6793825: Missing include dependancies for GCC without predefined headers
Summary: With predefined headers off for gcc, some .inline.hpp files aren't included to make definition visible for inline functions
Reviewed-by: jcoomes, xlu
/*
* Copyright 1999-2005 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
// ciBytecodeStream
//
// The class is used to iterate over the bytecodes of a method.
// It hides the details of constant pool structure/access by
// providing accessors for constant pool items. It returns only pure
// Java bytecodes; VM-internal _fast bytecodes are translated back to
// their original form during iteration.
class ciBytecodeStream : StackObj {
private:
// Handling for the weird bytecodes
Bytecodes::Code wide(); // Handle wide bytecode
Bytecodes::Code table(Bytecodes::Code); // Handle complicated inline table
static Bytecodes::Code check_java(Bytecodes::Code c) {
assert(Bytecodes::is_java_code(c), "should not return _fast bytecodes");
return c;
}
ciMethod* _method; // the method
ciInstanceKlass* _holder;
address _bc_start; // Start of current bytecode for table
address _was_wide; // Address past last wide bytecode
jint* _table_base; // Aligned start of last table or switch
address _start; // Start of bytecodes
address _end; // Past end of bytecodes
address _pc; // Current PC
Bytecodes::Code _bc; // Current bytecode
void reset( address base, unsigned int size ) {
_bc_start =_was_wide = 0;
_start = _pc = base; _end = base + size; }
public:
// End-Of-Bytecodes
static Bytecodes::Code EOBC() {
return Bytecodes::_illegal;
}
ciBytecodeStream(ciMethod* m) {
reset_to_method(m);
}
ciBytecodeStream() {
reset_to_method(NULL);
}
ciMethod* method() const { return _method; }
void reset_to_method(ciMethod* m) {
_method = m;
if (m == NULL) {
_holder = NULL;
reset(NULL, 0);
} else {
_holder = m->holder();
reset(m->code(), m->code_size());
}
}
void reset_to_bci( int bci );
// Force the iterator to report a certain bci.
void force_bci(int bci);
void set_max_bci( int max ) {
_end = _start + max;
}
address cur_bcp() { return _bc_start; } // Returns bcp to current instruction
int next_bci() const { return _pc -_start; }
int cur_bci() const { return _bc_start - _start; }
Bytecodes::Code cur_bc() const{ return check_java(_bc); }
Bytecodes::Code next_bc() { return Bytecodes::java_code((Bytecodes::Code)* _pc); }
// Return current ByteCode and increment PC to next bytecode, skipping all
// intermediate constants. Returns EOBC at end.
// Expected usage:
// while( (bc = iter.next()) != EOBC() ) { ... }
Bytecodes::Code next() {
_bc_start = _pc; // Capture start of bc
if( _pc >= _end ) return EOBC(); // End-Of-Bytecodes
// Fetch Java bytecode
// All rewritten bytecodes maintain the size of original bytecode.
_bc = Bytecodes::java_code((Bytecodes::Code)*_pc);
int csize = Bytecodes::length_for(_bc); // Expected size
if( _bc == Bytecodes::_wide ) {
_bc=wide(); // Handle wide bytecode
} else if( csize == 0 ) {
_bc=table(_bc); // Handle inline tables
} else {
_pc += csize; // Bump PC past bytecode
}
return check_java(_bc);
}
bool is_wide() { return ( _pc == _was_wide ); }
// Get a byte index following this bytecode.
// If prefixed with a wide bytecode, get a wide index.
int get_index() const {
return (_pc == _was_wide) // was widened?
? Bytes::get_Java_u2(_bc_start+2) // yes, return wide index
: _bc_start[1]; // no, return narrow index
}
// Set a byte index following this bytecode.
// If prefixed with a wide bytecode, get a wide index.
void put_index(int idx) {
if (_pc == _was_wide) // was widened?
Bytes::put_Java_u2(_bc_start+2,idx); // yes, set wide index
else
_bc_start[1]=idx; // no, set narrow index
}
// Get 2-byte index (getfield/putstatic/etc)
int get_index_big() const { return Bytes::get_Java_u2(_bc_start+1); }
// Get dimensions byte (multinewarray)
int get_dimensions() const { return *(unsigned char*)(_pc-1); }
// Get unsigned index fast
int get_index_fast() const { return Bytes::get_native_u2(_pc-2); }
// Sign-extended index byte/short, no widening
int get_byte() const { return (int8_t)(_pc[-1]); }
int get_short() const { return (int16_t)Bytes::get_Java_u2(_pc-2); }
int get_long() const { return (int32_t)Bytes::get_Java_u4(_pc-4); }
// Get a byte signed constant for "iinc". Invalid for other bytecodes.
