6793825: Missing include dependancies for GCC without predefined headers
Summary: With predefined headers off for gcc, some .inline.hpp files aren't included to make definition visible for inline functions
Reviewed-by: jcoomes, xlu
/*
* Copyright 1999-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
#include "incls/_precompiled.incl"
#include "incls/_ciMethod.cpp.incl"
// ciMethod
//
// This class represents a methodOop in the HotSpot virtual
// machine.
// ------------------------------------------------------------------
// ciMethod::ciMethod
//
// Loaded method.
ciMethod::ciMethod(methodHandle h_m) : ciObject(h_m) {
assert(h_m() != NULL, "no null method");
// These fields are always filled in in loaded methods.
_flags = ciFlags(h_m()->access_flags());
// Easy to compute, so fill them in now.
_max_stack = h_m()->max_stack();
_max_locals = h_m()->max_locals();
_code_size = h_m()->code_size();
_intrinsic_id = h_m()->intrinsic_id();
_handler_count = h_m()->exception_table()->length() / 4;
_uses_monitors = h_m()->access_flags().has_monitor_bytecodes();
_balanced_monitors = !_uses_monitors || h_m()->access_flags().is_monitor_matching();
_is_compilable = !h_m()->is_not_compilable();
// Lazy fields, filled in on demand. Require allocation.
_code = NULL;
_exception_handlers = NULL;
_liveness = NULL;
_bcea = NULL;
_method_blocks = NULL;
#ifdef COMPILER2
_flow = NULL;
#endif // COMPILER2
if (JvmtiExport::can_hotswap_or_post_breakpoint() && _is_compilable) {
// 6328518 check hotswap conditions under the right lock.
MutexLocker locker(Compile_lock);
if (Dependencies::check_evol_method(h_m()) != NULL) {
_is_compilable = false;
}
} else {
CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
}
if (instanceKlass::cast(h_m()->method_holder())->is_linked()) {
_can_be_statically_bound = h_m()->can_be_statically_bound();
} else {
// Have to use a conservative value in this case.
_can_be_statically_bound = false;
}
// Adjust the definition of this condition to be more useful:
// %%% take these conditions into account in vtable generation
if (!_can_be_statically_bound && h_m()->is_private())
_can_be_statically_bound = true;
if (_can_be_statically_bound && h_m()->is_abstract())
_can_be_statically_bound = false;
ciEnv *env = CURRENT_ENV;
// generating _signature may allow GC and therefore move m.
// These fields are always filled in.
_name = env->get_object(h_m()->name())->as_symbol();
_holder = env->get_object(h_m()->method_holder())->as_instance_klass();
ciSymbol* sig_symbol = env->get_object(h_m()->signature())->as_symbol();
_signature = new (env->arena()) ciSignature(_holder, sig_symbol);
_method_data = NULL;
// Take a snapshot of these values, so they will be commensurate with the MDO.
if (ProfileInterpreter) {
int invcnt = h_m()->interpreter_invocation_count();
// if the value overflowed report it as max int
_interpreter_invocation_count = invcnt < 0 ? max_jint : invcnt ;
_interpreter_throwout_count = h_m()->interpreter_throwout_count();
} else {
_interpreter_invocation_count = 0;
_interpreter_throwout_count = 0;
}
if (_interpreter_invocation_count == 0)
_interpreter_invocation_count = 1;
}
// ------------------------------------------------------------------
// ciMethod::ciMethod
//
// Unloaded method.
ciMethod::ciMethod(ciInstanceKlass* holder,
ciSymbol* name,
ciSymbol* signature) : ciObject(ciMethodKlass::make()) {
// These fields are always filled in.
_name = name;
_holder = holder;
_signature = new (CURRENT_ENV->arena()) ciSignature(_holder, signature);
_intrinsic_id = vmIntrinsics::_none;
_liveness = NULL;
_can_be_statically_bound = false;
_bcea = NULL;
_method_blocks = NULL;
_method_data = NULL;
#ifdef COMPILER2
_flow = NULL;
#endif // COMPILER2
}
// ------------------------------------------------------------------
// ciMethod::load_code
//
// Load the bytecodes and exception handler table for this method.
void ciMethod::load_code() {
VM_ENTRY_MARK;
assert(is_loaded(), "only loaded methods have code");
methodOop me = get_methodOop();
Arena* arena = CURRENT_THREAD_ENV->arena();
// Load the bytecodes.
