6793825: Missing include dependancies for GCC without predefined headers
Summary: With predefined headers off for gcc, some .inline.hpp files aren't included to make definition visible for inline functions
Reviewed-by: jcoomes, xlu
/*
* Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
// Portions of code courtesy of Clifford Click
class PhaseTransform;
//------------------------------AddNode----------------------------------------
// Classic Add functionality. This covers all the usual 'add' behaviors for
// an algebraic ring. Add-integer, add-float, add-double, and binary-or are
// all inherited from this class. The various identity values are supplied
// by virtual functions.
class AddNode : public Node {
virtual uint hash() const;
public:
AddNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
init_class_id(Class_Add);
}
// Handle algebraic identities here. If we have an identity, return the Node
// we are equivalent to. We look for "add of zero" as an identity.
virtual Node *Identity( PhaseTransform *phase );
// We also canonicalize the Node, moving constants to the right input,
// and flatten expressions (so that 1+x+2 becomes x+3).
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
// Compute a new Type for this node. Basically we just do the pre-check,
// then call the virtual add() to set the type.
virtual const Type *Value( PhaseTransform *phase ) const;
// Check if this addition involves the additive identity
virtual const Type *add_of_identity( const Type *t1, const Type *t2 ) const;
// Supplied function returns the sum of the inputs.
// This also type-checks the inputs for sanity. Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
virtual const Type *add_ring( const Type *, const Type * ) const = 0;
// Supplied function to return the additive identity type
virtual const Type *add_id() const = 0;
};
//------------------------------AddINode---------------------------------------
// Add 2 integers
class AddINode : public AddNode {
public:
AddINode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
virtual int Opcode() const;
virtual const Type *add_ring( const Type *, const Type * ) const;
virtual const Type *add_id() const { return TypeInt::ZERO; }
virtual const Type *bottom_type() const { return TypeInt::INT; }
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual Node *Identity( PhaseTransform *phase );
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------AddLNode---------------------------------------
// Add 2 longs
class AddLNode : public AddNode {
public:
AddLNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
virtual int Opcode() const;
virtual const Type *add_ring( const Type *, const Type * ) const;
virtual const Type *add_id() const { return TypeLong::ZERO; }
virtual const Type *bottom_type() const { return TypeLong::LONG; }
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual Node *Identity( PhaseTransform *phase );
virtual uint ideal_reg() const { return Op_RegL; }
};
//------------------------------AddFNode---------------------------------------
// Add 2 floats
class AddFNode : public AddNode {
public:
AddFNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *add_of_identity( const Type *t1, const Type *t2 ) const;
virtual const Type *add_ring( const Type *, const Type * ) const;
virtual const Type *add_id() const { return TypeF::ZERO; }
virtual const Type *bottom_type() const { return Type::FLOAT; }
virtual Node *Identity( PhaseTransform *phase ) { return this; }
virtual uint ideal_reg() const { return Op_RegF; }
};
//------------------------------AddDNode---------------------------------------
// Add 2 doubles
class AddDNode : public AddNode {
public:
AddDNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *add_of_identity( const Type *t1, const Type *t2 ) const;
virtual const Type *add_ring( const Type *, const Type * ) const;
virtual const Type *add_id() const { return TypeD::ZERO; }
virtual const Type *bottom_type() const { return Type::DOUBLE; }
virtual Node *Identity( PhaseTransform *phase ) { return this; }
virtual uint ideal_reg() const { return Op_RegD; }
};
//------------------------------AddPNode---------------------------------------
// Add pointer plus integer to get pointer. NOT commutative, really.
// So not really an AddNode. Lives here, because people associate it with
// an add.
class AddPNode : public Node {
public:
enum { Control, // When is it safe to do this add?
