8195142: Refactor out card table from CardTableModRefBS to flatten the BarrierSet hierarchy
Reviewed-by: stefank, coleenp, kvn, ehelin
/*
* Copyright (c) 2014, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_G1_G1ALLOCATOR_HPP
#define SHARE_VM_GC_G1_G1ALLOCATOR_HPP
#include "gc/g1/g1AllocRegion.hpp"
#include "gc/g1/g1AllocationContext.hpp"
#include "gc/g1/g1InCSetState.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/plab.hpp"
class EvacuationInfo;
// Interface to keep track of which regions G1 is currently allocating into. Provides
// some accessors (e.g. allocating into them, or getting their occupancy).
// Also keeps track of retained regions across GCs.
class G1Allocator : public CHeapObj<mtGC> {
friend class VMStructs;
protected:
G1CollectedHeap* _g1h;
virtual MutatorAllocRegion* mutator_alloc_region(AllocationContext_t context) = 0;
virtual bool survivor_is_full(AllocationContext_t context) const = 0;
virtual bool old_is_full(AllocationContext_t context) const = 0;
virtual void set_survivor_full(AllocationContext_t context) = 0;
virtual void set_old_full(AllocationContext_t context) = 0;
// Accessors to the allocation regions.
virtual SurvivorGCAllocRegion* survivor_gc_alloc_region(AllocationContext_t context) = 0;
virtual OldGCAllocRegion* old_gc_alloc_region(AllocationContext_t context) = 0;
// Allocation attempt during GC for a survivor object / PLAB.
inline HeapWord* survivor_attempt_allocation(size_t min_word_size,
size_t desired_word_size,
size_t* actual_word_size,
AllocationContext_t context);
// Allocation attempt during GC for an old object / PLAB.
inline HeapWord* old_attempt_allocation(size_t min_word_size,
size_t desired_word_size,
size_t* actual_word_size,
AllocationContext_t context);
public:
G1Allocator(G1CollectedHeap* heap) : _g1h(heap) { }
virtual ~G1Allocator() { }
static G1Allocator* create_allocator(G1CollectedHeap* g1h);
#ifdef ASSERT
// Do we currently have an active mutator region to allocate into?
bool has_mutator_alloc_region(AllocationContext_t context) { return mutator_alloc_region(context)->get() != NULL; }
#endif
virtual void init_mutator_alloc_region() = 0;
virtual void release_mutator_alloc_region() = 0;
virtual void init_gc_alloc_regions(EvacuationInfo& evacuation_info) = 0;
virtual void release_gc_alloc_regions(EvacuationInfo& evacuation_info) = 0;
virtual void abandon_gc_alloc_regions() = 0;
// Management of retained regions.
virtual bool is_retained_old_region(HeapRegion* hr) = 0;
void reuse_retained_old_region(EvacuationInfo& evacuation_info,
OldGCAllocRegion* old,
HeapRegion** retained);
// Allocate blocks of memory during mutator time.
inline HeapWord* attempt_allocation(size_t word_size, AllocationContext_t context);
inline HeapWord* attempt_allocation_locked(size_t word_size, AllocationContext_t context);
inline HeapWord* attempt_allocation_force(size_t word_size, AllocationContext_t context);
size_t unsafe_max_tlab_alloc(AllocationContext_t context);
// Allocate blocks of memory during garbage collection. Will ensure an
// allocation region, either by picking one or expanding the
// heap, and then allocate a block of the given size. The block
// may not be a humongous - it must fit into a single heap region.
HeapWord* par_allocate_during_gc(InCSetState dest,
size_t word_size,
AllocationContext_t context);
HeapWord* par_allocate_during_gc(InCSetState dest,
size_t min_word_size,
size_t desired_word_size,
size_t* actual_word_size,
AllocationContext_t context);
virtual size_t used_in_alloc_regions() = 0;
};
// The default allocation region manager for G1. Provides a single mutator, survivor
// and old generation allocation region.
// Can retain the (single) old generation allocation region across GCs.
class G1DefaultAllocator : public G1Allocator {
private:
bool _survivor_is_full;
bool _old_is_full;
protected:
// Alloc region used to satisfy mutator allocation requests.
MutatorAllocRegion _mutator_alloc_region;
// Alloc region used to satisfy allocation requests by the GC for
// survivor objects.
SurvivorGCAllocRegion _survivor_gc_alloc_region;
// Alloc region used to satisfy allocation requests by the GC for
// old objects.