_code = (address)arena->Amalloc(code_size());
memcpy(_code, me->code_base(), code_size());
// Revert any breakpoint bytecodes in ci's copy
if (me->number_of_breakpoints() > 0) {
BreakpointInfo* bp = instanceKlass::cast(me->method_holder())->breakpoints();
for (; bp != NULL; bp = bp->next()) {
if (bp->match(me)) {
code_at_put(bp->bci(), bp->orig_bytecode());
}
}
}
// And load the exception table.
typeArrayOop exc_table = me->exception_table();
// Allocate one extra spot in our list of exceptions. This
// last entry will be used to represent the possibility that
// an exception escapes the method. See ciExceptionHandlerStream
// for details.
_exception_handlers =
(ciExceptionHandler**)arena->Amalloc(sizeof(ciExceptionHandler*)
* (_handler_count + 1));
if (_handler_count > 0) {
for (int i=0; i<_handler_count; i++) {
int base = i*4;
_exception_handlers[i] = new (arena) ciExceptionHandler(
holder(),
/* start */ exc_table->int_at(base),
/* limit */ exc_table->int_at(base+1),
/* goto pc */ exc_table->int_at(base+2),
/* cp index */ exc_table->int_at(base+3));
}
}
// Put an entry at the end of our list to represent the possibility
// of exceptional exit.
_exception_handlers[_handler_count] =
new (arena) ciExceptionHandler(holder(), 0, code_size(), -1, 0);
if (CIPrintMethodCodes) {
print_codes();
}
}
// ------------------------------------------------------------------
// ciMethod::has_linenumber_table
//
// length unknown until decompression
bool ciMethod::has_linenumber_table() const {
check_is_loaded();
VM_ENTRY_MARK;
return get_methodOop()->has_linenumber_table();
}
// ------------------------------------------------------------------
// ciMethod::compressed_linenumber_table
u_char* ciMethod::compressed_linenumber_table() const {
check_is_loaded();
VM_ENTRY_MARK;
return get_methodOop()->compressed_linenumber_table();
}
// ------------------------------------------------------------------
// ciMethod::line_number_from_bci
int ciMethod::line_number_from_bci(int bci) const {
check_is_loaded();
VM_ENTRY_MARK;
return get_methodOop()->line_number_from_bci(bci);
}
// ------------------------------------------------------------------
// ciMethod::vtable_index
//
// Get the position of this method's entry in the vtable, if any.
int ciMethod::vtable_index() {
check_is_loaded();
assert(holder()->is_linked(), "must be linked");
VM_ENTRY_MARK;
return get_methodOop()->vtable_index();
}
// ------------------------------------------------------------------
// ciMethod::native_entry
//
// Get the address of this method's native code, if any.
address ciMethod::native_entry() {
check_is_loaded();
assert(flags().is_native(), "must be native method");
VM_ENTRY_MARK;
methodOop method = get_methodOop();
address entry = method->native_function();
assert(entry != NULL, "must be valid entry point");
return entry;
}
// ------------------------------------------------------------------
// ciMethod::interpreter_entry
//
// Get the entry point for running this method in the interpreter.
address ciMethod::interpreter_entry() {
check_is_loaded();
VM_ENTRY_MARK;
methodHandle mh(THREAD, get_methodOop());
return Interpreter::entry_for_method(mh);
}
// ------------------------------------------------------------------
// ciMethod::uses_balanced_monitors
//
// Does this method use monitors in a strict stack-disciplined manner?
bool ciMethod::has_balanced_monitors() {
check_is_loaded();
if (_balanced_monitors) return true;
// Analyze the method to see if monitors are used properly.
VM_ENTRY_MARK;
methodHandle method(THREAD, get_methodOop());
assert(method->has_monitor_bytecodes(), "should have checked this");
// Check to see if a previous compilation computed the
// monitor-matching analysis.
