8195142: Refactor out card table from CardTableModRefBS to flatten the BarrierSet hierarchy
Reviewed-by: stefank, coleenp, kvn, ehelin
/*
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/classLoaderData.hpp"
#include "gc/g1/concurrentMarkThread.inline.hpp"
#include "gc/g1/g1Analytics.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1ConcurrentMark.inline.hpp"
#include "gc/g1/g1MMUTracker.hpp"
#include "gc/g1/g1Policy.hpp"
#include "gc/g1/vm_operations_g1.hpp"
#include "gc/shared/concurrentGCPhaseManager.hpp"
#include "gc/shared/gcId.hpp"
#include "gc/shared/gcTrace.hpp"
#include "gc/shared/gcTraceTime.inline.hpp"
#include "gc/shared/suspendibleThreadSet.hpp"
#include "logging/log.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/vmThread.hpp"
#include "utilities/debug.hpp"
// ======= Concurrent Mark Thread ========
// Check order in EXPAND_CURRENT_PHASES
STATIC_ASSERT(ConcurrentGCPhaseManager::UNCONSTRAINED_PHASE <
ConcurrentGCPhaseManager::IDLE_PHASE);
#define EXPAND_CONCURRENT_PHASES(expander) \
expander(ANY, = ConcurrentGCPhaseManager::UNCONSTRAINED_PHASE, NULL) \
expander(IDLE, = ConcurrentGCPhaseManager::IDLE_PHASE, NULL) \
expander(CONCURRENT_CYCLE,, "Concurrent Cycle") \
expander(CLEAR_CLAIMED_MARKS,, "Concurrent Clear Claimed Marks") \
expander(SCAN_ROOT_REGIONS,, "Concurrent Scan Root Regions") \
expander(CONCURRENT_MARK,, "Concurrent Mark") \
expander(MARK_FROM_ROOTS,, "Concurrent Mark From Roots") \
expander(BEFORE_REMARK,, NULL) \
expander(REMARK,, NULL) \
expander(CREATE_LIVE_DATA,, "Concurrent Create Live Data") \
expander(COMPLETE_CLEANUP,, "Concurrent Complete Cleanup") \
expander(CLEANUP_FOR_NEXT_MARK,, "Concurrent Cleanup for Next Mark") \
/* */
class G1ConcurrentPhase : public AllStatic {
public:
enum {
#define CONCURRENT_PHASE_ENUM(tag, value, ignore_title) tag value,
EXPAND_CONCURRENT_PHASES(CONCURRENT_PHASE_ENUM)
#undef CONCURRENT_PHASE_ENUM
PHASE_ID_LIMIT
};
};
// The CM thread is created when the G1 garbage collector is used
ConcurrentMarkThread::ConcurrentMarkThread(G1ConcurrentMark* cm) :
ConcurrentGCThread(),
_cm(cm),
_state(Idle),
_phase_manager_stack(),
_vtime_accum(0.0),
_vtime_mark_accum(0.0) {
set_name("G1 Main Marker");
create_and_start();
}
class CMCheckpointRootsFinalClosure: public VoidClosure {
G1ConcurrentMark* _cm;
public:
CMCheckpointRootsFinalClosure(G1ConcurrentMark* cm) :
_cm(cm) {}
void do_void(){
_cm->checkpoint_roots_final(false); // !clear_all_soft_refs
}
};
class CMCleanUp: public VoidClosure {
G1ConcurrentMark* _cm;
public:
CMCleanUp(G1ConcurrentMark* cm) :
_cm(cm) {}
void do_void(){
_cm->cleanup();
}
};
double ConcurrentMarkThread::mmu_sleep_time(G1Policy* g1_policy, bool remark) {
// There are 3 reasons to use SuspendibleThreadSetJoiner.
// 1. To avoid concurrency problem.
// - G1MMUTracker::add_pause(), when_sec() and its variation(when_ms() etc..) can be called
// concurrently from ConcurrentMarkThread and VMThread.
// 2. If currently a gc is running, but it has not yet updated the MMU,
// we will not forget to consider that pause in the MMU calculation.
// 3. If currently a gc is running, ConcurrentMarkThread will wait it to be finished.
// And then sleep for predicted amount of time by delay_to_keep_mmu().