OldGCAllocRegion _old_gc_alloc_region;
HeapRegion* _retained_old_gc_alloc_region;
public:
G1DefaultAllocator(G1CollectedHeap* heap);
virtual bool survivor_is_full(AllocationContext_t context) const;
virtual bool old_is_full(AllocationContext_t context) const ;
virtual void set_survivor_full(AllocationContext_t context);
virtual void set_old_full(AllocationContext_t context);
virtual void init_mutator_alloc_region();
virtual void release_mutator_alloc_region();
virtual void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
virtual void release_gc_alloc_regions(EvacuationInfo& evacuation_info);
virtual void abandon_gc_alloc_regions();
virtual bool is_retained_old_region(HeapRegion* hr) {
return _retained_old_gc_alloc_region == hr;
}
virtual MutatorAllocRegion* mutator_alloc_region(AllocationContext_t context) {
return &_mutator_alloc_region;
}
virtual SurvivorGCAllocRegion* survivor_gc_alloc_region(AllocationContext_t context) {
return &_survivor_gc_alloc_region;
}
virtual OldGCAllocRegion* old_gc_alloc_region(AllocationContext_t context) {
return &_old_gc_alloc_region;
}
virtual size_t used_in_alloc_regions() {
assert(Heap_lock->owner() != NULL,
"Should be owned on this thread's behalf.");
size_t result = 0;
// Read only once in case it is set to NULL concurrently
HeapRegion* hr = mutator_alloc_region(AllocationContext::current())->get();
if (hr != NULL) {
result += hr->used();
}
return result;
}
};
// Manages the PLABs used during garbage collection. Interface for allocation from PLABs.
// Needs to handle multiple contexts, extra alignment in any "survivor" area and some
// statistics.
class G1PLABAllocator : public CHeapObj<mtGC> {
friend class G1ParScanThreadState;
protected:
G1CollectedHeap* _g1h;
G1Allocator* _allocator;
// The survivor alignment in effect in bytes.
// == 0 : don't align survivors
// != 0 : align survivors to that alignment
// These values were chosen to favor the non-alignment case since some
// architectures have a special compare against zero instructions.
const uint _survivor_alignment_bytes;
// Number of words allocated directly (not counting PLAB allocation).
size_t _direct_allocated[InCSetState::Num];
virtual void flush_and_retire_stats() = 0;
virtual PLAB* alloc_buffer(InCSetState dest, AllocationContext_t context) = 0;
// Calculate the survivor space object alignment in bytes. Returns that or 0 if
// there are no restrictions on survivor alignment.
static uint calc_survivor_alignment_bytes() {
assert(SurvivorAlignmentInBytes >= ObjectAlignmentInBytes, "sanity");
if (SurvivorAlignmentInBytes == ObjectAlignmentInBytes) {
// No need to align objects in the survivors differently, return 0
// which means "survivor alignment is not used".
return 0;
} else {
assert(SurvivorAlignmentInBytes > 0, "sanity");
return SurvivorAlignmentInBytes;
}
}
HeapWord* allocate_new_plab(InCSetState dest,
size_t word_sz,
AllocationContext_t context);
bool may_throw_away_buffer(size_t const allocation_word_sz, size_t const buffer_size) const;
public:
G1PLABAllocator(G1Allocator* allocator);
virtual ~G1PLABAllocator() { }
static G1PLABAllocator* create_allocator(G1Allocator* allocator);
virtual void waste(size_t& wasted, size_t& undo_wasted) = 0;
// Allocate word_sz words in dest, either directly into the regions or by
// allocating a new PLAB. Returns the address of the allocated memory, NULL if
// not successful. Plab_refill_failed indicates whether an attempt to refill the
// PLAB failed or not.
HeapWord* allocate_direct_or_new_plab(InCSetState dest,
size_t word_sz,
AllocationContext_t context,
bool* plab_refill_failed);
// Allocate word_sz words in the PLAB of dest. Returns the address of the
// allocated memory, NULL if not successful.
inline HeapWord* plab_allocate(InCSetState dest,
size_t word_sz,
AllocationContext_t context);
HeapWord* allocate(InCSetState dest,
size_t word_sz,
AllocationContext_t context,
bool* refill_failed) {
HeapWord* const obj = plab_allocate(dest, word_sz, context);
if (obj != NULL) {
return obj;
}
return allocate_direct_or_new_plab(dest, word_sz, context, refill_failed);
}
void undo_allocation(InCSetState dest, HeapWord* obj, size_t word_sz, AllocationContext_t context);
};
// The default PLAB allocator for G1. Keeps the current (single) PLAB for survivor
// and old generation allocation.
