6793825: Missing include dependancies for GCC without predefined headers
Summary: With predefined headers off for gcc, some .inline.hpp files aren't included to make definition visible for inline functions
Reviewed-by: jcoomes, xlu
/*
* Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_relocInfo.cpp.incl"
const RelocationHolder RelocationHolder::none; // its type is relocInfo::none
// Implementation of relocInfo
#ifdef ASSERT
relocInfo::relocInfo(relocType t, int off, int f) {
assert(t != data_prefix_tag, "cannot build a prefix this way");
assert((t & type_mask) == t, "wrong type");
assert((f & format_mask) == f, "wrong format");
assert(off >= 0 && off < offset_limit(), "offset out off bounds");
assert((off & (offset_unit-1)) == 0, "misaligned offset");
(*this) = relocInfo(t, RAW_BITS, off, f);
}
#endif
void relocInfo::initialize(CodeSection* dest, Relocation* reloc) {
relocInfo* data = this+1; // here's where the data might go
dest->set_locs_end(data); // sync end: the next call may read dest.locs_end
reloc->pack_data_to(dest); // maybe write data into locs, advancing locs_end
relocInfo* data_limit = dest->locs_end();
if (data_limit > data) {
relocInfo suffix = (*this);
data_limit = this->finish_prefix((short*) data_limit);
// Finish up with the suffix. (Hack note: pack_data_to might edit this.)
*data_limit = suffix;
dest->set_locs_end(data_limit+1);
}
}
relocInfo* relocInfo::finish_prefix(short* prefix_limit) {
assert(sizeof(relocInfo) == sizeof(short), "change this code");
short* p = (short*)(this+1);
assert(prefix_limit >= p, "must be a valid span of data");
int plen = prefix_limit - p;
if (plen == 0) {
debug_only(_value = 0xFFFF);
return this; // no data: remove self completely
}
if (plen == 1 && fits_into_immediate(p[0])) {
(*this) = immediate_relocInfo(p[0]); // move data inside self
return this+1;
}
// cannot compact, so just update the count and return the limit pointer
(*this) = prefix_relocInfo(plen); // write new datalen
assert(data() + datalen() == prefix_limit, "pointers must line up");
return (relocInfo*)prefix_limit;
}
void relocInfo::set_type(relocType t) {
int old_offset = addr_offset();
int old_format = format();
(*this) = relocInfo(t, old_offset, old_format);
assert(type()==(int)t, "sanity check");
assert(addr_offset()==old_offset, "sanity check");
assert(format()==old_format, "sanity check");
}
void relocInfo::set_format(int f) {
int old_offset = addr_offset();
assert((f & format_mask) == f, "wrong format");
_value = (_value & ~(format_mask << offset_width)) | (f << offset_width);
assert(addr_offset()==old_offset, "sanity check");
}
void relocInfo::change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type) {
bool found = false;
while (itr->next() && !found) {
if (itr->addr() == pc) {
assert(itr->type()==old_type, "wrong relocInfo type found");
itr->current()->set_type(new_type);
found=true;
}
}
assert(found, "no relocInfo found for pc");
}
void relocInfo::remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type) {
change_reloc_info_for_address(itr, pc, old_type, none);
}
// ----------------------------------------------------------------------------------------------------
// Implementation of RelocIterator
void RelocIterator::initialize(CodeBlob* cb, address begin, address limit) {
initialize_misc();
if (cb == NULL && begin != NULL) {
// allow CodeBlob to be deduced from beginning address
cb = CodeCache::find_blob(begin);
}
assert(cb != NULL, "must be able to deduce nmethod from other arguments");
_code = cb;
_current = cb->relocation_begin()-1;
_end = cb->relocation_end();
_addr = (address) cb->instructions_begin();
assert(!has_current(), "just checking");
address code_end = cb->instructions_end();
assert(begin == NULL || begin >= cb->instructions_begin(), "in bounds");
// FIX THIS assert(limit == NULL || limit <= code_end, "in bounds");
set_limits(begin, limit);
}
RelocIterator::RelocIterator(CodeSection* cs, address begin, address limit) {
initialize_misc();
_current = cs->locs_start()-1;
_end = cs->locs_end();
_addr = cs->start();
_code = NULL; // Not cb->blob();
CodeBuffer* cb = cs->outer();
assert((int)SECT_LIMIT == CodeBuffer::SECT_LIMIT, "my copy must be equal");
for (int n = 0; n < (int)SECT_LIMIT; n++) {
_section_start[n] = cb->code_section(n)->start();
}
assert(!has_current(), "just checking");
assert(begin == NULL || begin >= cs->start(), "in bounds");
assert(limit == NULL || limit <= cs->end(), "in bounds");
set_limits(begin, limit);
}
enum { indexCardSize = 128 };
struct RelocIndexEntry {
jint addr_offset; // offset from header_end of an addr()
jint reloc_offset; // offset from header_end of a relocInfo (prefix)
};
static inline int num_cards(int code_size) {
return (code_size-1) / indexCardSize;
}
int RelocIterator::locs_and_index_size(int code_size, int locs_size) {
if (!UseRelocIndex) return locs_size; // no index
code_size = round_to(code_size, oopSize);
locs_size = round_to(locs_size, oopSize);
int index_size = num_cards(code_size) * sizeof(RelocIndexEntry);
// format of indexed relocs:
// relocation_begin: relocInfo ...
// index: (addr,reloc#) ...
// indexSize :relocation_end
return locs_size + index_size + BytesPerInt;
}
void RelocIterator::create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end) {
address relocation_begin = (address)dest_begin;
address relocation_end = (address)dest_end;
int total_size = relocation_end - relocation_begin;
int locs_size = dest_count * sizeof(relocInfo);
if (!UseRelocIndex) {
Copy::fill_to_bytes(relocation_begin + locs_size, total_size-locs_size, 0);
return;
}
int index_size = total_size - locs_size - BytesPerInt; // find out how much space is left
int ncards = index_size / sizeof(RelocIndexEntry);
assert(total_size == locs_size + index_size + BytesPerInt, "checkin'");
assert(index_size >= 0 && index_size % sizeof(RelocIndexEntry) == 0, "checkin'");
jint* index_size_addr = (jint*)relocation_end - 1;
assert(sizeof(jint) == BytesPerInt, "change this code");
*index_size_addr = index_size;
if (index_size != 0) {
assert(index_size > 0, "checkin'");
RelocIndexEntry* index = (RelocIndexEntry *)(relocation_begin + locs_size);
assert(index == (RelocIndexEntry*)index_size_addr - ncards, "checkin'");
// walk over the relocations, and fill in index entries as we go
RelocIterator iter;
const address initial_addr = NULL;
relocInfo* const initial_current = dest_begin - 1; // biased by -1 like elsewhere
iter._code = NULL;
iter._addr = initial_addr;
iter._limit = (address)(intptr_t)(ncards * indexCardSize);
iter._current = initial_current;
iter._end = dest_begin + dest_count;
int i = 0;
address next_card_addr = (address)indexCardSize;
int addr_offset = 0;
int reloc_offset = 0;
while (true) {
// Checkpoint the iterator before advancing it.
addr_offset = iter._addr - initial_addr;
reloc_offset = iter._current - initial_current;
if (!iter.next()) break;
while (iter.addr() >= next_card_addr) {
index[i].addr_offset = addr_offset;
index[i].reloc_offset = reloc_offset;
i++;
next_card_addr += indexCardSize;
}
}
while (i < ncards) {
index[i].addr_offset = addr_offset;
index[i].reloc_offset = reloc_offset;
i++;
}
}
}
void RelocIterator::set_limits(address begin, address limit) {
int index_size = 0;
if (UseRelocIndex && _code != NULL) {
index_size = ((jint*)_end)[-1];
_end = (relocInfo*)( (address)_end - index_size - BytesPerInt );
}
_limit = limit;
// the limit affects this next stuff:
if (begin != NULL) {
#ifdef ASSERT
// In ASSERT mode we do not actually use the index, but simply
// check that its contents would have led us to the right answer.
address addrCheck = _addr;
relocInfo* infoCheck = _current;
#endif // ASSERT
if (index_size > 0) {
// skip ahead
RelocIndexEntry* index = (RelocIndexEntry*)_end;
RelocIndexEntry* index_limit = (RelocIndexEntry*)((address)index + index_size);
assert(_addr == _code->instructions_begin(), "_addr must be unadjusted");
int card = (begin - _addr) / indexCardSize;
if (card > 0) {
if (index+card-1 < index_limit) index += card-1;
else index = index_limit - 1;
#ifdef ASSERT
addrCheck = _addr + index->addr_offset;
infoCheck = _current + index->reloc_offset;
#else
// Advance the iterator immediately to the last valid state
// for the previous card. Calling "next" will then advance
// it to the first item on the required card.
_addr += index->addr_offset;
_current += index->reloc_offset;
#endif // ASSERT
}
}
relocInfo* backup;
address backup_addr;
while (true) {
backup = _current;
backup_addr = _addr;
#ifdef ASSERT
if (backup == infoCheck) {
assert(backup_addr == addrCheck, "must match"); addrCheck = NULL; infoCheck = NULL;
} else {
assert(addrCheck == NULL || backup_addr <= addrCheck, "must not pass addrCheck");
}
#endif // ASSERT
if (!next() || addr() >= begin) break;
}
assert(addrCheck == NULL || addrCheck == backup_addr, "must have matched addrCheck");
assert(infoCheck == NULL || infoCheck == backup, "must have matched infoCheck");
// At this point, either we are at the first matching record,
// or else there is no such record, and !has_current().
// In either case, revert to the immediatly preceding state.
_current = backup;
_addr = backup_addr;
set_has_current(false);
}
}
void RelocIterator::set_limit(address limit) {
address code_end = (address)code() + code()->size();
assert(limit == NULL || limit <= code_end, "in bounds");
_limit = limit;
}
void PatchingRelocIterator:: prepass() {
// turn breakpoints off during patching
_init_state = (*this); // save cursor
while (next()) {
if (type() == relocInfo::breakpoint_type) {
breakpoint_reloc()->set_active(false);
}
}
(RelocIterator&)(*this) = _init_state; // reset cursor for client
}
void PatchingRelocIterator:: postpass() {
// turn breakpoints back on after patching
(RelocIterator&)(*this) = _init_state; // reset cursor again
while (next()) {
if (type() == relocInfo::breakpoint_type) {
breakpoint_Relocation* bpt = breakpoint_reloc();
bpt->set_active(bpt->enabled());
}
}
}
// All the strange bit-encodings are in here.
// The idea is to encode relocation data which are small integers
// very efficiently (a single extra halfword). Larger chunks of
// relocation data need a halfword header to hold their size.
void RelocIterator::advance_over_prefix() {
if (_current->is_datalen()) {
_data = (short*) _current->data();
_datalen = _current->datalen();
_current += _datalen + 1; // skip the embedded data & header
} else {
_databuf = _current->immediate();
_data = &_databuf;
_datalen = 1;
_current++; // skip the header
}
// The client will see the following relocInfo, whatever that is.
// It is the reloc to which the preceding data applies.
}
address RelocIterator::compute_section_start(int n) const {
// This routine not only computes a section start, but also
// memoizes it for later.
#define CACHE ((RelocIterator*)this)->_section_start[n]
CodeBlob* cb = code();
guarantee(cb != NULL, "must have a code blob");
if (n == CodeBuffer::SECT_INSTS)
return CACHE = cb->instructions_begin();
assert(cb->is_nmethod(), "only nmethods have these sections");
nmethod* nm = (nmethod*) cb;
address res = NULL;
switch (n) {
case CodeBuffer::SECT_STUBS:
res = nm->stub_begin();
break;
case CodeBuffer::SECT_CONSTS:
res = nm->consts_begin();
break;
default:
ShouldNotReachHere();
}
assert(nm->contains(res) || res == nm->instructions_end(), "tame pointer");
CACHE = res;
return res;
#undef CACHE
}
Relocation* RelocIterator::reloc() {
// (take the "switch" out-of-line)
relocInfo::relocType t = type();
if (false) {}
#define EACH_TYPE(name) \
else if (t == relocInfo::name##_type) { \
return name##_reloc(); \
}
APPLY_TO_RELOCATIONS(EACH_TYPE);
#undef EACH_TYPE
assert(t == relocInfo::none, "must be padding");
return new(_rh) Relocation();
}
//////// Methods for flyweight Relocation types
RelocationHolder RelocationHolder::plus(int offset) const {
if (offset != 0) {
switch (type()) {
case relocInfo::none:
break;
case relocInfo::oop_type:
{
oop_Relocation* r = (oop_Relocation*)reloc();
return oop_Relocation::spec(r->oop_index(), r->offset() + offset);
}
default:
ShouldNotReachHere();
}
}
return (*this);
}
void Relocation::guarantee_size() {
guarantee(false, "Make _relocbuf bigger!");
}
// some relocations can compute their own values
address Relocation::value() {
ShouldNotReachHere();
return NULL;
}
void Relocation::set_value(address x) {
ShouldNotReachHere();
}
RelocationHolder Relocation::spec_simple(relocInfo::relocType rtype) {
if (rtype == relocInfo::none) return RelocationHolder::none;
relocInfo ri = relocInfo(rtype, 0);
RelocIterator itr;
itr.set_current(ri);
itr.reloc();
return itr._rh;
}
static inline bool is_index(intptr_t index) {
return 0 < index && index < os::vm_page_size();
}
int32_t Relocation::runtime_address_to_index(address runtime_address) {
assert(!is_index((intptr_t)runtime_address), "must not look like an index");
if (runtime_address == NULL) return 0;
StubCodeDesc* p = StubCodeDesc::desc_for(runtime_address);
if (p != NULL && p->begin() == runtime_address) {
assert(is_index(p->index()), "there must not be too many stubs");
return (int32_t)p->index();
} else {
// Known "miscellaneous" non-stub pointers:
// os::get_polling_page(), SafepointSynchronize::address_of_state()
if (PrintRelocations) {
tty->print_cr("random unregistered address in relocInfo: " INTPTR_FORMAT, runtime_address);
}
#ifndef _LP64
return (int32_t) (intptr_t)runtime_address;
#else
// didn't fit return non-index
return -1;
#endif /* _LP64 */
}
}
address Relocation::index_to_runtime_address(int32_t index) {
if (index == 0) return NULL;
if (is_index(index)) {
StubCodeDesc* p = StubCodeDesc::desc_for_index(index);
assert(p != NULL, "there must be a stub for this index");
return p->begin();
} else {
#ifndef _LP64
// this only works on 32bit machines
return (address) ((intptr_t) index);
#else
fatal("Relocation::index_to_runtime_address, int32_t not pointer sized");
return NULL;
#endif /* _LP64 */
}
}
address Relocation::old_addr_for(address newa,
const CodeBuffer* src, CodeBuffer* dest) {
int sect = dest->section_index_of(newa);
guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
address ostart = src->code_section(sect)->start();
address nstart = dest->code_section(sect)->start();
return ostart + (newa - nstart);
}
address Relocation::new_addr_for(address olda,
const CodeBuffer* src, CodeBuffer* dest) {
debug_only(const CodeBuffer* src0 = src);
int sect = CodeBuffer::SECT_NONE;
// Look for olda in the source buffer, and all previous incarnations
// if the source buffer has been expanded.
for (; src != NULL; src = src->before_expand()) {
sect = src->section_index_of(olda);
if (sect != CodeBuffer::SECT_NONE) break;
}
guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
address ostart = src->code_section(sect)->start();
address nstart = dest->code_section(sect)->start();
return nstart + (olda - ostart);
}
void Relocation::normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections) {
address addr0 = addr;
if (addr0 == NULL || dest->allocates2(addr0)) return;
CodeBuffer* cb = dest->outer();
addr = new_addr_for(addr0, cb, cb);
assert(allow_other_sections || dest->contains2(addr),
"addr must be in required section");
}
void CallRelocation::set_destination(address x) {
pd_set_call_destination(x);
}
void CallRelocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
// Usually a self-relative reference to an external routine.
// On some platforms, the reference is absolute (not self-relative).
// The enhanced use of pd_call_destination sorts this all out.
address orig_addr = old_addr_for(addr(), src, dest);
address callee = pd_call_destination(orig_addr);
// Reassert the callee address, this time in the new copy of the code.
pd_set_call_destination(callee);
}
//// pack/unpack methods
void oop_Relocation::pack_data_to(CodeSection* dest) {
short* p = (short*) dest->locs_end();
p = pack_2_ints_to(p, _oop_index, _offset);
dest->set_locs_end((relocInfo*) p);
}
void oop_Relocation::unpack_data() {
unpack_2_ints(_oop_index, _offset);
}
void virtual_call_Relocation::pack_data_to(CodeSection* dest) {
short* p = (short*) dest->locs_end();
address point = dest->locs_point();
// Try to make a pointer NULL first.
if (_oop_limit >= point &&
_oop_limit <= point + NativeCall::instruction_size) {
_oop_limit = NULL;
}
// If the _oop_limit is NULL, it "defaults" to the end of the call.
// See ic_call_Relocation::oop_limit() below.
normalize_address(_first_oop, dest);
normalize_address(_oop_limit, dest);
jint x0 = scaled_offset_null_special(_first_oop, point);
jint x1 = scaled_offset_null_special(_oop_limit, point);
p = pack_2_ints_to(p, x0, x1);
dest->set_locs_end((relocInfo*) p);
}
void virtual_call_Relocation::unpack_data() {
jint x0, x1; unpack_2_ints(x0, x1);
address point = addr();
_first_oop = x0==0? NULL: address_from_scaled_offset(x0, point);
_oop_limit = x1==0? NULL: address_from_scaled_offset(x1, point);
}
void static_stub_Relocation::pack_data_to(CodeSection* dest) {
short* p = (short*) dest->locs_end();
CodeSection* insts = dest->outer()->insts();
normalize_address(_static_call, insts);
p = pack_1_int_to(p, scaled_offset(_static_call, insts->start()));
dest->set_locs_end((relocInfo*) p);
}
void static_stub_Relocation::unpack_data() {
address base = binding()->section_start(CodeBuffer::SECT_INSTS);
_static_call = address_from_scaled_offset(unpack_1_int(), base);
}
void external_word_Relocation::pack_data_to(CodeSection* dest) {
short* p = (short*) dest->locs_end();
int32_t index = runtime_address_to_index(_target);
#ifndef _LP64
p = pack_1_int_to(p, index);
#else
if (is_index(index)) {
p = pack_2_ints_to(p, index, 0);
} else {
jlong t = (jlong) _target;
int32_t lo = low(t);
int32_t hi = high(t);
p = pack_2_ints_to(p, lo, hi);
DEBUG_ONLY(jlong t1 = jlong_from(hi, lo));
assert(!is_index(t1) && (address) t1 == _target, "not symmetric");
}
#endif /* _LP64 */
dest->set_locs_end((relocInfo*) p);
}
void external_word_Relocation::unpack_data() {
#ifndef _LP64
_target = index_to_runtime_address(unpack_1_int());
#else
int32_t lo, hi;
unpack_2_ints(lo, hi);
jlong t = jlong_from(hi, lo);;
if (is_index(t)) {
_target = index_to_runtime_address(t);
} else {
_target = (address) t;
}
#endif /* _LP64 */
}
void internal_word_Relocation::pack_data_to(CodeSection* dest) {
short* p = (short*) dest->locs_end();
normalize_address(_target, dest, true);
// Check whether my target address is valid within this section.
// If not, strengthen the relocation type to point to another section.
int sindex = _section;
if (sindex == CodeBuffer::SECT_NONE && _target != NULL
&& (!dest->allocates(_target) || _target == dest->locs_point())) {
sindex = dest->outer()->section_index_of(_target);
guarantee(sindex != CodeBuffer::SECT_NONE, "must belong somewhere");
relocInfo* base = dest->locs_end() - 1;
assert(base->type() == this->type(), "sanity");
// Change the written type, to be section_word_type instead.
base->set_type(relocInfo::section_word_type);
}
// Note: An internal_word relocation cannot refer to its own instruction,
// because we reserve "0" to mean that the pointer itself is embedded
// in the code stream. We use a section_word relocation for such cases.
if (sindex == CodeBuffer::SECT_NONE) {
assert(type() == relocInfo::internal_word_type, "must be base class");
guarantee(_target == NULL || dest->allocates2(_target), "must be within the given code section");
jint x0 = scaled_offset_null_special(_target, dest->locs_point());
assert(!(x0 == 0 && _target != NULL), "correct encoding of null target");
p = pack_1_int_to(p, x0);
} else {
assert(_target != NULL, "sanity");
CodeSection* sect = dest->outer()->code_section(sindex);
guarantee(sect->allocates2(_target), "must be in correct section");
address base = sect->start();
jint offset = scaled_offset(_target, base);
assert((uint)sindex < (uint)CodeBuffer::SECT_LIMIT, "sanity");
assert(CodeBuffer::SECT_LIMIT <= (1 << section_width), "section_width++");
p = pack_1_int_to(p, (offset << section_width) | sindex);
}
dest->set_locs_end((relocInfo*) p);
}
void internal_word_Relocation::unpack_data() {
jint x0 = unpack_1_int();
_target = x0==0? NULL: address_from_scaled_offset(x0, addr());
_section = CodeBuffer::SECT_NONE;
}
void section_word_Relocation::unpack_data() {
jint x = unpack_1_int();
jint offset = (x >> section_width);
int sindex = (x & ((1<<section_width)-1));
address base = binding()->section_start(sindex);
_section = sindex;
_target = address_from_scaled_offset(offset, base);
}
void breakpoint_Relocation::pack_data_to(CodeSection* dest) {
short* p = (short*) dest->locs_end();
address point = dest->locs_point();
*p++ = _bits;
assert(_target != NULL, "sanity");
if (internal()) normalize_address(_target, dest);
jint target_bits =
(jint)( internal() ? scaled_offset (_target, point)
: runtime_address_to_index(_target) );
if (settable()) {
// save space for set_target later
p = add_jint(p, target_bits);
} else {
p = add_var_int(p, target_bits);
}
for (int i = 0; i < instrlen(); i++) {
// put placeholder words until bytes can be saved
p = add_short(p, (short)0x7777);
}
dest->set_locs_end((relocInfo*) p);
}
void breakpoint_Relocation::unpack_data() {
_bits = live_bits();
int targetlen = datalen() - 1 - instrlen();
jint target_bits = 0;
if (targetlen == 0) target_bits = 0;
else if (targetlen == 1) target_bits = *(data()+1);
else if (targetlen == 2) target_bits = relocInfo::jint_from_data(data()+1);
else { ShouldNotReachHere(); }
_target = internal() ? address_from_scaled_offset(target_bits, addr())
: index_to_runtime_address (target_bits);
}
//// miscellaneous methods
oop* oop_Relocation::oop_addr() {
int n = _oop_index;
if (n == 0) {
// oop is stored in the code stream
return (oop*) pd_address_in_code();
} else {
// oop is stored in table at CodeBlob::oops_begin
return code()->oop_addr_at(n);
}
}
oop oop_Relocation::oop_value() {
oop v = *oop_addr();
// clean inline caches store a special pseudo-null
if (v == (oop)Universe::non_oop_word()) v = NULL;
return v;
}
void oop_Relocation::fix_oop_relocation() {
if (!oop_is_immediate()) {
// get the oop from the pool, and re-insert it into the instruction:
set_value(value());
}
}
RelocIterator virtual_call_Relocation::parse_ic(CodeBlob* &code, address &ic_call, address &first_oop,
oop* &oop_addr, bool *is_optimized) {
assert(ic_call != NULL, "ic_call address must be set");
assert(ic_call != NULL || first_oop != NULL, "must supply a non-null input");
if (code == NULL) {
if (ic_call != NULL) {
code = CodeCache::find_blob(ic_call);
} else if (first_oop != NULL) {
code = CodeCache::find_blob(first_oop);
}
assert(code != NULL, "address to parse must be in CodeBlob");
}
assert(ic_call == NULL || code->contains(ic_call), "must be in CodeBlob");
assert(first_oop == NULL || code->contains(first_oop), "must be in CodeBlob");
address oop_limit = NULL;
if (ic_call != NULL) {
// search for the ic_call at the given address
RelocIterator iter(code, ic_call, ic_call+1);
bool ret = iter.next();
assert(ret == true, "relocInfo must exist at this address");
assert(iter.addr() == ic_call, "must find ic_call");
if (iter.type() == relocInfo::virtual_call_type) {
virtual_call_Relocation* r = iter.virtual_call_reloc();
first_oop = r->first_oop();
oop_limit = r->oop_limit();
*is_optimized = false;
} else {
assert(iter.type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
*is_optimized = true;
oop_addr = NULL;
first_oop = NULL;
return iter;
}
}
// search for the first_oop, to get its oop_addr
RelocIterator all_oops(code, first_oop);
RelocIterator iter = all_oops;
iter.set_limit(first_oop+1);
bool found_oop = false;
while (iter.next()) {
if (iter.type() == relocInfo::oop_type) {
assert(iter.addr() == first_oop, "must find first_oop");
oop_addr = iter.oop_reloc()->oop_addr();
found_oop = true;
break;
}
}
assert(found_oop, "must find first_oop");
bool did_reset = false;
while (ic_call == NULL) {
// search forward for the ic_call matching the given first_oop
while (iter.next()) {
if (iter.type() == relocInfo::virtual_call_type) {
virtual_call_Relocation* r = iter.virtual_call_reloc();
if (r->first_oop() == first_oop) {
ic_call = r->addr();
oop_limit = r->oop_limit();
break;
}
}
}
guarantee(!did_reset, "cannot find ic_call");
iter = RelocIterator(code); // search the whole CodeBlob
did_reset = true;
}
assert(oop_limit != NULL && first_oop != NULL && ic_call != NULL, "");
all_oops.set_limit(oop_limit);
return all_oops;
}
address virtual_call_Relocation::first_oop() {
assert(_first_oop != NULL && _first_oop < addr(), "must precede ic_call");
return _first_oop;
}
address virtual_call_Relocation::oop_limit() {
if (_oop_limit == NULL)
return addr() + NativeCall::instruction_size;
else
return _oop_limit;
}
void virtual_call_Relocation::clear_inline_cache() {
// No stubs for ICs
// Clean IC
ResourceMark rm;
CompiledIC* icache = CompiledIC_at(this);
icache->set_to_clean();
}
void opt_virtual_call_Relocation::clear_inline_cache() {
// No stubs for ICs
// Clean IC
ResourceMark rm;
CompiledIC* icache = CompiledIC_at(this);
icache->set_to_clean();
}
address opt_virtual_call_Relocation::static_stub() {
// search for the static stub who points back to this static call
address static_call_addr = addr();
RelocIterator iter(code());
while (iter.next()) {
if (iter.type() == relocInfo::static_stub_type) {
if (iter.static_stub_reloc()->static_call() == static_call_addr) {
return iter.addr();
}
}
}
return NULL;
}
void static_call_Relocation::clear_inline_cache() {
// Safe call site info
CompiledStaticCall* handler = compiledStaticCall_at(this);
handler->set_to_clean();
}
address static_call_Relocation::static_stub() {
// search for the static stub who points back to this static call
address static_call_addr = addr();
RelocIterator iter(code());
while (iter.next()) {
if (iter.type() == relocInfo::static_stub_type) {
if (iter.static_stub_reloc()->static_call() == static_call_addr) {
return iter.addr();
}
}
}
return NULL;
}
void static_stub_Relocation::clear_inline_cache() {
// Call stub is only used when calling the interpreted code.
// It does not really need to be cleared, except that we want to clean out the methodoop.
CompiledStaticCall::set_stub_to_clean(this);
}
void external_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
address target = _target;
if (target == NULL) {
// An absolute embedded reference to an external location,
// which means there is nothing to fix here.
return;
}
// Probably this reference is absolute, not relative, so the
// following is probably a no-op.
assert(src->section_index_of(target) == CodeBuffer::SECT_NONE, "sanity");
set_value(target);
}
address external_word_Relocation::target() {
address target = _target;
if (target == NULL) {
target = pd_get_address_from_code();
}
return target;
}
void internal_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
address target = _target;
if (target == NULL) {
if (addr_in_const()) {
target = new_addr_for(*(address*)addr(), src, dest);
} else {
target = new_addr_for(pd_get_address_from_code(), src, dest);
}
}
set_value(target);
}
address internal_word_Relocation::target() {
address target = _target;
if (target == NULL) {
target = pd_get_address_from_code();
}
return target;
}
breakpoint_Relocation::breakpoint_Relocation(int kind, address target, bool internal) {
bool active = false;
bool enabled = (kind == initialization);
bool removable = (kind != safepoint);
bool settable = (target == NULL);
int bits = kind;
if (enabled) bits |= enabled_state;
if (internal) bits |= internal_attr;
if (removable) bits |= removable_attr;
if (settable) bits |= settable_attr;
_bits = bits | high_bit;
_target = target;
assert(this->kind() == kind, "kind encoded");
assert(this->enabled() == enabled, "enabled encoded");
assert(this->active() == active, "active encoded");
assert(this->internal() == internal, "internal encoded");
assert(this->removable() == removable, "removable encoded");
assert(this->settable() == settable, "settable encoded");
}
address breakpoint_Relocation::target() const {
return _target;
}
void breakpoint_Relocation::set_target(address x) {
assert(settable(), "must be settable");
jint target_bits =
(jint)(internal() ? scaled_offset (x, addr())
: runtime_address_to_index(x));
short* p = &live_bits() + 1;
p = add_jint(p, target_bits);
assert(p == instrs(), "new target must fit");
_target = x;
}
void breakpoint_Relocation::set_enabled(bool b) {
if (enabled() == b) return;
if (b) {
set_bits(bits() | enabled_state);
} else {
set_active(false); // remove the actual breakpoint insn, if any
set_bits(bits() & ~enabled_state);
}
}
void breakpoint_Relocation::set_active(bool b) {
assert(!b || enabled(), "cannot activate a disabled breakpoint");
if (active() == b) return;
// %%% should probably seize a lock here (might not be the right lock)
//MutexLockerEx ml_patch(Patching_lock, true);
//if (active() == b) return; // recheck state after locking
if (b) {
set_bits(bits() | active_state);
if (instrlen() == 0)
fatal("breakpoints in original code must be undoable");
pd_swap_in_breakpoint (addr(), instrs(), instrlen());
} else {
set_bits(bits() & ~active_state);
pd_swap_out_breakpoint(addr(), instrs(), instrlen());
}
}
//---------------------------------------------------------------------------------
// Non-product code
#ifndef PRODUCT
static const char* reloc_type_string(relocInfo::relocType t) {
switch (t) {
#define EACH_CASE(name) \
case relocInfo::name##_type: \
return #name;
APPLY_TO_RELOCATIONS(EACH_CASE);
#undef EACH_CASE
case relocInfo::none:
return "none";
case relocInfo::data_prefix_tag:
return "prefix";
default:
return "UNKNOWN RELOC TYPE";
}
}
void RelocIterator::print_current() {
if (!has_current()) {
tty->print_cr("(no relocs)");
return;
}
tty->print("relocInfo@" INTPTR_FORMAT " [type=%d(%s) addr=" INTPTR_FORMAT,
_current, type(), reloc_type_string((relocInfo::relocType) type()), _addr);
if (current()->format() != 0)
tty->print(" format=%d", current()->format());
if (datalen() == 1) {
tty->print(" data=%d", data()[0]);
} else if (datalen() > 0) {
tty->print(" data={");
for (int i = 0; i < datalen(); i++) {
tty->print("%04x", data()[i] & 0xFFFF);
}
tty->print("}");
}
tty->print("]");
switch (type()) {
case relocInfo::oop_type:
{
oop_Relocation* r = oop_reloc();
oop* oop_addr = NULL;
oop raw_oop = NULL;
oop oop_value = NULL;
if (code() != NULL || r->oop_is_immediate()) {
oop_addr = r->oop_addr();
raw_oop = *oop_addr;
oop_value = r->oop_value();
}
tty->print(" | [oop_addr=" INTPTR_FORMAT " *=" INTPTR_FORMAT " offset=%d]",
oop_addr, (address)raw_oop, r->offset());
// Do not print the oop by default--we want this routine to
// work even during GC or other inconvenient times.
if (WizardMode && oop_value != NULL) {
tty->print("oop_value=" INTPTR_FORMAT ": ", (address)oop_value);
oop_value->print_value_on(tty);
}
break;
}
case relocInfo::external_word_type:
case relocInfo::internal_word_type:
case relocInfo::section_word_type:
{
DataRelocation* r = (DataRelocation*) reloc();
tty->print(" | [target=" INTPTR_FORMAT "]", r->value()); //value==target
break;
}
case relocInfo::static_call_type:
case relocInfo::runtime_call_type:
{
CallRelocation* r = (CallRelocation*) reloc();
tty->print(" | [destination=" INTPTR_FORMAT "]", r->destination());
break;
}
case relocInfo::virtual_call_type:
{
virtual_call_Relocation* r = (virtual_call_Relocation*) reloc();
tty->print(" | [destination=" INTPTR_FORMAT " first_oop=" INTPTR_FORMAT " oop_limit=" INTPTR_FORMAT "]",
r->destination(), r->first_oop(), r->oop_limit());
break;
}
case relocInfo::static_stub_type:
{
static_stub_Relocation* r = (static_stub_Relocation*) reloc();
tty->print(" | [static_call=" INTPTR_FORMAT "]", r->static_call());
break;
}
}
tty->cr();
}
void RelocIterator::print() {
RelocIterator save_this = (*this);
relocInfo* scan = _current;
if (!has_current()) scan += 1; // nothing to scan here!
bool skip_next = has_current();
bool got_next;
while (true) {
got_next = (skip_next || next());
skip_next = false;
tty->print(" @" INTPTR_FORMAT ": ", scan);
relocInfo* newscan = _current+1;
if (!has_current()) newscan -= 1; // nothing to scan here!
while (scan < newscan) {
tty->print("%04x", *(short*)scan & 0xFFFF);
scan++;
}
tty->cr();
if (!got_next) break;
print_current();
}
(*this) = save_this;
}
// For the debugger:
extern "C"
void print_blob_locs(CodeBlob* cb) {
cb->print();
RelocIterator iter(cb);
iter.print();
}
extern "C"
void print_buf_locs(CodeBuffer* cb) {
FlagSetting fs(PrintRelocations, true);
cb->print();
}
#endif // !PRODUCT