if (method->guaranteed_monitor_matching()) {
_balanced_monitors = true;
return true;
}
{
EXCEPTION_MARK;
ResourceMark rm(THREAD);
GeneratePairingInfo gpi(method);
gpi.compute_map(CATCH);
if (!gpi.monitor_safe()) {
return false;
}
method->set_guaranteed_monitor_matching();
_balanced_monitors = true;
}
return true;
}
// ------------------------------------------------------------------
// ciMethod::get_flow_analysis
ciTypeFlow* ciMethod::get_flow_analysis() {
#ifdef COMPILER2
if (_flow == NULL) {
ciEnv* env = CURRENT_ENV;
_flow = new (env->arena()) ciTypeFlow(env, this);
_flow->do_flow();
}
return _flow;
#else // COMPILER2
ShouldNotReachHere();
return NULL;
#endif // COMPILER2
}
// ------------------------------------------------------------------
// ciMethod::get_osr_flow_analysis
ciTypeFlow* ciMethod::get_osr_flow_analysis(int osr_bci) {
#ifdef COMPILER2
// OSR entry points are always place after a call bytecode of some sort
assert(osr_bci >= 0, "must supply valid OSR entry point");
ciEnv* env = CURRENT_ENV;
ciTypeFlow* flow = new (env->arena()) ciTypeFlow(env, this, osr_bci);
flow->do_flow();
return flow;
#else // COMPILER2
ShouldNotReachHere();
return NULL;
#endif // COMPILER2
}
// ------------------------------------------------------------------
// ciMethod::liveness_at_bci
//
// Which local variables are live at a specific bci?
MethodLivenessResult ciMethod::liveness_at_bci(int bci) {
check_is_loaded();
if (_liveness == NULL) {
// Create the liveness analyzer.
Arena* arena = CURRENT_ENV->arena();
_liveness = new (arena) MethodLiveness(arena, this);
_liveness->compute_liveness();
}
MethodLivenessResult result = _liveness->get_liveness_at(bci);
if (JvmtiExport::can_access_local_variables() || DeoptimizeALot || CompileTheWorld) {
// Keep all locals live for the user's edification and amusement.
result.at_put_range(0, result.size(), true);
}
return result;
}
// ciMethod::live_local_oops_at_bci
//
// find all the live oops in the locals array for a particular bci
// Compute what the interpreter believes by using the interpreter
// oopmap generator. This is used as a double check during osr to
// guard against conservative result from MethodLiveness making us
// think a dead oop is live. MethodLiveness is conservative in the
// sense that it may consider locals to be live which cannot be live,
// like in the case where a local could contain an oop or a primitive
// along different paths. In that case the local must be dead when
// those paths merge. Since the interpreter's viewpoint is used when
// gc'ing an interpreter frame we need to use its viewpoint during
// OSR when loading the locals.
BitMap ciMethod::live_local_oops_at_bci(int bci) {
VM_ENTRY_MARK;
InterpreterOopMap mask;
OopMapCache::compute_one_oop_map(get_methodOop(), bci, &mask);
int mask_size = max_locals();
BitMap result(mask_size);
result.clear();
int i;
for (i = 0; i < mask_size ; i++ ) {
if (mask.is_oop(i)) result.set_bit(i);
}
return result;
}
#ifdef COMPILER1
// ------------------------------------------------------------------
// ciMethod::bci_block_start
//
// Marks all bcis where a new basic block starts
const BitMap ciMethod::bci_block_start() {
check_is_loaded();
if (_liveness == NULL) {
// Create the liveness analyzer.
Arena* arena = CURRENT_ENV->arena();
_liveness = new (arena) MethodLiveness(arena, this);
_liveness->compute_liveness();
}
return _liveness->get_bci_block_start();
}
#endif // COMPILER1
// ------------------------------------------------------------------
// ciMethod::call_profile_at_bci
//
// Get the ciCallProfile for the invocation of this method.
// Also reports receiver types for non-call type checks (if TypeProfileCasts).
ciCallProfile ciMethod::call_profile_at_bci(int bci) {
ResourceMark rm;
ciCallProfile result;
if (method_data() != NULL && method_data()->is_mature()) {
ciProfileData* data = method_data()->bci_to_data(bci);
if (data != NULL && data->is_CounterData()) {
// Every profiled call site has a counter.
int count = data->as_CounterData()->count();
if (!data->is_ReceiverTypeData()) {
result._receiver_count[0] = 0; // that's a definite zero
} else { // ReceiverTypeData is a subclass of CounterData
ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
// In addition, virtual call sites have receiver type information
int receivers_count_total = 0;
int morphism = 0;
for (uint i = 0; i < call->row_limit(); i++) {
ciKlass* receiver = call->receiver(i);
if (receiver == NULL) continue;
morphism += 1;
int rcount = call->receiver_count(i);
if (rcount == 0) rcount = 1; // Should be valid value
receivers_count_total += rcount;
// Add the receiver to result data.
result.add_receiver(receiver, rcount);
// If we extend profiling to record methods,
// we will set result._method also.
