6793825: Missing include dependancies for GCC without predefined headers
Summary: With predefined headers off for gcc, some .inline.hpp files aren't included to make definition visible for inline functions
Reviewed-by: jcoomes, xlu
/*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
// Portions of code courtesy of Clifford Click
#include "incls/_precompiled.incl"
#include "incls/_addnode.cpp.incl"
#define MAXFLOAT ((float)3.40282346638528860e+38)
// Classic Add functionality. This covers all the usual 'add' behaviors for
// an algebraic ring. Add-integer, add-float, add-double, and binary-or are
// all inherited from this class. The various identity values are supplied
// by virtual functions.
//=============================================================================
//------------------------------hash-------------------------------------------
// Hash function over AddNodes. Needs to be commutative; i.e., I swap
// (commute) inputs to AddNodes willy-nilly so the hash function must return
// the same value in the presence of edge swapping.
uint AddNode::hash() const {
return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
}
//------------------------------Identity---------------------------------------
// If either input is a constant 0, return the other input.
Node *AddNode::Identity( PhaseTransform *phase ) {
const Type *zero = add_id(); // The additive identity
if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
return this;
}
//------------------------------commute----------------------------------------
// Commute operands to move loads and constants to the right.
static bool commute( Node *add, int con_left, int con_right ) {
Node *in1 = add->in(1);
Node *in2 = add->in(2);
// Convert "1+x" into "x+1".
// Right is a constant; leave it
if( con_right ) return false;
// Left is a constant; move it right.
if( con_left ) {
add->swap_edges(1, 2);
return true;
}
// Convert "Load+x" into "x+Load".
// Now check for loads
if (in2->is_Load()) {
if (!in1->is_Load()) {
// already x+Load to return
return false;
}
// both are loads, so fall through to sort inputs by idx
} else if( in1->is_Load() ) {
// Left is a Load and Right is not; move it right.
add->swap_edges(1, 2);
return true;
}
PhiNode *phi;
// Check for tight loop increments: Loop-phi of Add of loop-phi
if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
return false;
if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
add->swap_edges(1, 2);
return true;
}
// Otherwise, sort inputs (commutativity) to help value numbering.
if( in1->_idx > in2->_idx ) {
add->swap_edges(1, 2);
return true;
}
return false;
}
//------------------------------Idealize---------------------------------------
// If we get here, we assume we are associative!
Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
const Type *t1 = phase->type( in(1) );
const Type *t2 = phase->type( in(2) );
int con_left = t1->singleton();
int con_right = t2->singleton();
// Check for commutative operation desired
if( commute(this,con_left,con_right) ) return this;
AddNode *progress = NULL; // Progress flag
// Convert "(x+1)+2" into "x+(1+2)". If the right input is a
// constant, and the left input is an add of a constant, flatten the
// expression tree.
Node *add1 = in(1);
Node *add2 = in(2);
int add1_op = add1->Opcode();
int this_op = Opcode();
if( con_right && t2 != Type::TOP && // Right input is a constant?
add1_op == this_op ) { // Left input is an Add?
// Type of left _in right input
const Type *t12 = phase->type( add1->in(2) );
if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
// Check for rare case of closed data cycle which can happen inside
// unreachable loops. In these cases the computation is undefined.
#ifdef ASSERT
Node *add11 = add1->in(1);
int add11_op = add11->Opcode();
if( (add1 == add1->in(1))
|| (add11_op == this_op && add11->in(1) == add1) ) {
assert(false, "dead loop in AddNode::Ideal");
}
#endif
// The Add of the flattened expression
Node *x1 = add1->in(1);
Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
PhaseIterGVN *igvn = phase->is_IterGVN();
if( igvn ) {
set_req_X(2,x2,igvn);
set_req_X(1,x1,igvn);
} else {
set_req(2,x2);
set_req(1,x1);
}
progress = this; // Made progress
add1 = in(1);
add1_op = add1->Opcode();
}
}
// Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree.