class G1DefaultPLABAllocator : public G1PLABAllocator {
PLAB _surviving_alloc_buffer;
PLAB _tenured_alloc_buffer;
PLAB* _alloc_buffers[InCSetState::Num];
public:
G1DefaultPLABAllocator(G1Allocator* _allocator);
virtual PLAB* alloc_buffer(InCSetState dest, AllocationContext_t context) {
assert(dest.is_valid(),
"Allocation buffer index out-of-bounds: " CSETSTATE_FORMAT, dest.value());
assert(_alloc_buffers[dest.value()] != NULL,
"Allocation buffer is NULL: " CSETSTATE_FORMAT, dest.value());
return _alloc_buffers[dest.value()];
}
virtual void flush_and_retire_stats();
virtual void waste(size_t& wasted, size_t& undo_wasted);
};
// G1ArchiveRegionMap is a boolean array used to mark G1 regions as
// archive regions. This allows a quick check for whether an object
// should not be marked because it is in an archive region.
class G1ArchiveRegionMap : public G1BiasedMappedArray<bool> {
protected:
bool default_value() const { return false; }
};
// G1ArchiveAllocator is used to allocate memory in archive
// regions. Such regions are not scavenged nor compacted by GC.
// There are two types of archive regions, which are
// differ in the kind of references allowed for the contained objects:
//
// - 'Closed' archive region contain no references outside of other
// closed archive regions. The region is immutable by GC. GC does
// not mark object header in 'closed' archive region.
// - An 'open' archive region allow references to any other regions,
// including closed archive, open archive and other java heap regions.
// GC can adjust pointers and mark object header in 'open' archive region.
class G1ArchiveAllocator : public CHeapObj<mtGC> {
protected:
bool _open; // Indicate if the region is 'open' archive.
G1CollectedHeap* _g1h;
// The current allocation region
HeapRegion* _allocation_region;
// Regions allocated for the current archive range.
GrowableArray<HeapRegion*> _allocated_regions;
// The number of bytes used in the current range.
size_t _summary_bytes_used;
// Current allocation window within the current region.
HeapWord* _bottom;
HeapWord* _top;
HeapWord* _max;
// Allocate a new region for this archive allocator.
// Allocation is from the top of the reserved heap downward.
bool alloc_new_region();
public:
G1ArchiveAllocator(G1CollectedHeap* g1h, bool open) :
_g1h(g1h),
_allocation_region(NULL),
_allocated_regions((ResourceObj::set_allocation_type((address) &_allocated_regions,
ResourceObj::C_HEAP),
2), true /* C_Heap */),
_summary_bytes_used(0),
_bottom(NULL),
_top(NULL),
_max(NULL),
_open(open) { }
virtual ~G1ArchiveAllocator() {
assert(_allocation_region == NULL, "_allocation_region not NULL");
}
static G1ArchiveAllocator* create_allocator(G1CollectedHeap* g1h, bool open);
// Allocate memory for an individual object.
HeapWord* archive_mem_allocate(size_t word_size);
// Return the memory ranges used in the current archive, after
// aligning to the requested alignment.
void complete_archive(GrowableArray<MemRegion>* ranges,
size_t end_alignment_in_bytes);
// The number of bytes allocated by this allocator.
size_t used() {
return _summary_bytes_used;
}
// Clear the count of bytes allocated in prior G1 regions. This
// must be done when recalculate_use is used to reset the counter
// for the generic allocator, since it counts bytes in all G1
// regions, including those still associated with this allocator.
void clear_used() {
_summary_bytes_used = 0;
}
// Create the _archive_region_map which is used to identify archive objects.
static inline void enable_archive_object_check();
// Set the regions containing the specified address range as archive/non-archive.
static inline void set_range_archive(MemRegion range, bool open);
// Check if the object is in closed archive
static inline bool is_closed_archive_object(oop object);
// Check if the object is in open archive
static inline bool is_open_archive_object(oop object);
// Check if the object is either in closed archive or open archive
static inline bool is_archive_object(oop object);
private:
static bool _archive_check_enabled;
static G1ArchiveRegionMap _closed_archive_region_map;
static G1ArchiveRegionMap _open_archive_region_map;
// Check if an object is in a closed archive region using the _closed_archive_region_map.
static inline bool in_closed_archive_range(oop object);
// Check if an object is in open archive region using the _open_archive_region_map.
static inline bool in_open_archive_range(oop object);
// Check if archive object checking is enabled, to avoid calling in_open/closed_archive_range
// unnecessarily.
static inline bool archive_check_enabled();
};
#endif // SHARE_VM_GC_G1_G1ALLOCATOR_HPP