// If prefixed with a wide bytecode, get a wide constant
int get_iinc_con() const {return (_pc==_was_wide) ? get_short() :get_byte();}
// 2-byte branch offset from current pc
int get_dest( ) const {
assert( Bytecodes::length_at(_bc_start) == sizeof(jshort)+1, "get_dest called with bad bytecode" );
return _bc_start-_start + (short)Bytes::get_Java_u2(_pc-2);
}
// 2-byte branch offset from next pc
int next_get_dest( ) const {
address next_bc_start = _pc;
assert( _pc < _end, "" );
Bytecodes::Code next_bc = (Bytecodes::Code)*_pc;
assert( next_bc != Bytecodes::_wide, "");
int next_csize = Bytecodes::length_for(next_bc);
assert( next_csize != 0, "" );
assert( next_bc <= Bytecodes::_jsr_w, "");
address next_pc = _pc + next_csize;
assert( Bytecodes::length_at(next_bc_start) == sizeof(jshort)+1, "next_get_dest called with bad bytecode" );
return next_bc_start-_start + (short)Bytes::get_Java_u2(next_pc-2);
}
// 4-byte branch offset from current pc
int get_far_dest( ) const {
assert( Bytecodes::length_at(_bc_start) == sizeof(jint)+1, "dest4 called with bad bytecode" );
return _bc_start-_start + (int)Bytes::get_Java_u4(_pc-4);
}
// For a lookup or switch table, return target destination
int get_int_table( int index ) const {
return Bytes::get_Java_u4((address)&_table_base[index]); }
// For tableswitch - get length of offset part
int get_tableswitch_length() { return get_int_table(2)-get_int_table(1)+1; }
int get_dest_table( int index ) const {
return cur_bci() + get_int_table(index); }
// --- Constant pool access ---
int get_constant_index() const;
int get_field_index();
int get_method_index();
// If this bytecode is a new, newarray, multianewarray, instanceof,
// or checkcast, get the referenced klass.
ciKlass* get_klass(bool& will_link);
int get_klass_index() const;
// If this bytecode is one of the ldc variants, get the referenced
// constant
ciConstant get_constant();
// True if the ldc variant points to an unresolved string
bool is_unresolved_string() const;
// True if the ldc variant points to an unresolved klass
bool is_unresolved_klass() const;
// If this bytecode is one of get_field, get_static, put_field,
// or put_static, get the referenced field.
ciField* get_field(bool& will_link);
ciInstanceKlass* get_declared_field_holder();
int get_field_holder_index();
int get_field_signature_index();
// If this is a method invocation bytecode, get the invoked method.
ciMethod* get_method(bool& will_link);
ciKlass* get_declared_method_holder();
int get_method_holder_index();
int get_method_signature_index();
};
// ciSignatureStream
//
// The class is used to iterate over the elements of a method signature.
class ciSignatureStream : public StackObj {
private:
ciSignature* _sig;
int _pos;
public:
ciSignatureStream(ciSignature* signature) {
_sig = signature;
_pos = 0;
}
bool at_return_type() { return _pos == _sig->count(); }
bool is_done() { return _pos > _sig->count(); }
void next() {
if (_pos <= _sig->count()) {
_pos++;
}
}
ciType* type() {
if (at_return_type()) {
return _sig->return_type();
} else {
return _sig->type_at(_pos);
}
}
};
// ciExceptionHandlerStream
//
// The class is used to iterate over the exception handlers of
// a method.
class ciExceptionHandlerStream : public StackObj {
private:
// The method whose handlers we are traversing
ciMethod* _method;
// Our current position in the list of handlers
int _pos;
int _end;
ciInstanceKlass* _exception_klass;
int _bci;
bool _is_exact;
public:
ciExceptionHandlerStream(ciMethod* method) {
_method = method;
// Force loading of method code and handlers.
_method->code();
_pos = 0;
_end = _method->_handler_count;
_exception_klass = NULL;
_bci = -1;
_is_exact = false;
}
ciExceptionHandlerStream(ciMethod* method, int bci,
ciInstanceKlass* exception_klass = NULL,
bool is_exact = false) {
_method = method;
// Force loading of method code and handlers.
_method->code();
_pos = -1;
_end = _method->_handler_count + 1; // include the rethrow handler
_exception_klass = (exception_klass != NULL && exception_klass->is_loaded()
? exception_klass
: NULL);
_bci = bci;
assert(_bci >= 0, "bci out of range");
_is_exact = is_exact;
next();
}
// These methods are currently implemented in an odd way.
// Count the number of handlers the iterator has ever produced
// or will ever produce. Do not include the final rethrow handler.
// That is, a trivial exception handler stream will have a count
// of zero and produce just the rethrow handler.
int count();
// Count the number of handlers this stream will produce from now on.
// Include the current handler, and the final rethrow handler.
// The remaining count will be zero iff is_done() is true,
int count_remaining();
bool is_done() {
return (_pos >= _end);
}
void next() {
_pos++;
if (_bci != -1) {
// We are not iterating over all handlers...
while (!is_done()) {
ciExceptionHandler* handler = _method->_exception_handlers[_pos];
if (handler->is_in_range(_bci)) {
if (handler->is_catch_all()) {
// Found final active catch block.
_end = _pos+1;
return;
} else if (_exception_klass == NULL || !handler->catch_klass()->is_loaded()) {
// We cannot do any type analysis here. Must conservatively assume
// catch block is reachable.
return;
} else if (_exception_klass->is_subtype_of(handler->catch_klass())) {
// This catch clause will definitely catch the exception.
// Final candidate.
_end = _pos+1;
return;
} else if (!_is_exact &&
handler->catch_klass()->is_subtype_of(_exception_klass)) {
// This catch block may be reachable.
return;
}
}
// The catch block was not pertinent. Go on.
_pos++;
}
} else {
// This is an iteration over all handlers.
return;
}
}
ciExceptionHandler* handler() {
return _method->_exception_handlers[_pos];
}
};