SuspendibleThreadSetJoiner sts_join;
const G1Analytics* analytics = g1_policy->analytics();
double now = os::elapsedTime();
double prediction_ms = remark ? analytics->predict_remark_time_ms()
: analytics->predict_cleanup_time_ms();
G1MMUTracker *mmu_tracker = g1_policy->mmu_tracker();
return mmu_tracker->when_ms(now, prediction_ms);
}
void ConcurrentMarkThread::delay_to_keep_mmu(G1Policy* g1_policy, bool remark) {
if (g1_policy->adaptive_young_list_length()) {
jlong sleep_time_ms = mmu_sleep_time(g1_policy, remark);
if (!cm()->has_aborted() && sleep_time_ms > 0) {
os::sleep(this, sleep_time_ms, false);
}
}
}
class G1ConcPhaseTimer : public GCTraceConcTimeImpl<LogLevel::Info, LOG_TAGS(gc, marking)> {
G1ConcurrentMark* _cm;
public:
G1ConcPhaseTimer(G1ConcurrentMark* cm, const char* title) :
GCTraceConcTimeImpl<LogLevel::Info, LogTag::_gc, LogTag::_marking>(title),
_cm(cm)
{
_cm->gc_timer_cm()->register_gc_concurrent_start(title);
}
~G1ConcPhaseTimer() {
_cm->gc_timer_cm()->register_gc_concurrent_end();
}
};
static const char* const concurrent_phase_names[] = {
#define CONCURRENT_PHASE_NAME(tag, ignore_value, ignore_title) XSTR(tag),
EXPAND_CONCURRENT_PHASES(CONCURRENT_PHASE_NAME)
#undef CONCURRENT_PHASE_NAME
NULL // terminator
};
// Verify dense enum assumption. +1 for terminator.
STATIC_ASSERT(G1ConcurrentPhase::PHASE_ID_LIMIT + 1 ==
ARRAY_SIZE(concurrent_phase_names));
// Returns the phase number for name, or a negative value if unknown.
static int lookup_concurrent_phase(const char* name) {
const char* const* names = concurrent_phase_names;
for (uint i = 0; names[i] != NULL; ++i) {
if (strcmp(name, names[i]) == 0) {
return static_cast<int>(i);
}
}
return -1;
}
// The phase must be valid and must have a title.
static const char* lookup_concurrent_phase_title(int phase) {
static const char* const titles[] = {
#define CONCURRENT_PHASE_TITLE(ignore_tag, ignore_value, title) title,
EXPAND_CONCURRENT_PHASES(CONCURRENT_PHASE_TITLE)
#undef CONCURRENT_PHASE_TITLE
};
// Verify dense enum assumption.
STATIC_ASSERT(G1ConcurrentPhase::PHASE_ID_LIMIT == ARRAY_SIZE(titles));
assert(0 <= phase, "precondition");
assert((uint)phase < ARRAY_SIZE(titles), "precondition");
const char* title = titles[phase];
assert(title != NULL, "precondition");
return title;
}
class G1ConcPhaseManager : public StackObj {
G1ConcurrentMark* _cm;
ConcurrentGCPhaseManager _manager;
public:
G1ConcPhaseManager(int phase, ConcurrentMarkThread* thread) :
_cm(thread->cm()),
_manager(phase, thread->phase_manager_stack())
{ }
~G1ConcPhaseManager() {
// Deactivate the manager if marking aborted, to avoid blocking on
// phase exit when the phase has been requested.
if (_cm->has_aborted()) {
_manager.deactivate();
}
}
void set_phase(int phase, bool force) {
_manager.set_phase(phase, force);
}
};
// Combine phase management and timing into one convenient utility.
class G1ConcPhase : public StackObj {
G1ConcPhaseTimer _timer;
G1ConcPhaseManager _manager;
public:
G1ConcPhase(int phase, ConcurrentMarkThread* thread) :
_timer(thread->cm(), lookup_concurrent_phase_title(phase)),
_manager(phase, thread)
{ }
};
const char* const* ConcurrentMarkThread::concurrent_phases() const {
return concurrent_phase_names;
}
bool ConcurrentMarkThread::request_concurrent_phase(const char* phase_name) {
int phase = lookup_concurrent_phase(phase_name);
if (phase < 0) return false;
while (!ConcurrentGCPhaseManager::wait_for_phase(phase,
phase_manager_stack())) {
assert(phase != G1ConcurrentPhase::ANY, "Wait for ANY phase must succeed");
if ((phase != G1ConcurrentPhase::IDLE) && !during_cycle()) {
// If idle and the goal is !idle, start a collection.