}
// Determine call site's morphism.
// The call site count could be == (receivers_count_total + 1)
// not only in the case of a polymorphic call but also in the case
// when a method data snapshot is taken after the site count was updated
// but before receivers counters were updated.
if (morphism == result._limit) {
// There were no array klasses and morphism <= MorphismLimit.
if (morphism < ciCallProfile::MorphismLimit ||
morphism == ciCallProfile::MorphismLimit &&
(receivers_count_total+1) >= count) {
result._morphism = morphism;
}
}
// Make the count consistent if this is a call profile. If count is
// zero or less, presume that this is a typecheck profile and
// do nothing. Otherwise, increase count to be the sum of all
// receiver's counts.
if (count > 0) {
if (count < receivers_count_total) {
count = receivers_count_total;
}
}
}
result._count = count;
}
}
return result;
}
// ------------------------------------------------------------------
// Add new receiver and sort data by receiver's profile count.
void ciCallProfile::add_receiver(ciKlass* receiver, int receiver_count) {
// Add new receiver and sort data by receiver's counts when we have space
// for it otherwise replace the less called receiver (less called receiver
// is placed to the last array element which is not used).
// First array's element contains most called receiver.
int i = _limit;
for (; i > 0 && receiver_count > _receiver_count[i-1]; i--) {
_receiver[i] = _receiver[i-1];
_receiver_count[i] = _receiver_count[i-1];
}
_receiver[i] = receiver;
_receiver_count[i] = receiver_count;
if (_limit < MorphismLimit) _limit++;
}
// ------------------------------------------------------------------
// ciMethod::find_monomorphic_target
//
// Given a certain calling environment, find the monomorphic target
// for the call. Return NULL if the call is not monomorphic in
// its calling environment, or if there are only abstract methods.
// The returned method is never abstract.
// Note: If caller uses a non-null result, it must inform dependencies
// via assert_unique_concrete_method or assert_leaf_type.
ciMethod* ciMethod::find_monomorphic_target(ciInstanceKlass* caller,
ciInstanceKlass* callee_holder,
ciInstanceKlass* actual_recv) {
check_is_loaded();
if (actual_recv->is_interface()) {
// %%% We cannot trust interface types, yet. See bug 6312651.
return NULL;
}
ciMethod* root_m = resolve_invoke(caller, actual_recv);
if (root_m == NULL) {
// Something went wrong looking up the actual receiver method.
return NULL;
}
assert(!root_m->is_abstract(), "resolve_invoke promise");
// Make certain quick checks even if UseCHA is false.
// Is it private or final?
if (root_m->can_be_statically_bound()) {
return root_m;
}
if (actual_recv->is_leaf_type() && actual_recv == root_m->holder()) {
// Easy case. There is no other place to put a method, so don't bother
// to go through the VM_ENTRY_MARK and all the rest.
return root_m;
}
// Array methods (clone, hashCode, etc.) are always statically bound.
// If we were to see an array type here, we'd return root_m.
// However, this method processes only ciInstanceKlasses. (See 4962591.)
// The inline_native_clone intrinsic narrows Object to T[] properly,
// so there is no need to do the same job here.
if (!UseCHA) return NULL;
VM_ENTRY_MARK;
methodHandle target;
{
MutexLocker locker(Compile_lock);
klassOop context = actual_recv->get_klassOop();
target = Dependencies::find_unique_concrete_method(context,
root_m->get_methodOop());
// %%% Should upgrade this ciMethod API to look for 1 or 2 concrete methods.
}
#ifndef PRODUCT
if (TraceDependencies && target() != NULL && target() != root_m->get_methodOop()) {
tty->print("found a non-root unique target method");
tty->print_cr(" context = %s", instanceKlass::cast(actual_recv->get_klassOop())->external_name());
tty->print(" method = ");
target->print_short_name(tty);
tty->cr();
}
#endif //PRODUCT
if (target() == NULL) {
return NULL;
}
if (target() == root_m->get_methodOop()) {
return root_m;
}
if (!root_m->is_public() &&
!root_m->is_protected()) {
// If we are going to reason about inheritance, it's easiest
// if the method in question is public, protected, or private.
// If the answer is not root_m, it is conservatively correct
// to return NULL, even if the CHA encountered irrelevant
// methods in other packages.