if( add1_op == this_op && !con_right ) {
Node *a12 = add1->in(2);
const Type *t12 = phase->type( a12 );
if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
!(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) {
assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
add2 = add1->clone();
add2->set_req(2, in(2));
add2 = phase->transform(add2);
set_req(1, add2);
set_req(2, a12);
progress = this;
add2 = a12;
}
}
// Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree.
int add2_op = add2->Opcode();
if( add2_op == this_op && !con_left ) {
Node *a22 = add2->in(2);
const Type *t22 = phase->type( a22 );
if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
!(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) {
assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
Node *addx = add2->clone();
addx->set_req(1, in(1));
addx->set_req(2, add2->in(1));
addx = phase->transform(addx);
set_req(1, addx);
set_req(2, a22);
progress = this;
}
}
return progress;
}
//------------------------------Value-----------------------------------------
// An add node sums it's two _in. If one input is an RSD, we must mixin
// the other input's symbols.
const Type *AddNode::Value( PhaseTransform *phase ) const {
// Either input is TOP ==> the result is TOP
const Type *t1 = phase->type( in(1) );
const Type *t2 = phase->type( in(2) );
if( t1 == Type::TOP ) return Type::TOP;
if( t2 == Type::TOP ) return Type::TOP;
// Either input is BOTTOM ==> the result is the local BOTTOM
const Type *bot = bottom_type();
if( (t1 == bot) || (t2 == bot) ||
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
return bot;
// Check for an addition involving the additive identity
const Type *tadd = add_of_identity( t1, t2 );
if( tadd ) return tadd;
return add_ring(t1,t2); // Local flavor of type addition
}
//------------------------------add_identity-----------------------------------
// Check for addition of the identity
const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
const Type *zero = add_id(); // The additive identity
if( t1->higher_equal( zero ) ) return t2;
if( t2->higher_equal( zero ) ) return t1;
return NULL;
}
//=============================================================================
//------------------------------Idealize---------------------------------------
Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
Node* in1 = in(1);
Node* in2 = in(2);
int op1 = in1->Opcode();
int op2 = in2->Opcode();
// Fold (con1-x)+con2 into (con1+con2)-x
if ( op1 == Op_AddI && op2 == Op_SubI ) {
// Swap edges to try optimizations below
in1 = in2;
in2 = in(1);
op1 = op2;
op2 = in2->Opcode();
}
if( op1 == Op_SubI ) {
const Type *t_sub1 = phase->type( in1->in(1) );
const Type *t_2 = phase->type( in2 );
if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
in1->in(2) );
// Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
if( op2 == Op_SubI ) {
// Check for dead cycle: d = (a-b)+(c-d)
assert( in1->in(2) != this && in2->in(2) != this,
"dead loop in AddINode::Ideal" );
Node *sub = new (phase->C, 3) SubINode(NULL, NULL);
sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in1->in(1), in2->in(1) ) ));
sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in1->in(2), in2->in(2) ) ));
return sub;
}
// Convert "(a-b)+(b+c)" into "(a+c)"
if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) {
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
return new (phase->C, 3) AddINode(in1->in(1), in2->in(2));
}
// Convert "(a-b)+(c+b)" into "(a+c)"
if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) {
assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
return new (phase->C, 3) AddINode(in1->in(1), in2->in(1));
}
// Convert "(a-b)+(b-c)" into "(a-c)"
if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) {
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
return new (phase->C, 3) SubINode(in1->in(1), in2->in(2));
}
// Convert "(a-b)+(c-a)" into "(c-b)"
if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) {
assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
return new (phase->C, 3) SubINode(in2->in(1), in1->in(2));
}
}
// Convert "x+(0-y)" into "(x-y)"
if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO )
return new (phase->C, 3) SubINode(in1, in2->in(2) );
// Convert "(0-y)+x" into "(x-y)"
if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO )
return new (phase->C, 3) SubINode( in2, in1->in(2) );
// Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
// Helps with array allocation math constant folding
// See 4790063:
// Unrestricted transformation is unsafe for some runtime values of 'x'
// ( x == 0, z == 1, y == -1 ) fails
// ( x == -5, z == 1, y == 1 ) fails
// Transform works for small z and small negative y when the addition
// (x + (y << z)) does not cross zero.
// Implement support for negative y and (x >= -(y << z))
// Have not observed cases where type information exists to support
// positive y and (x <= -(y << z))
if( op1 == Op_URShiftI && op2 == Op_ConI &&
in1->in(2)->Opcode() == Op_ConI ) {
jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
jint y = phase->type( in2 )->is_int()->get_con();
if( z < 5 && -5 < y && y < 0 ) {
const Type *t_in11 = phase->type(in1->in(1));
if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
Node *a = phase->transform( new (phase->C, 3) AddINode( in1->in(1), phase->intcon(y<<z) ) );
return new (phase->C, 3) URShiftINode( a, in1->in(2) );
}
}
}
return AddNode::Ideal(phase, can_reshape);
}
//------------------------------Identity---------------------------------------
// Fold (x-y)+y OR y+(x-y) into x
Node *AddINode::Identity( PhaseTransform *phase ) {
if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
return in(1)->in(1);
}
else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
return in(2)->in(1);
}
return AddNode::Identity(phase);
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs. Guaranteed never
// to be passed a TOP or BOTTOM type, these are filtered out by
// pre-check.
const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeInt *r0 = t0->is_int(); // Handy access
const TypeInt *r1 = t1->is_int();
int lo = r0->_lo + r1->_lo;
int hi = r0->_hi + r1->_hi;
if( !(r0->is_con() && r1->is_con()) ) {
// Not both constants, compute approximate result
if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
lo = min_jint; hi = max_jint; // Underflow on the low side
}
if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
lo = min_jint; hi = max_jint; // Overflow on the high side
}
if( lo > hi ) { // Handle overflow
lo = min_jint; hi = max_jint;
}
} else {
// both constants, compute precise result using 'lo' and 'hi'
// Semantics define overflow and underflow for integer addition
// as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
}
return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
}
//=============================================================================
//------------------------------Idealize---------------------------------------
Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
Node* in1 = in(1);
Node* in2 = in(2);
int op1 = in1->Opcode();
int op2 = in2->Opcode();
// Fold (con1-x)+con2 into (con1+con2)-x
if ( op1 == Op_AddL && op2 == Op_SubL ) {
// Swap edges to try optimizations below
in1 = in2;
in2 = in(1);
op1 = op2;
op2 = in2->Opcode();
}
// Fold (con1-x)+con2 into (con1+con2)-x
if( op1 == Op_SubL ) {
const Type *t_sub1 = phase->type( in1->in(1) );
const Type *t_2 = phase->type( in2 );
if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
in1->in(2) );
// Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
if( op2 == Op_SubL ) {
// Check for dead cycle: d = (a-b)+(c-d)
assert( in1->in(2) != this && in2->in(2) != this,
"dead loop in AddLNode::Ideal" );
Node *sub = new (phase->C, 3) SubLNode(NULL, NULL);
sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in1->in(1), in2->in(1) ) ));
sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in1->in(2), in2->in(2) ) ));
return sub;
}
// Convert "(a-b)+(b+c)" into "(a+c)"
if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) {
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
return new (phase->C, 3) AddLNode(in1->in(1), in2->in(2));
}
// Convert "(a-b)+(c+b)" into "(a+c)"
if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) {
assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
return new (phase->C, 3) AddLNode(in1->in(1), in2->in(1));
}
// Convert "(a-b)+(b-c)" into "(a-c)"
if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) {
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
return new (phase->C, 3) SubLNode(in1->in(1), in2->in(2));
}
// Convert "(a-b)+(c-a)" into "(c-b)"
if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) {
assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
return new (phase->C, 3) SubLNode(in2->in(1), in1->in(2));
}
}
// Convert "x+(0-y)" into "(x-y)"
if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO )
return new (phase->C, 3) SubLNode( in1, in2->in(2) );
// Convert "(0-y)+x" into "(x-y)"
if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO )
return new (phase->C, 3) SubLNode( in2, in1->in(2) );
// Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
// into "(X<<1)+Y" and let shift-folding happen.
if( op2 == Op_AddL &&
in2->in(1) == in1 &&
op1 != Op_ConL &&
0 ) {
Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in1,phase->intcon(1)));
return new (phase->C, 3) AddLNode(shift,in2->in(2));
}
return AddNode::Ideal(phase, can_reshape);
}
//------------------------------Identity---------------------------------------
// Fold (x-y)+y OR y+(x-y) into x
Node *AddLNode::Identity( PhaseTransform *phase ) {
if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
return in(1)->in(1);
}
else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
return in(2)->in(1);
}
return AddNode::Identity(phase);
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs. Guaranteed never
// to be passed a TOP or BOTTOM type, these are filtered out by
// pre-check.
const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeLong *r0 = t0->is_long(); // Handy access
const TypeLong *r1 = t1->is_long();
jlong lo = r0->_lo + r1->_lo;
jlong hi = r0->_hi + r1->_hi;
if( !(r0->is_con() && r1->is_con()) ) {
// Not both constants, compute approximate result
if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
lo =min_jlong; hi = max_jlong; // Underflow on the low side
}
if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
lo = min_jlong; hi = max_jlong; // Overflow on the high side
}
if( lo > hi ) { // Handle overflow
lo = min_jlong; hi = max_jlong;
}
} else {
// both constants, compute precise result using 'lo' and 'hi'
// Semantics define overflow and underflow for integer addition
// as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
}
return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
}
//=============================================================================
//------------------------------add_of_identity--------------------------------
// Check for addition of the identity
const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
// x ADD 0 should return x unless 'x' is a -zero
//
// const Type *zero = add_id(); // The additive identity
// jfloat f1 = t1->getf();
// jfloat f2 = t2->getf();
//
// if( t1->higher_equal( zero ) ) return t2;
// if( t2->higher_equal( zero ) ) return t1;
return NULL;
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.
// This also type-checks the inputs for sanity. Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
// We must be adding 2 float constants.
return TypeF::make( t0->getf() + t1->getf() );
}
//------------------------------Ideal------------------------------------------
Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
}
// Floating point additions are not associative because of boundary conditions (infinity)
return commute(this,
phase->type( in(1) )->singleton(),
phase->type( in(2) )->singleton() ) ? this : NULL;
}
//=============================================================================
//------------------------------add_of_identity--------------------------------
// Check for addition of the identity
const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
// x ADD 0 should return x unless 'x' is a -zero
//
// const Type *zero = add_id(); // The additive identity
// jfloat f1 = t1->getf();
// jfloat f2 = t2->getf();
//
// if( t1->higher_equal( zero ) ) return t2;
// if( t2->higher_equal( zero ) ) return t1;
return NULL;
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.
// This also type-checks the inputs for sanity. Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
// We must be adding 2 double constants.
return TypeD::make( t0->getd() + t1->getd() );
}
//------------------------------Ideal------------------------------------------
Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
}
// Floating point additions are not associative because of boundary conditions (infinity)
return commute(this,
phase->type( in(1) )->singleton(),
phase->type( in(2) )->singleton() ) ? this : NULL;
}
//=============================================================================
//------------------------------Identity---------------------------------------
// If one input is a constant 0, return the other input.
Node *AddPNode::Identity( PhaseTransform *phase ) {
return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
}
//------------------------------Idealize---------------------------------------
Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// Bail out if dead inputs
if( phase->type( in(Address) ) == Type::TOP ) return NULL;
// If the left input is an add of a constant, flatten the expression tree.
const Node *n = in(Address);
if (n->is_AddP() && n->in(Base) == in(Base)) {
const AddPNode *addp = n->as_AddP(); // Left input is an AddP
assert( !addp->in(Address)->is_AddP() ||
addp->in(Address)->as_AddP() != addp,
"dead loop in AddPNode::Ideal" );
// Type of left input's right input
const Type *t = phase->type( addp->in(Offset) );
if( t == Type::TOP ) return NULL;
const TypeX *t12 = t->is_intptr_t();
if( t12->is_con() ) { // Left input is an add of a constant?
