7199092: NMT: NMT needs to deal overlapped virtual memory ranges
Summary: Enhanced virtual memory tracking to track committed regions as well as reserved regions, so NMT now can generate virtual memory map.
Reviewed-by: acorn, coleenp
/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_UTILITIES_MEM_PTR_ARRAY_HPP
#define SHARE_VM_UTILITIES_MEM_PTR_ARRAY_HPP
#include "memory/allocation.hpp"
#include "services/memPtr.hpp"
class MemPtr;
class MemRecorder;
class ArenaInfo;
class MemSnapshot;
extern "C" {
typedef int (*FN_SORT)(const void *, const void *);
}
// Memory pointer array interface. This array is used by NMT to hold
// various memory block information.
// The memory pointer arrays are usually walked with their iterators.
class MemPointerArray : public CHeapObj<mtNMT> {
public:
virtual ~MemPointerArray() { }
// return true if it can not allocate storage for the data
virtual bool out_of_memory() const = 0;
virtual bool is_empty() const = 0;
virtual bool is_full() = 0;
virtual int length() const = 0;
virtual void clear() = 0;
virtual bool append(MemPointer* ptr) = 0;
virtual bool insert_at(MemPointer* ptr, int pos) = 0;
virtual bool remove_at(int pos) = 0;
virtual MemPointer* at(int index) const = 0;
virtual void sort(FN_SORT fn) = 0;
virtual size_t instance_size() const = 0;
virtual bool shrink() = 0;
NOT_PRODUCT(virtual int capacity() const = 0;)
};
// Iterator interface
class MemPointerArrayIterator VALUE_OBJ_CLASS_SPEC {
public:
// return the pointer at current position
virtual MemPointer* current() const = 0;
// return the next pointer and advance current position
virtual MemPointer* next() = 0;
// return next pointer without advancing current position
virtual MemPointer* peek_next() const = 0;
// return previous pointer without changing current position
virtual MemPointer* peek_prev() const = 0;
// remove the pointer at current position
virtual void remove() = 0;
// insert the pointer at current position
virtual bool insert(MemPointer* ptr) = 0;
// insert specified element after current position and
// move current position to newly inserted position
virtual bool insert_after(MemPointer* ptr) = 0;
};
// implementation class
class MemPointerArrayIteratorImpl : public MemPointerArrayIterator {
protected:
MemPointerArray* _array;
int _pos;
public:
MemPointerArrayIteratorImpl(MemPointerArray* arr) {
assert(arr != NULL, "Parameter check");
_array = arr;
_pos = 0;
}
virtual MemPointer* current() const {
if (_pos < _array->length()) {
return _array->at(_pos);
}
return NULL;
}
virtual MemPointer* next() {
if (_pos + 1 < _array->length()) {
return _array->at(++_pos);
}
_pos = _array->length();
return NULL;
}
virtual MemPointer* peek_next() const {
if (_pos + 1 < _array->length()) {
return _array->at(_pos + 1);
}
return NULL;
}
virtual MemPointer* peek_prev() const {
if (_pos > 0) {
return _array->at(_pos - 1);
}
return NULL;
}
virtual void remove() {
if (_pos < _array->length()) {
_array->remove_at(_pos);
}
}
virtual bool insert(MemPointer* ptr) {
return _array->insert_at(ptr, _pos);
}
virtual bool insert_after(MemPointer* ptr) {
if (_array->insert_at(ptr, _pos + 1)) {
_pos ++;
return true;
}
return false;
}
};
// Memory pointer array implementation.
// This implementation implements expandable array
#define DEFAULT_PTR_ARRAY_SIZE 1024
template <class E> class MemPointerArrayImpl : public MemPointerArray {
private:
int _max_size;
int _size;
bool _init_elements;
E* _data;
public:
MemPointerArrayImpl(int initial_size = DEFAULT_PTR_ARRAY_SIZE, bool init_elements = true):
_max_size(initial_size), _size(0), _init_elements(init_elements) {
_data = (E*)raw_allocate(sizeof(E), initial_size);
if (_init_elements) {
for (int index = 0; index < _max_size; index ++) {
::new ((void*)&_data[index]) E();
}
}
}
virtual ~MemPointerArrayImpl() {
if (_data != NULL) {
raw_free(_data);
}
}
public:
bool out_of_memory() const {
return (_data == NULL);
}
size_t instance_size() const {
return sizeof(MemPointerArrayImpl<E>) + _max_size * sizeof(E);
}
bool is_empty() const {
assert(_data != NULL, "Just check");
return _size == 0;
}
bool is_full() {
assert(_data != NULL, "Just check");
if (_size < _max_size) {
return false;
} else {
return !expand_array();
}
}
int length() const {
assert(_data != NULL, "Just check");
return _size;
}
NOT_PRODUCT(int capacity() const { return _max_size; })
void clear() {
assert(_data != NULL, "Just check");
_size = 0;
}
bool append(MemPointer* ptr) {
assert(_data != NULL, "Just check");
if (is_full()) {
return false;
}
_data[_size ++] = *(E*)ptr;
return true;
}
bool insert_at(MemPointer* ptr, int pos) {
assert(_data != NULL, "Just check");
if (is_full()) {
return false;
}
for (int index = _size; index > pos; index --) {
_data[index] = _data[index - 1];
}
_data[pos] = *(E*)ptr;
_size ++;
return true;
}
bool remove_at(int pos) {
assert(_data != NULL, "Just check");
if (_size <= pos && pos >= 0) {
return false;
}
-- _size;
for (int index = pos; index < _size; index ++) {
_data[index] = _data[index + 1];
}
return true;
}
MemPointer* at(int index) const {
assert(_data != NULL, "Just check");
assert(index >= 0 && index < _size, "illegal index");
return &_data[index];
}
bool shrink() {
float used = ((float)_size) / ((float)_max_size);
if (used < 0.40) {
E* old_ptr = _data;
int new_size = ((_max_size) / (2 * DEFAULT_PTR_ARRAY_SIZE) + 1) * DEFAULT_PTR_ARRAY_SIZE;
_data = (E*)raw_reallocate(_data, sizeof(E), new_size);
if (_data == NULL) {
_data = old_ptr;
return false;
} else {
_max_size = new_size;
return true;
}
}
return false;
}
void sort(FN_SORT fn) {
assert(_data != NULL, "Just check");
qsort((void*)_data, _size, sizeof(E), fn);
}
private:
bool expand_array() {
assert(_data != NULL, "Not yet allocated");
E* old_ptr = _data;
if ((_data = (E*)raw_reallocate((void*)_data, sizeof(E),
_max_size + DEFAULT_PTR_ARRAY_SIZE)) == NULL) {
_data = old_ptr;
return false;
} else {
_max_size += DEFAULT_PTR_ARRAY_SIZE;
if (_init_elements) {
for (int index = _size; index < _max_size; index ++) {
::new ((void*)&_data[index]) E();
}
}
return true;
}
}
void* raw_allocate(size_t elementSize, int items) {
return os::malloc(elementSize * items, mtNMT);
}
void* raw_reallocate(void* ptr, size_t elementSize, int items) {
return os::realloc(ptr, elementSize * items, mtNMT);
}
void raw_free(void* ptr) {
os::free(ptr, mtNMT);
}
};
#endif // SHARE_VM_UTILITIES_MEM_PTR_ARRAY_HPP