// %%% TO DO: Work out logic for package-private methods
// with the same name but different vtable indexes.
return NULL;
}
return CURRENT_THREAD_ENV->get_object(target())->as_method();
}
// ------------------------------------------------------------------
// ciMethod::resolve_invoke
//
// Given a known receiver klass, find the target for the call.
// Return NULL if the call has no target or the target is abstract.
ciMethod* ciMethod::resolve_invoke(ciKlass* caller, ciKlass* exact_receiver) {
check_is_loaded();
VM_ENTRY_MARK;
KlassHandle caller_klass (THREAD, caller->get_klassOop());
KlassHandle h_recv (THREAD, exact_receiver->get_klassOop());
KlassHandle h_resolved (THREAD, holder()->get_klassOop());
symbolHandle h_name (THREAD, name()->get_symbolOop());
symbolHandle h_signature (THREAD, signature()->get_symbolOop());
methodHandle m;
// Only do exact lookup if receiver klass has been linked. Otherwise,
// the vtable has not been setup, and the LinkResolver will fail.
if (h_recv->oop_is_javaArray()
||
instanceKlass::cast(h_recv())->is_linked() && !exact_receiver->is_interface()) {
if (holder()->is_interface()) {
m = LinkResolver::resolve_interface_call_or_null(h_recv, h_resolved, h_name, h_signature, caller_klass);
} else {
m = LinkResolver::resolve_virtual_call_or_null(h_recv, h_resolved, h_name, h_signature, caller_klass);
}
}
if (m.is_null()) {
// Return NULL only if there was a problem with lookup (uninitialized class, etc.)
return NULL;
}
ciMethod* result = this;
if (m() != get_methodOop()) {
result = CURRENT_THREAD_ENV->get_object(m())->as_method();
}
// Don't return abstract methods because they aren't
// optimizable or interesting.
if (result->is_abstract()) {
return NULL;
} else {
return result;
}
}
// ------------------------------------------------------------------
// ciMethod::resolve_vtable_index
//
// Given a known receiver klass, find the vtable index for the call.
// Return methodOopDesc::invalid_vtable_index if the vtable_index is unknown.
int ciMethod::resolve_vtable_index(ciKlass* caller, ciKlass* receiver) {
check_is_loaded();
int vtable_index = methodOopDesc::invalid_vtable_index;
// Only do lookup if receiver klass has been linked. Otherwise,
// the vtable has not been setup, and the LinkResolver will fail.
if (!receiver->is_interface()
&& (!receiver->is_instance_klass() ||
receiver->as_instance_klass()->is_linked())) {
VM_ENTRY_MARK;
KlassHandle caller_klass (THREAD, caller->get_klassOop());
KlassHandle h_recv (THREAD, receiver->get_klassOop());
symbolHandle h_name (THREAD, name()->get_symbolOop());
symbolHandle h_signature (THREAD, signature()->get_symbolOop());
vtable_index = LinkResolver::resolve_virtual_vtable_index(h_recv, h_recv, h_name, h_signature, caller_klass);
if (vtable_index == methodOopDesc::nonvirtual_vtable_index) {
// A statically bound method. Return "no such index".
vtable_index = methodOopDesc::invalid_vtable_index;
}
}
return vtable_index;
}
// ------------------------------------------------------------------
// ciMethod::interpreter_call_site_count
int ciMethod::interpreter_call_site_count(int bci) {
if (method_data() != NULL) {
ResourceMark rm;
ciProfileData* data = method_data()->bci_to_data(bci);
if (data != NULL && data->is_CounterData()) {
return scale_count(data->as_CounterData()->count());
}
}
return -1; // unknown
}
// ------------------------------------------------------------------
// Adjust a CounterData count to be commensurate with
// interpreter_invocation_count. If the MDO exists for
// only 25% of the time the method exists, then the
// counts in the MDO should be scaled by 4X, so that
// they can be usefully and stably compared against the
// invocation counts in methods.
int ciMethod::scale_count(int count, float prof_factor) {
if (count > 0 && method_data() != NULL) {
int current_mileage = method_data()->current_mileage();
int creation_mileage = method_data()->creation_mileage();
int counter_life = current_mileage - creation_mileage;
int method_life = interpreter_invocation_count();
// counter_life due to backedge_counter could be > method_life
if (counter_life > method_life)
counter_life = method_life;
if (0 < counter_life && counter_life <= method_life) {
count = (int)((double)count * prof_factor * method_life / counter_life + 0.5);
count = (count > 0) ? count : 1;
}
}
return count;
}
// ------------------------------------------------------------------
// ciMethod::build_method_data
//
// Generate new methodDataOop objects at compile time.