// If the right input is a constant, combine constants
const Type *temp_t2 = phase->type( in(Offset) );
if( temp_t2 == Type::TOP ) return NULL;
const TypeX *t2 = temp_t2->is_intptr_t();
Node* address;
Node* offset;
if( t2->is_con() ) {
// The Add of the flattened expression
address = addp->in(Address);
offset = phase->MakeConX(t2->get_con() + t12->get_con());
} else {
// Else move the constant to the right. ((A+con)+B) into ((A+B)+con)
address = phase->transform(new (phase->C, 4) AddPNode(in(Base),addp->in(Address),in(Offset)));
offset = addp->in(Offset);
}
PhaseIterGVN *igvn = phase->is_IterGVN();
if( igvn ) {
set_req_X(Address,address,igvn);
set_req_X(Offset,offset,igvn);
} else {
set_req(Address,address);
set_req(Offset,offset);
}
return this;
}
}
// Raw pointers?
if( in(Base)->bottom_type() == Type::TOP ) {
// If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
Node* offset = in(Offset);
return new (phase->C, 2) CastX2PNode(offset);
}
}
// If the right is an add of a constant, push the offset down.
// Convert: (ptr + (offset+con)) into (ptr+offset)+con.
// The idea is to merge array_base+scaled_index groups together,
// and only have different constant offsets from the same base.
const Node *add = in(Offset);
if( add->Opcode() == Op_AddX && add->in(1) != add ) {
const Type *t22 = phase->type( add->in(2) );
if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant?
set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),in(Address),add->in(1))));
set_req(Offset, add->in(2));
return this; // Made progress
}
}
return NULL; // No progress
}
//------------------------------bottom_type------------------------------------
// Bottom-type is the pointer-type with unknown offset.
const Type *AddPNode::bottom_type() const {
if (in(Address) == NULL) return TypePtr::BOTTOM;
const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
if( !tp ) return Type::TOP; // TOP input means TOP output
assert( in(Offset)->Opcode() != Op_ConP, "" );
const Type *t = in(Offset)->bottom_type();
if( t == Type::TOP )
return tp->add_offset(Type::OffsetTop);
const TypeX *tx = t->is_intptr_t();
intptr_t txoffset = Type::OffsetBot;
if (tx->is_con()) { // Left input is an add of a constant?
txoffset = tx->get_con();
}
return tp->add_offset(txoffset);
}
//------------------------------Value------------------------------------------
const Type *AddPNode::Value( PhaseTransform *phase ) const {
// Either input is TOP ==> the result is TOP
const Type *t1 = phase->type( in(Address) );
const Type *t2 = phase->type( in(Offset) );
if( t1 == Type::TOP ) return Type::TOP;
if( t2 == Type::TOP ) return Type::TOP;
// Left input is a pointer
const TypePtr *p1 = t1->isa_ptr();
// Right input is an int
const TypeX *p2 = t2->is_intptr_t();
// Add 'em
intptr_t p2offset = Type::OffsetBot;
if (p2->is_con()) { // Left input is an add of a constant?
p2offset = p2->get_con();
}
return p1->add_offset(p2offset);
}
//------------------------Ideal_base_and_offset--------------------------------
// Split an oop pointer into a base and offset.
// (The offset might be Type::OffsetBot in the case of an array.)
// Return the base, or NULL if failure.
Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
// second return value:
intptr_t& offset) {
if (ptr->is_AddP()) {
Node* base = ptr->in(AddPNode::Base);
Node* addr = ptr->in(AddPNode::Address);
Node* offs = ptr->in(AddPNode::Offset);
if (base == addr || base->is_top()) {
offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
if (offset != Type::OffsetBot) {
return addr;
}
}
}
offset = Type::OffsetBot;
return NULL;
}
//------------------------------unpack_offsets----------------------------------
// Collect the AddP offset values into the elements array, giving up
// if there are more than length.