G1CollectedHeap::heap()->collect(GCCause::_wb_conc_mark);
}
}
return true;
}
void ConcurrentMarkThread::run_service() {
_vtime_start = os::elapsedVTime();
G1CollectedHeap* g1h = G1CollectedHeap::heap();
G1Policy* g1_policy = g1h->g1_policy();
G1ConcPhaseManager cpmanager(G1ConcurrentPhase::IDLE, this);
while (!should_terminate()) {
// wait until started is set.
sleepBeforeNextCycle();
if (should_terminate()) {
break;
}
cpmanager.set_phase(G1ConcurrentPhase::CONCURRENT_CYCLE, false /* force */);
GCIdMark gc_id_mark;
cm()->concurrent_cycle_start();
GCTraceConcTime(Info, gc) tt("Concurrent Cycle");
{
ResourceMark rm;
HandleMark hm;
double cycle_start = os::elapsedVTime();
{
G1ConcPhase p(G1ConcurrentPhase::CLEAR_CLAIMED_MARKS, this);
ClassLoaderDataGraph::clear_claimed_marks();
}
// We have to ensure that we finish scanning the root regions
// before the next GC takes place. To ensure this we have to
// make sure that we do not join the STS until the root regions
// have been scanned. If we did then it's possible that a
// subsequent GC could block us from joining the STS and proceed
// without the root regions have been scanned which would be a
// correctness issue.
{
G1ConcPhase p(G1ConcurrentPhase::SCAN_ROOT_REGIONS, this);
_cm->scan_root_regions();
}
// It would be nice to use the G1ConcPhase class here but
// the "end" logging is inside the loop and not at the end of
// a scope. Also, the timer doesn't support nesting.
// Mimicking the same log output instead.
{
G1ConcPhaseManager mark_manager(G1ConcurrentPhase::CONCURRENT_MARK, this);
jlong mark_start = os::elapsed_counter();
const char* cm_title =
lookup_concurrent_phase_title(G1ConcurrentPhase::CONCURRENT_MARK);
log_info(gc, marking)("%s (%.3fs)",
cm_title,
TimeHelper::counter_to_seconds(mark_start));
for (uint iter = 1; !cm()->has_aborted(); ++iter) {
// Concurrent marking.
{
G1ConcPhase p(G1ConcurrentPhase::MARK_FROM_ROOTS, this);
_cm->mark_from_roots();
}
if (cm()->has_aborted()) break;
// Provide a control point after mark_from_roots.
{
G1ConcPhaseManager p(G1ConcurrentPhase::BEFORE_REMARK, this);
}
if (cm()->has_aborted()) break;
// Delay remark pause for MMU.
double mark_end_time = os::elapsedVTime();
jlong mark_end = os::elapsed_counter();
_vtime_mark_accum += (mark_end_time - cycle_start);
delay_to_keep_mmu(g1_policy, true /* remark */);
if (cm()->has_aborted()) break;
// Pause Remark.
log_info(gc, marking)("%s (%.3fs, %.3fs) %.3fms",
cm_title,
TimeHelper::counter_to_seconds(mark_start),
TimeHelper::counter_to_seconds(mark_end),
TimeHelper::counter_to_millis(mark_end - mark_start));
mark_manager.set_phase(G1ConcurrentPhase::REMARK, false);
CMCheckpointRootsFinalClosure final_cl(_cm);
VM_CGC_Operation op(&final_cl, "Pause Remark");
VMThread::execute(&op);
if (cm()->has_aborted()) {
break;
} else if (!cm()->restart_for_overflow()) {
break; // Exit loop if no restart requested.
} else {
// Loop to restart for overflow.
mark_manager.set_phase(G1ConcurrentPhase::CONCURRENT_MARK, false);
log_info(gc, marking)("%s Restart for Mark Stack Overflow (iteration #%u)",
cm_title, iter);
}
}
}
if (!cm()->has_aborted()) {
G1ConcPhase p(G1ConcurrentPhase::CREATE_LIVE_DATA, this);
cm()->create_live_data();
}
double end_time = os::elapsedVTime();
// Update the total virtual time before doing this, since it will try
// to measure it to get the vtime for this marking. We purposely
// neglect the presumably-short "completeCleanup" phase here.
_vtime_accum = (end_time - _vtime_start);
if (!cm()->has_aborted()) {
delay_to_keep_mmu(g1_policy, false /* cleanup */);
if (!cm()->has_aborted()) {
CMCleanUp cl_cl(_cm);
VM_CGC_Operation op(&cl_cl, "Pause Cleanup");
VMThread::execute(&op);
}
} else {
// We don't want to update the marking status if a GC pause
// is already underway.