void ciMethod::build_method_data(methodHandle h_m) {
EXCEPTION_CONTEXT;
if (is_native() || is_abstract() || h_m()->is_accessor()) return;
if (h_m()->method_data() == NULL) {
methodOopDesc::build_interpreter_method_data(h_m, THREAD);
if (HAS_PENDING_EXCEPTION) {
CLEAR_PENDING_EXCEPTION;
}
}
if (h_m()->method_data() != NULL) {
_method_data = CURRENT_ENV->get_object(h_m()->method_data())->as_method_data();
_method_data->load_data();
} else {
_method_data = CURRENT_ENV->get_empty_methodData();
}
}
// public, retroactive version
void ciMethod::build_method_data() {
if (_method_data == NULL || _method_data->is_empty()) {
GUARDED_VM_ENTRY({
build_method_data(get_methodOop());
});
}
}
// ------------------------------------------------------------------
// ciMethod::method_data
//
ciMethodData* ciMethod::method_data() {
if (_method_data != NULL) {
return _method_data;
}
VM_ENTRY_MARK;
ciEnv* env = CURRENT_ENV;
Thread* my_thread = JavaThread::current();
methodHandle h_m(my_thread, get_methodOop());
if (Tier1UpdateMethodData && is_tier1_compile(env->comp_level())) {
build_method_data(h_m);
}
if (h_m()->method_data() != NULL) {
_method_data = CURRENT_ENV->get_object(h_m()->method_data())->as_method_data();
_method_data->load_data();
} else {
_method_data = CURRENT_ENV->get_empty_methodData();
}
return _method_data;
}
// ------------------------------------------------------------------
// ciMethod::will_link
//
// Will this method link in a specific calling context?
bool ciMethod::will_link(ciKlass* accessing_klass,
ciKlass* declared_method_holder,
Bytecodes::Code bc) {
if (!is_loaded()) {
// Method lookup failed.
return false;
}
// The link checks have been front-loaded into the get_method
// call. This method (ciMethod::will_link()) will be removed
// in the future.
return true;
}
// ------------------------------------------------------------------
// ciMethod::should_exclude
//
// Should this method be excluded from compilation?
bool ciMethod::should_exclude() {
check_is_loaded();
VM_ENTRY_MARK;
methodHandle mh(THREAD, get_methodOop());
bool ignore;
return CompilerOracle::should_exclude(mh, ignore);
}
// ------------------------------------------------------------------
// ciMethod::should_inline
//
// Should this method be inlined during compilation?
bool ciMethod::should_inline() {
check_is_loaded();
VM_ENTRY_MARK;
methodHandle mh(THREAD, get_methodOop());
return CompilerOracle::should_inline(mh);
}
// ------------------------------------------------------------------
// ciMethod::should_not_inline
//
// Should this method be disallowed from inlining during compilation?
bool ciMethod::should_not_inline() {
check_is_loaded();
VM_ENTRY_MARK;
methodHandle mh(THREAD, get_methodOop());
return CompilerOracle::should_not_inline(mh);
}
// ------------------------------------------------------------------
// ciMethod::should_print_assembly
//
// Should the compiler print the generated code for this method?
bool ciMethod::should_print_assembly() {
check_is_loaded();
VM_ENTRY_MARK;
methodHandle mh(THREAD, get_methodOop());
return CompilerOracle::should_print(mh);
}
// ------------------------------------------------------------------
// ciMethod::break_at_execute
//
// Should the compiler insert a breakpoint into the generated code
// method?
bool ciMethod::break_at_execute() {
check_is_loaded();
VM_ENTRY_MARK;
methodHandle mh(THREAD, get_methodOop());
return CompilerOracle::should_break_at(mh);
}
// ------------------------------------------------------------------
// ciMethod::has_option
//
bool ciMethod::has_option(const char* option) {
check_is_loaded();
VM_ENTRY_MARK;
methodHandle mh(THREAD, get_methodOop());
return CompilerOracle::has_option_string(mh, option);
}
// ------------------------------------------------------------------
// ciMethod::can_be_compiled
//
// Have previous compilations of this method succeeded?
bool ciMethod::can_be_compiled() {
check_is_loaded();
return _is_compilable;
}
// ------------------------------------------------------------------
// ciMethod::set_not_compilable
//
// Tell the VM that this method cannot be compiled at all.
void ciMethod::set_not_compilable() {
check_is_loaded();
VM_ENTRY_MARK;
_is_compilable = false;
get_methodOop()->set_not_compilable();
}
// ------------------------------------------------------------------
// ciMethod::can_be_osr_compiled
//
// Have previous compilations of this method succeeded?
