "pre-condition");
_next_top_at_mark_start = top();
} else {
// See the comment for note_start_of_copying() for the details
// on this.
assert(top() >= _next_top_at_mark_start, "invariant");
}
}
}
inline bool HeapRegion::in_collection_set() const {
return G1CollectedHeap::heap()->is_in_cset(this);
}
template <class Closure, bool is_gc_active>
bool HeapRegion::do_oops_on_card_in_humongous(MemRegion mr,
Closure* cl,
G1CollectedHeap* g1h) {
assert(is_humongous(), "precondition");
HeapRegion* sr = humongous_start_region();
oop obj = oop(sr->bottom());
// If concurrent and klass_or_null is NULL, then space has been
// allocated but the object has not yet been published by setting
// the klass. That can only happen if the card is stale. However,
// we've already set the card clean, so we must return failure,
// since the allocating thread could have performed a write to the
// card that might be missed otherwise.
if (!is_gc_active && (obj->klass_or_null_acquire() == NULL)) {
return false;
}
// We have a well-formed humongous object at the start of sr.
// Only filler objects follow a humongous object in the containing
// regions, and we can ignore those. So only process the one
// humongous object.
if (!g1h->is_obj_dead(obj, sr)) {
if (obj->is_objArray() || (sr->bottom() < mr.start())) {
// objArrays are always marked precisely, so limit processing
// with mr. Non-objArrays might be precisely marked, and since
// it's humongous it's worthwhile avoiding full processing.
// However, the card could be stale and only cover filler
// objects. That should be rare, so not worth checking for;
// instead let it fall out from the bounded iteration.
obj->oop_iterate(cl, mr);
} else {
// If obj is not an objArray and mr contains the start of the
// obj, then this could be an imprecise mark, and we need to
// process the entire object.
obj->oop_iterate(cl);
}
}
return true;
}
template <bool is_gc_active, class Closure>
bool HeapRegion::oops_on_card_seq_iterate_careful(MemRegion mr,
Closure* cl) {
assert(MemRegion(bottom(), end()).contains(mr), "Card region not in heap region");
G1CollectedHeap* g1h = G1CollectedHeap::heap();
// Special handling for humongous regions.
if (is_humongous()) {
return do_oops_on_card_in_humongous<Closure, is_gc_active>(mr, cl, g1h);
}
assert(is_old(), "precondition");
// Because mr has been trimmed to what's been allocated in this
// region, the parts of the heap that are examined here are always
// parsable; there's no need to use klass_or_null to detect
// in-progress allocation.
// Cache the boundaries of the memory region in some const locals
HeapWord* const start = mr.start();
HeapWord* const end = mr.end();
// Find the obj that extends onto mr.start().
// Update BOT as needed while finding start of (possibly dead)
// object containing the start of the region.
HeapWord* cur = block_start(start);
#ifdef ASSERT
{
assert(cur <= start,
"cur: " PTR_FORMAT ", start: " PTR_FORMAT, p2i(cur), p2i(start));
HeapWord* next = cur + block_size(cur);
assert(start < next,
"start: " PTR_FORMAT ", next: " PTR_FORMAT, p2i(start), p2i(next));
}
#endif
const G1CMBitMap* const bitmap = g1h->concurrent_mark()->prev_mark_bitmap();
do {
oop obj = oop(cur);
assert(oopDesc::is_oop(obj, true), "Not an oop at " PTR_FORMAT, p2i(cur));
assert(obj->klass_or_null() != NULL,
"Unparsable heap at " PTR_FORMAT, p2i(cur));
size_t size;
bool is_dead = is_obj_dead_with_size(obj, bitmap, &size);
cur += size;
if (!is_dead) {
// Process live object's references.
// Non-objArrays are usually marked imprecise at the object
// start, in which case we need to iterate over them in full.
// objArrays are precisely marked, but can still be iterated
// over in full if completely covered.
if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
obj->oop_iterate(cl);
} else {
obj->oop_iterate(cl, mr);
}
}
} while (cur < end);
return true;
}
#endif // SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP