6793825: Missing include dependancies for GCC without predefined headers
Summary: With predefined headers off for gcc, some .inline.hpp files aren't included to make definition visible for inline functions
Reviewed-by: jcoomes, xlu
/*
* Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_codeBlob.cpp.incl"
unsigned int align_code_offset(int offset) {
// align the size to CodeEntryAlignment
return
((offset + (int)CodeHeap::header_size() + (CodeEntryAlignment-1)) & ~(CodeEntryAlignment-1))
- (int)CodeHeap::header_size();
}
// This must be consistent with the CodeBlob constructor's layout actions.
unsigned int CodeBlob::allocation_size(CodeBuffer* cb, int header_size) {
unsigned int size = header_size;
size += round_to(cb->total_relocation_size(), oopSize);
// align the size to CodeEntryAlignment
size = align_code_offset(size);
size += round_to(cb->total_code_size(), oopSize);
size += round_to(cb->total_oop_size(), oopSize);
return size;
}
// Creates a simple CodeBlob. Sets up the size of the different regions.
CodeBlob::CodeBlob(const char* name, int header_size, int size, int frame_complete, int locs_size) {
assert(size == round_to(size, oopSize), "unaligned size");
assert(locs_size == round_to(locs_size, oopSize), "unaligned size");
assert(header_size == round_to(header_size, oopSize), "unaligned size");
assert(!UseRelocIndex, "no space allocated for reloc index yet");
// Note: If UseRelocIndex is enabled, there needs to be (at least) one
// extra word for the relocation information, containing the reloc
// index table length. Unfortunately, the reloc index table imple-
// mentation is not easily understandable and thus it is not clear
// what exactly the format is supposed to be. For now, we just turn
// off the use of this table (gri 7/6/2000).
_name = name;
_size = size;
_frame_complete_offset = frame_complete;
_header_size = header_size;
_relocation_size = locs_size;
_instructions_offset = align_code_offset(header_size + locs_size);
_data_offset = size;
_oops_offset = size;
_oops_length = 0;
_frame_size = 0;
set_oop_maps(NULL);
}
// Creates a CodeBlob from a CodeBuffer. Sets up the size of the different regions,
// and copy code and relocation info.
CodeBlob::CodeBlob(
const char* name,
CodeBuffer* cb,
int header_size,
int size,
int frame_complete,
int frame_size,
OopMapSet* oop_maps
) {
assert(size == round_to(size, oopSize), "unaligned size");
assert(header_size == round_to(header_size, oopSize), "unaligned size");
_name = name;
_size = size;
_frame_complete_offset = frame_complete;
_header_size = header_size;
_relocation_size = round_to(cb->total_relocation_size(), oopSize);
_instructions_offset = align_code_offset(header_size + _relocation_size);
_data_offset = _instructions_offset + round_to(cb->total_code_size(), oopSize);
_oops_offset = _size - round_to(cb->total_oop_size(), oopSize);
_oops_length = 0; // temporary, until the copy_oops handshake
assert(_oops_offset >= _data_offset, "codeBlob is too small");
assert(_data_offset <= size, "codeBlob is too small");
cb->copy_code_and_locs_to(this);
set_oop_maps(oop_maps);
_frame_size = frame_size;
#ifdef COMPILER1
// probably wrong for tiered
assert(_frame_size >= -1, "must use frame size or -1 for runtime stubs");
#endif // COMPILER1
}
void CodeBlob::set_oop_maps(OopMapSet* p) {
// Danger Will Robinson! This method allocates a big
// chunk of memory, its your job to free it.
if (p != NULL) {
// We need to allocate a chunk big enough to hold the OopMapSet and all of its OopMaps
_oop_maps = (OopMapSet* )NEW_C_HEAP_ARRAY(unsigned char, p->heap_size());
p->copy_to((address)_oop_maps);
} else {
_oop_maps = NULL;
}
}
void CodeBlob::flush() {
if (_oop_maps) {
FREE_C_HEAP_ARRAY(unsigned char, _oop_maps);
_oop_maps = NULL;
}
_comments.free();
}
// Promote one word from an assembly-time handle to a live embedded oop.
inline void CodeBlob::initialize_immediate_oop(oop* dest, jobject handle) {
if (handle == NULL ||
// As a special case, IC oops are initialized to 1 or -1.
handle == (jobject) Universe::non_oop_word()) {
(*dest) = (oop)handle;
} else {
(*dest) = JNIHandles::resolve_non_null(handle);
}
}
void CodeBlob::copy_oops(GrowableArray<jobject>* array) {
assert(_oops_length == 0, "do this handshake just once, please");
int length = array->length();
assert((address)(oops_begin() + length) <= data_end(), "oops big enough");
oop* dest = oops_begin();
for (int index = 0 ; index < length; index++) {
initialize_immediate_oop(&dest[index], array->at(index));
}
_oops_length = length;
// Now we can fix up all the oops in the code.
// We need to do this in the code because
// the assembler uses jobjects as placeholders.
// The code and relocations have already been
// initialized by the CodeBlob constructor,
// so it is valid even at this early point to
// iterate over relocations and patch the code.
fix_oop_relocations(NULL, NULL, /*initialize_immediates=*/ true);
}
relocInfo::relocType CodeBlob::reloc_type_for_address(address pc) {
RelocIterator iter(this, pc, pc+1);
while (iter.next()) {
return (relocInfo::relocType) iter.type();
}
// No relocation info found for pc
ShouldNotReachHere();
return relocInfo::none; // dummy return value
}
bool CodeBlob::is_at_poll_return(address pc) {
RelocIterator iter(this, pc, pc+1);
while (iter.next()) {
if (iter.type() == relocInfo::poll_return_type)
return true;
}
return false;
}
bool CodeBlob::is_at_poll_or_poll_return(address pc) {
RelocIterator iter(this, pc, pc+1);
while (iter.next()) {
relocInfo::relocType t = iter.type();
if (t == relocInfo::poll_return_type || t == relocInfo::poll_type)
return true;
}
return false;
}
void CodeBlob::fix_oop_relocations(address begin, address end,
bool initialize_immediates) {
// re-patch all oop-bearing instructions, just in case some oops moved
RelocIterator iter(this, begin, end);
while (iter.next()) {
if (iter.type() == relocInfo::oop_type) {
oop_Relocation* reloc = iter.oop_reloc();
if (initialize_immediates && reloc->oop_is_immediate()) {
oop* dest = reloc->oop_addr();
initialize_immediate_oop(dest, (jobject) *dest);
}
// Refresh the oop-related bits of this instruction.
reloc->fix_oop_relocation();
}
// There must not be any interfering patches or breakpoints.
assert(!(iter.type() == relocInfo::breakpoint_type
&& iter.breakpoint_reloc()->active()),
"no active breakpoint");
}
}
void CodeBlob::do_unloading(BoolObjectClosure* is_alive,
OopClosure* keep_alive,
bool unloading_occurred) {
ShouldNotReachHere();
}
OopMap* CodeBlob::oop_map_for_return_address(address return_address) {
address pc = return_address ;
assert (oop_maps() != NULL, "nope");
return oop_maps()->find_map_at_offset ((intptr_t) pc - (intptr_t) instructions_begin());
}
//----------------------------------------------------------------------------------------------------
// Implementation of BufferBlob
BufferBlob::BufferBlob(const char* name, int size)
: CodeBlob(name, sizeof(BufferBlob), size, CodeOffsets::frame_never_safe, /*locs_size:*/ 0)
{}
BufferBlob* BufferBlob::create(const char* name, int buffer_size) {
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
BufferBlob* blob = NULL;
unsigned int size = sizeof(BufferBlob);
// align the size to CodeEntryAlignment
size = align_code_offset(size);
size += round_to(buffer_size, oopSize);
assert(name != NULL, "must provide a name");
{
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
blob = new (size) BufferBlob(name, size);
}
// Track memory usage statistic after releasing CodeCache_lock
MemoryService::track_code_cache_memory_usage();
return blob;
}
BufferBlob::BufferBlob(const char* name, int size, CodeBuffer* cb)
: CodeBlob(name, cb, sizeof(BufferBlob), size, CodeOffsets::frame_never_safe, 0, NULL)
{}
BufferBlob* BufferBlob::create(const char* name, CodeBuffer* cb) {
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
BufferBlob* blob = NULL;
unsigned int size = allocation_size(cb, sizeof(BufferBlob));
assert(name != NULL, "must provide a name");
{
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
blob = new (size) BufferBlob(name, size, cb);
}
// Track memory usage statistic after releasing CodeCache_lock
MemoryService::track_code_cache_memory_usage();
return blob;
}
void* BufferBlob::operator new(size_t s, unsigned size) {
void* p = CodeCache::allocate(size);
return p;
}
void BufferBlob::free( BufferBlob *blob ) {
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
{
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
CodeCache::free((CodeBlob*)blob);
}
// Track memory usage statistic after releasing CodeCache_lock
MemoryService::track_code_cache_memory_usage();
}
bool BufferBlob::is_adapter_blob() const {
return (strcmp(AdapterHandlerEntry::name, name()) == 0);
}
//----------------------------------------------------------------------------------------------------
// Implementation of RuntimeStub
RuntimeStub::RuntimeStub(
const char* name,
CodeBuffer* cb,
int size,
int frame_complete,
int frame_size,
OopMapSet* oop_maps,
bool caller_must_gc_arguments
)
: CodeBlob(name, cb, sizeof(RuntimeStub), size, frame_complete, frame_size, oop_maps)
{
_caller_must_gc_arguments = caller_must_gc_arguments;
}
RuntimeStub* RuntimeStub::new_runtime_stub(const char* stub_name,
CodeBuffer* cb,
int frame_complete,
int frame_size,
OopMapSet* oop_maps,
bool caller_must_gc_arguments)
{
RuntimeStub* stub = NULL;
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
{
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
unsigned int size = allocation_size(cb, sizeof(RuntimeStub));
stub = new (size) RuntimeStub(stub_name, cb, size, frame_complete, frame_size, oop_maps, caller_must_gc_arguments);
}
// Do not hold the CodeCache lock during name formatting.
if (stub != NULL) {
char stub_id[256];
jio_snprintf(stub_id, sizeof(stub_id), "RuntimeStub - %s", stub_name);
if (PrintStubCode) {
tty->print_cr("Decoding %s " INTPTR_FORMAT, stub_id, stub);
Disassembler::decode(stub->instructions_begin(), stub->instructions_end());
}
VTune::register_stub(stub_id, stub->instructions_begin(), stub->instructions_end());
Forte::register_stub(stub_id, stub->instructions_begin(), stub->instructions_end());
if (JvmtiExport::should_post_dynamic_code_generated()) {
JvmtiExport::post_dynamic_code_generated(stub_name, stub->instructions_begin(), stub->instructions_end());
}
}
// Track memory usage statistic after releasing CodeCache_lock
MemoryService::track_code_cache_memory_usage();
return stub;
}
void* RuntimeStub::operator new(size_t s, unsigned size) {
void* p = CodeCache::allocate(size);
if (!p) fatal("Initial size of CodeCache is too small");
return p;
}
//----------------------------------------------------------------------------------------------------
// Implementation of DeoptimizationBlob
DeoptimizationBlob::DeoptimizationBlob(
CodeBuffer* cb,
int size,
OopMapSet* oop_maps,
int unpack_offset,
int unpack_with_exception_offset,
int unpack_with_reexecution_offset,
int frame_size
)
: SingletonBlob("DeoptimizationBlob", cb, sizeof(DeoptimizationBlob), size, frame_size, oop_maps)
{
_unpack_offset = unpack_offset;
_unpack_with_exception = unpack_with_exception_offset;
_unpack_with_reexecution = unpack_with_reexecution_offset;
#ifdef COMPILER1
_unpack_with_exception_in_tls = -1;
#endif
}
DeoptimizationBlob* DeoptimizationBlob::create(
CodeBuffer* cb,
OopMapSet* oop_maps,
int unpack_offset,
int unpack_with_exception_offset,
int unpack_with_reexecution_offset,
int frame_size)
{
DeoptimizationBlob* blob = NULL;
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
{
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
unsigned int size = allocation_size(cb, sizeof(DeoptimizationBlob));
blob = new (size) DeoptimizationBlob(cb,
size,
oop_maps,
unpack_offset,
unpack_with_exception_offset,
unpack_with_reexecution_offset,
frame_size);
}
// Do not hold the CodeCache lock during name formatting.
if (blob != NULL) {
char blob_id[256];
jio_snprintf(blob_id, sizeof(blob_id), "DeoptimizationBlob@" PTR_FORMAT, blob->instructions_begin());
if (PrintStubCode) {
tty->print_cr("Decoding %s " INTPTR_FORMAT, blob_id, blob);
Disassembler::decode(blob->instructions_begin(), blob->instructions_end());
}
VTune::register_stub(blob_id, blob->instructions_begin(), blob->instructions_end());
Forte::register_stub(blob_id, blob->instructions_begin(), blob->instructions_end());
if (JvmtiExport::should_post_dynamic_code_generated()) {
JvmtiExport::post_dynamic_code_generated("DeoptimizationBlob",
blob->instructions_begin(),
blob->instructions_end());
}
}
// Track memory usage statistic after releasing CodeCache_lock
MemoryService::track_code_cache_memory_usage();
return blob;
}
void* DeoptimizationBlob::operator new(size_t s, unsigned size) {
void* p = CodeCache::allocate(size);
if (!p) fatal("Initial size of CodeCache is too small");
return p;
}
//----------------------------------------------------------------------------------------------------
// Implementation of UncommonTrapBlob
#ifdef COMPILER2
UncommonTrapBlob::UncommonTrapBlob(
CodeBuffer* cb,
int size,
OopMapSet* oop_maps,
int frame_size
)
: SingletonBlob("UncommonTrapBlob", cb, sizeof(UncommonTrapBlob), size, frame_size, oop_maps)
{}
UncommonTrapBlob* UncommonTrapBlob::create(
CodeBuffer* cb,
OopMapSet* oop_maps,
int frame_size)
{
UncommonTrapBlob* blob = NULL;
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
{
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
unsigned int size = allocation_size(cb, sizeof(UncommonTrapBlob));
blob = new (size) UncommonTrapBlob(cb, size, oop_maps, frame_size);
}
// Do not hold the CodeCache lock during name formatting.
if (blob != NULL) {
char blob_id[256];
jio_snprintf(blob_id, sizeof(blob_id), "UncommonTrapBlob@" PTR_FORMAT, blob->instructions_begin());
if (PrintStubCode) {
tty->print_cr("Decoding %s " INTPTR_FORMAT, blob_id, blob);
Disassembler::decode(blob->instructions_begin(), blob->instructions_end());
}
VTune::register_stub(blob_id, blob->instructions_begin(), blob->instructions_end());
Forte::register_stub(blob_id, blob->instructions_begin(), blob->instructions_end());
if (JvmtiExport::should_post_dynamic_code_generated()) {
JvmtiExport::post_dynamic_code_generated("UncommonTrapBlob",
blob->instructions_begin(),
blob->instructions_end());
}
}
// Track memory usage statistic after releasing CodeCache_lock
MemoryService::track_code_cache_memory_usage();
return blob;
}
void* UncommonTrapBlob::operator new(size_t s, unsigned size) {
void* p = CodeCache::allocate(size);
if (!p) fatal("Initial size of CodeCache is too small");
return p;
}
#endif // COMPILER2
//----------------------------------------------------------------------------------------------------
// Implementation of ExceptionBlob
#ifdef COMPILER2
ExceptionBlob::ExceptionBlob(
CodeBuffer* cb,
int size,
OopMapSet* oop_maps,
int frame_size
)
: SingletonBlob("ExceptionBlob", cb, sizeof(ExceptionBlob), size, frame_size, oop_maps)
{}
ExceptionBlob* ExceptionBlob::create(
CodeBuffer* cb,
OopMapSet* oop_maps,
int frame_size)
{
ExceptionBlob* blob = NULL;
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
{
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
unsigned int size = allocation_size(cb, sizeof(ExceptionBlob));
blob = new (size) ExceptionBlob(cb, size, oop_maps, frame_size);
}
// We do not need to hold the CodeCache lock during name formatting
if (blob != NULL) {
char blob_id[256];
jio_snprintf(blob_id, sizeof(blob_id), "ExceptionBlob@" PTR_FORMAT, blob->instructions_begin());
if (PrintStubCode) {
tty->print_cr("Decoding %s " INTPTR_FORMAT, blob_id, blob);
Disassembler::decode(blob->instructions_begin(), blob->instructions_end());
}
VTune::register_stub(blob_id, blob->instructions_begin(), blob->instructions_end());
Forte::register_stub(blob_id, blob->instructions_begin(), blob->instructions_end());
if (JvmtiExport::should_post_dynamic_code_generated()) {
JvmtiExport::post_dynamic_code_generated("ExceptionBlob",
blob->instructions_begin(),
blob->instructions_end());
}
}
// Track memory usage statistic after releasing CodeCache_lock
MemoryService::track_code_cache_memory_usage();
return blob;
}
void* ExceptionBlob::operator new(size_t s, unsigned size) {
void* p = CodeCache::allocate(size);
if (!p) fatal("Initial size of CodeCache is too small");
return p;
}
#endif // COMPILER2
//----------------------------------------------------------------------------------------------------
// Implementation of SafepointBlob
SafepointBlob::SafepointBlob(
CodeBuffer* cb,
int size,
OopMapSet* oop_maps,
int frame_size
)
: SingletonBlob("SafepointBlob", cb, sizeof(SafepointBlob), size, frame_size, oop_maps)
{}
SafepointBlob* SafepointBlob::create(
CodeBuffer* cb,
OopMapSet* oop_maps,
int frame_size)
{
SafepointBlob* blob = NULL;
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
{
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
unsigned int size = allocation_size(cb, sizeof(SafepointBlob));
blob = new (size) SafepointBlob(cb, size, oop_maps, frame_size);
}
// We do not need to hold the CodeCache lock during name formatting.
if (blob != NULL) {
char blob_id[256];
jio_snprintf(blob_id, sizeof(blob_id), "SafepointBlob@" PTR_FORMAT, blob->instructions_begin());
if (PrintStubCode) {
tty->print_cr("Decoding %s " INTPTR_FORMAT, blob_id, blob);
Disassembler::decode(blob->instructions_begin(), blob->instructions_end());
}
VTune::register_stub(blob_id, blob->instructions_begin(), blob->instructions_end());
Forte::register_stub(blob_id, blob->instructions_begin(), blob->instructions_end());
if (JvmtiExport::should_post_dynamic_code_generated()) {
JvmtiExport::post_dynamic_code_generated("SafepointBlob",
blob->instructions_begin(),
blob->instructions_end());
}
}
// Track memory usage statistic after releasing CodeCache_lock
MemoryService::track_code_cache_memory_usage();
return blob;
}
void* SafepointBlob::operator new(size_t s, unsigned size) {
void* p = CodeCache::allocate(size);
if (!p) fatal("Initial size of CodeCache is too small");
return p;
}
//----------------------------------------------------------------------------------------------------
// Verification and printing
void CodeBlob::verify() {
ShouldNotReachHere();
}
#ifndef PRODUCT
void CodeBlob::print() const {
tty->print_cr("[CodeBlob (" INTPTR_FORMAT ")]", this);
tty->print_cr("Framesize: %d", _frame_size);
}
void CodeBlob::print_value_on(outputStream* st) const {
st->print_cr("[CodeBlob]");
}
#endif
void BufferBlob::verify() {
// unimplemented
}
#ifndef PRODUCT
void BufferBlob::print() const {
CodeBlob::print();
print_value_on(tty);
}
void BufferBlob::print_value_on(outputStream* st) const {
st->print_cr("BufferBlob (" INTPTR_FORMAT ") used for %s", this, name());
}
#endif
void RuntimeStub::verify() {
// unimplemented
}
#ifndef PRODUCT
void RuntimeStub::print() const {
CodeBlob::print();
tty->print("Runtime Stub (" INTPTR_FORMAT "): ", this);
tty->print_cr(name());
Disassembler::decode((CodeBlob*)this);
}
void RuntimeStub::print_value_on(outputStream* st) const {
st->print("RuntimeStub (" INTPTR_FORMAT "): ", this); st->print(name());
}
#endif
void SingletonBlob::verify() {
// unimplemented
}
#ifndef PRODUCT
void SingletonBlob::print() const {
CodeBlob::print();
tty->print_cr(name());
Disassembler::decode((CodeBlob*)this);
}
void SingletonBlob::print_value_on(outputStream* st) const {
st->print_cr(name());
}
void DeoptimizationBlob::print_value_on(outputStream* st) const {
st->print_cr("Deoptimization (frame not available)");
}
#endif // PRODUCT