int AddPNode::unpack_offsets(Node* elements[], int length) {
int count = 0;
Node* addr = this;
Node* base = addr->in(AddPNode::Base);
while (addr->is_AddP()) {
if (addr->in(AddPNode::Base) != base) {
// give up
return -1;
}
elements[count++] = addr->in(AddPNode::Offset);
if (count == length) {
// give up
return -1;
}
addr = addr->in(AddPNode::Address);
}
return count;
}
//------------------------------match_edge-------------------------------------
// Do we Match on this edge index or not? Do not match base pointer edge
uint AddPNode::match_edge(uint idx) const {
return idx > Base;
}
//---------------------------mach_bottom_type----------------------------------
// Utility function for use by ADLC. Implements bottom_type for matched AddP.
const Type *AddPNode::mach_bottom_type( const MachNode* n) {
Node* base = n->in(Base);
const Type *t = base->bottom_type();
if ( t == Type::TOP ) {
// an untyped pointer
return TypeRawPtr::BOTTOM;
}
const TypePtr* tp = t->isa_oopptr();
if ( tp == NULL ) return t;
if ( tp->_offset == TypePtr::OffsetBot ) return tp;
// We must carefully add up the various offsets...
intptr_t offset = 0;
const TypePtr* tptr = NULL;
uint numopnds = n->num_opnds();
uint index = n->oper_input_base();
for ( uint i = 1; i < numopnds; i++ ) {
MachOper *opnd = n->_opnds[i];
// Check for any interesting operand info.
// In particular, check for both memory and non-memory operands.
// %%%%% Clean this up: use xadd_offset
intptr_t con = opnd->constant();
if ( con == TypePtr::OffsetBot ) goto bottom_out;
offset += con;
con = opnd->constant_disp();
if ( con == TypePtr::OffsetBot ) goto bottom_out;
offset += con;
if( opnd->scale() != 0 ) goto bottom_out;
// Check each operand input edge. Find the 1 allowed pointer
// edge. Other edges must be index edges; track exact constant
// inputs and otherwise assume the worst.
for ( uint j = opnd->num_edges(); j > 0; j-- ) {
Node* edge = n->in(index++);
const Type* et = edge->bottom_type();
const TypeX* eti = et->isa_intptr_t();
if ( eti == NULL ) {
// there must be one pointer among the operands
guarantee(tptr == NULL, "must be only one pointer operand");
tptr = et->isa_oopptr();
guarantee(tptr != NULL, "non-int operand must be pointer");
if (tptr->higher_equal(tp->add_offset(tptr->offset())))
tp = tptr; // Set more precise type for bailout
continue;
}
if ( eti->_hi != eti->_lo ) goto bottom_out;
offset += eti->_lo;
}
}
guarantee(tptr != NULL, "must be exactly one pointer operand");
return tptr->add_offset(offset);
bottom_out:
return tp->add_offset(TypePtr::OffsetBot);
}
//=============================================================================
//------------------------------Identity---------------------------------------
Node *OrINode::Identity( PhaseTransform *phase ) {
// x | x => x
if (phase->eqv(in(1), in(2))) {
return in(1);
}
return AddNode::Identity(phase);
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs IN THE CURRENT RING. For
// the logical operations the ring's ADD is really a logical OR function.
// This also type-checks the inputs for sanity. Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeInt *r0 = t0->is_int(); // Handy access
const TypeInt *r1 = t1->is_int();
// If both args are bool, can figure out better types
if ( r0 == TypeInt::BOOL ) {
if ( r1 == TypeInt::ONE) {
return TypeInt::ONE;
} else if ( r1 == TypeInt::BOOL ) {
return TypeInt::BOOL;
}
} else if ( r0 == TypeInt::ONE ) {
if ( r1 == TypeInt::BOOL ) {
return TypeInt::ONE;
}
}
// If either input is not a constant, just return all integers.
if( !r0->is_con() || !r1->is_con() )
return TypeInt::INT; // Any integer, but still no symbols.
// Otherwise just OR them bits.
return TypeInt::make( r0->get_con() | r1->get_con() );
}
//=============================================================================
//------------------------------Identity---------------------------------------
Node *OrLNode::Identity( PhaseTransform *phase ) {
// x | x => x
if (phase->eqv(in(1), in(2))) {
return in(1);
}
return AddNode::Identity(phase);
}
//------------------------------add_ring---------------------------------------
const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeLong *r0 = t0->is_long(); // Handy access
const TypeLong *r1 = t1->is_long();
// If either input is not a constant, just return all integers.
if( !r0->is_con() || !r1->is_con() )
return TypeLong::LONG; // Any integer, but still no symbols.