Base, // Base oop, for GC purposes
Address, // Actually address, derived from base
Offset } ; // Offset added to address
AddPNode( Node *base, Node *ptr, Node *off ) : Node(0,base,ptr,off) {
init_class_id(Class_AddP);
}
virtual int Opcode() const;
virtual Node *Identity( PhaseTransform *phase );
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *Value( PhaseTransform *phase ) const;
virtual const Type *bottom_type() const;
virtual uint ideal_reg() const { return Op_RegP; }
Node *base_node() { assert( req() > Base, "Missing base"); return in(Base); }
static Node* Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
// second return value:
intptr_t& offset);
// Collect the AddP offset values into the elements array, giving up
// if there are more than length.
int unpack_offsets(Node* elements[], int length);
// Do not match base-ptr edge
virtual uint match_edge(uint idx) const;
static const Type *mach_bottom_type(const MachNode* n); // used by ad_<arch>.hpp
};
//------------------------------OrINode----------------------------------------
// Logically OR 2 integers. Included with the ADD nodes because it inherits
// all the behavior of addition on a ring.
class OrINode : public AddNode {
public:
OrINode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
virtual int Opcode() const;
virtual const Type *add_ring( const Type *, const Type * ) const;
virtual const Type *add_id() const { return TypeInt::ZERO; }
virtual const Type *bottom_type() const { return TypeInt::INT; }
virtual Node *Identity( PhaseTransform *phase );
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------OrLNode----------------------------------------
// Logically OR 2 longs. Included with the ADD nodes because it inherits
// all the behavior of addition on a ring.
class OrLNode : public AddNode {
public:
OrLNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
virtual int Opcode() const;
virtual const Type *add_ring( const Type *, const Type * ) const;
virtual const Type *add_id() const { return TypeLong::ZERO; }
virtual const Type *bottom_type() const { return TypeLong::LONG; }
virtual Node *Identity( PhaseTransform *phase );
virtual uint ideal_reg() const { return Op_RegL; }
};
//------------------------------XorINode---------------------------------------
// XOR'ing 2 integers
class XorINode : public AddNode {
public:
XorINode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
virtual int Opcode() const;
virtual const Type *add_ring( const Type *, const Type * ) const;
virtual const Type *add_id() const { return TypeInt::ZERO; }
virtual const Type *bottom_type() const { return TypeInt::INT; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------XorINode---------------------------------------
// XOR'ing 2 longs
class XorLNode : public AddNode {
public:
XorLNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
virtual int Opcode() const;
virtual const Type *add_ring( const Type *, const Type * ) const;
virtual const Type *add_id() const { return TypeLong::ZERO; }
virtual const Type *bottom_type() const { return TypeLong::LONG; }
virtual uint ideal_reg() const { return Op_RegL; }
};
//------------------------------MaxNode----------------------------------------
// Max (or min) of 2 values. Included with the ADD nodes because it inherits
// all the behavior of addition on a ring. Only new thing is that we allow
// 2 equal inputs to be equal.
class MaxNode : public AddNode {
public:
MaxNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
virtual int Opcode() const = 0;
};
//------------------------------MaxINode---------------------------------------
// Maximum of 2 integers. Included with the ADD nodes because it inherits
// all the behavior of addition on a ring.
class MaxINode : public MaxNode {
public:
MaxINode( Node *in1, Node *in2 ) : MaxNode(in1,in2) {}
virtual int Opcode() const;
virtual const Type *add_ring( const Type *, const Type * ) const;
virtual const Type *add_id() const { return TypeInt::make(min_jint); }
virtual const Type *bottom_type() const { return TypeInt::INT; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------MinINode---------------------------------------
// MINimum of 2 integers. Included with the ADD nodes because it inherits
// all the behavior of addition on a ring.
class MinINode : public MaxNode {
public:
MinINode( Node *in1, Node *in2 ) : MaxNode(in1,in2) {}
virtual int Opcode() const;
virtual const Type *add_ring( const Type *, const Type * ) const;
virtual const Type *add_id() const { return TypeInt::make(max_jint); }
virtual const Type *bottom_type() const { return TypeInt::INT; }
virtual uint ideal_reg() const { return Op_RegI; }
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
};