SuspendibleThreadSetJoiner sts_join;
g1h->collector_state()->set_mark_in_progress(false);
}
// Check if cleanup set the free_regions_coming flag. If it
// hasn't, we can just skip the next step.
if (g1h->free_regions_coming()) {
// The following will finish freeing up any regions that we
// found to be empty during cleanup. We'll do this part
// without joining the suspendible set. If an evacuation pause
// takes place, then we would carry on freeing regions in
// case they are needed by the pause. If a Full GC takes
// place, it would wait for us to process the regions
// reclaimed by cleanup.
// Now do the concurrent cleanup operation.
G1ConcPhase p(G1ConcurrentPhase::COMPLETE_CLEANUP, this);
_cm->complete_cleanup();
// Notify anyone who's waiting that there are no more free
// regions coming. We have to do this before we join the STS
// (in fact, we should not attempt to join the STS in the
// interval between finishing the cleanup pause and clearing
// the free_regions_coming flag) otherwise we might deadlock:
// a GC worker could be blocked waiting for the notification
// whereas this thread will be blocked for the pause to finish
// while it's trying to join the STS, which is conditional on
// the GC workers finishing.
g1h->reset_free_regions_coming();
}
guarantee(cm()->cleanup_list_is_empty(),
"at this point there should be no regions on the cleanup list");
// There is a tricky race before recording that the concurrent
// cleanup has completed and a potential Full GC starting around
// the same time. We want to make sure that the Full GC calls
// abort() on concurrent mark after
// record_concurrent_mark_cleanup_completed(), since abort() is
// the method that will reset the concurrent mark state. If we
// end up calling record_concurrent_mark_cleanup_completed()
// after abort() then we might incorrectly undo some of the work
// abort() did. Checking the has_aborted() flag after joining
// the STS allows the correct ordering of the two methods. There
// are two scenarios:
//
// a) If we reach here before the Full GC, the fact that we have
// joined the STS means that the Full GC cannot start until we
// leave the STS, so record_concurrent_mark_cleanup_completed()
// will complete before abort() is called.
//
// b) If we reach here during the Full GC, we'll be held up from
// joining the STS until the Full GC is done, which means that
// abort() will have completed and has_aborted() will return
// true to prevent us from calling
// record_concurrent_mark_cleanup_completed() (and, in fact, it's
// not needed any more as the concurrent mark state has been
// already reset).
{
SuspendibleThreadSetJoiner sts_join;
if (!cm()->has_aborted()) {
g1_policy->record_concurrent_mark_cleanup_completed();
} else {
log_info(gc, marking)("Concurrent Mark Abort");
}
}
// We now want to allow clearing of the marking bitmap to be
// suspended by a collection pause.
// We may have aborted just before the remark. Do not bother clearing the
// bitmap then, as it has been done during mark abort.
if (!cm()->has_aborted()) {
G1ConcPhase p(G1ConcurrentPhase::CLEANUP_FOR_NEXT_MARK, this);
_cm->cleanup_for_next_mark();
} else {
assert(!G1VerifyBitmaps || _cm->next_mark_bitmap_is_clear(), "Next mark bitmap must be clear");
}
}
// Update the number of full collections that have been
// completed. This will also notify the FullGCCount_lock in case a
// Java thread is waiting for a full GC to happen (e.g., it
// called System.gc() with +ExplicitGCInvokesConcurrent).
{
SuspendibleThreadSetJoiner sts_join;
g1h->increment_old_marking_cycles_completed(true /* concurrent */);
cm()->concurrent_cycle_end();
}
cpmanager.set_phase(G1ConcurrentPhase::IDLE, cm()->has_aborted() /* force */);
}
_cm->root_regions()->cancel_scan();
}
void ConcurrentMarkThread::stop_service() {
MutexLockerEx ml(CGC_lock, Mutex::_no_safepoint_check_flag);
CGC_lock->notify_all();
}
void ConcurrentMarkThread::sleepBeforeNextCycle() {
// We join here because we don't want to do the "shouldConcurrentMark()"
// below while the world is otherwise stopped.
assert(!in_progress(), "should have been cleared");
MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
while (!started() && !should_terminate()) {
CGC_lock->wait(Mutex::_no_safepoint_check_flag);
}
if (started()) {
set_in_progress();
}
}