// Otherwise just OR them bits.
return TypeLong::make( r0->get_con() | r1->get_con() );
}
//=============================================================================
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs IN THE CURRENT RING. For
// the logical operations the ring's ADD is really a logical OR function.
// This also type-checks the inputs for sanity. Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeInt *r0 = t0->is_int(); // Handy access
const TypeInt *r1 = t1->is_int();
// Complementing a boolean?
if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
|| r1 == TypeInt::BOOL))
return TypeInt::BOOL;
if( !r0->is_con() || !r1->is_con() ) // Not constants
return TypeInt::INT; // Any integer, but still no symbols.
// Otherwise just XOR them bits.
return TypeInt::make( r0->get_con() ^ r1->get_con() );
}
//=============================================================================
//------------------------------add_ring---------------------------------------
const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeLong *r0 = t0->is_long(); // Handy access
const TypeLong *r1 = t1->is_long();
// If either input is not a constant, just return all integers.
if( !r0->is_con() || !r1->is_con() )
return TypeLong::LONG; // Any integer, but still no symbols.
// Otherwise just OR them bits.
return TypeLong::make( r0->get_con() ^ r1->get_con() );
}
//=============================================================================
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.
const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeInt *r0 = t0->is_int(); // Handy access
const TypeInt *r1 = t1->is_int();
// Otherwise just MAX them bits.
return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
}
//=============================================================================
//------------------------------Idealize---------------------------------------
// MINs show up in range-check loop limit calculations. Look for
// "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)"
Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
Node *progress = NULL;
// Force a right-spline graph
Node *l = in(1);
Node *r = in(2);
// Transform MinI1( MinI2(a,b), c) into MinI1( a, MinI2(b,c) )
// to force a right-spline graph for the rest of MinINode::Ideal().
if( l->Opcode() == Op_MinI ) {
assert( l != l->in(1), "dead loop in MinINode::Ideal" );
r = phase->transform(new (phase->C, 3) MinINode(l->in(2),r));
l = l->in(1);
set_req(1, l);
set_req(2, r);
return this;
}
// Get left input & constant
Node *x = l;
int x_off = 0;
if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
x->in(2)->is_Con() ) {
const Type *t = x->in(2)->bottom_type();
if( t == Type::TOP ) return NULL; // No progress
x_off = t->is_int()->get_con();
x = x->in(1);
}
// Scan a right-spline-tree for MINs
Node *y = r;
int y_off = 0;
// Check final part of MIN tree
if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
y->in(2)->is_Con() ) {
const Type *t = y->in(2)->bottom_type();
if( t == Type::TOP ) return NULL; // No progress
y_off = t->is_int()->get_con();
y = y->in(1);
}
if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
swap_edges(1, 2);
return this;
}
if( r->Opcode() == Op_MinI ) {
assert( r != r->in(2), "dead loop in MinINode::Ideal" );
y = r->in(1);
// Check final part of MIN tree
if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
y->in(2)->is_Con() ) {
const Type *t = y->in(2)->bottom_type();
if( t == Type::TOP ) return NULL; // No progress
y_off = t->is_int()->get_con();
y = y->in(1);
}
if( x->_idx > y->_idx )
return new (phase->C, 3) MinINode(r->in(1),phase->transform(new (phase->C, 3) MinINode(l,r->in(2))));
// See if covers: MIN2(x+c0,MIN2(y+c1,z))
if( !phase->eqv(x,y) ) return NULL;
// If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
// MIN2(x+c0 or x+c1 which less, z).
return new (phase->C, 3) MinINode(phase->transform(new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
} else {
// See if covers: MIN2(x+c0,y+c1)
if( !phase->eqv(x,y) ) return NULL;
// If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
return new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
}
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.
const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeInt *r0 = t0->is_int(); // Handy access
const TypeInt *r1 = t1->is_int();
// Otherwise just MIN them bits.
return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
}