//
// Implementation note: the VM does not currently keep track
// of failed OSR compilations per bci. The entry_bci parameter
// is currently unused.
bool ciMethod::can_be_osr_compiled(int entry_bci) {
check_is_loaded();
VM_ENTRY_MARK;
return !get_methodOop()->access_flags().is_not_osr_compilable();
}
// ------------------------------------------------------------------
// ciMethod::has_compiled_code
bool ciMethod::has_compiled_code() {
VM_ENTRY_MARK;
return get_methodOop()->code() != NULL;
}
// ------------------------------------------------------------------
// ciMethod::instructions_size
// This is a rough metric for "fat" methods, compared
// before inlining with InlineSmallCode.
// The CodeBlob::instructions_size accessor includes
// junk like exception handler, stubs, and constant table,
// which are not highly relevant to an inlined method.
// So we use the more specific accessor nmethod::code_size.
int ciMethod::instructions_size() {
GUARDED_VM_ENTRY(
nmethod* code = get_methodOop()->code();
// if there's no compiled code or the code was produced by the
// tier1 profiler return 0 for the code size. This should
// probably be based on the compilation level of the nmethod but
// that currently isn't properly recorded.
if (code == NULL ||
(TieredCompilation && code->compiler() != NULL && code->compiler()->is_c1())) {
return 0;
}
return code->code_end() - code->verified_entry_point();
)
}
// ------------------------------------------------------------------
// ciMethod::log_nmethod_identity
void ciMethod::log_nmethod_identity(xmlStream* log) {
GUARDED_VM_ENTRY(
nmethod* code = get_methodOop()->code();
if (code != NULL) {
code->log_identity(log);
}
)
}
// ------------------------------------------------------------------
// ciMethod::is_not_reached
bool ciMethod::is_not_reached(int bci) {
check_is_loaded();
VM_ENTRY_MARK;
return Interpreter::is_not_reached(
methodHandle(THREAD, get_methodOop()), bci);
}
// ------------------------------------------------------------------
// ciMethod::was_never_executed
bool ciMethod::was_executed_more_than(int times) {
VM_ENTRY_MARK;
return get_methodOop()->was_executed_more_than(times);
}
// ------------------------------------------------------------------
// ciMethod::has_unloaded_classes_in_signature
bool ciMethod::has_unloaded_classes_in_signature() {
VM_ENTRY_MARK;
{
EXCEPTION_MARK;
methodHandle m(THREAD, get_methodOop());
bool has_unloaded = methodOopDesc::has_unloaded_classes_in_signature(m, (JavaThread *)THREAD);
if( HAS_PENDING_EXCEPTION ) {
CLEAR_PENDING_EXCEPTION;
return true; // Declare that we may have unloaded classes
}
return has_unloaded;
}
}
// ------------------------------------------------------------------
// ciMethod::is_klass_loaded
bool ciMethod::is_klass_loaded(int refinfo_index, bool must_be_resolved) const {
VM_ENTRY_MARK;
return get_methodOop()->is_klass_loaded(refinfo_index, must_be_resolved);
}
// ------------------------------------------------------------------
// ciMethod::check_call
bool ciMethod::check_call(int refinfo_index, bool is_static) const {
VM_ENTRY_MARK;
{
EXCEPTION_MARK;
HandleMark hm(THREAD);
constantPoolHandle pool (THREAD, get_methodOop()->constants());
methodHandle spec_method;
KlassHandle spec_klass;
LinkResolver::resolve_method(spec_method, spec_klass, pool, refinfo_index, THREAD);
if (HAS_PENDING_EXCEPTION) {
CLEAR_PENDING_EXCEPTION;
return false;
} else {
return (spec_method->is_static() == is_static);
}
}
return false;
}
// ------------------------------------------------------------------
// ciMethod::print_codes
//
// Print the bytecodes for this method.
void ciMethod::print_codes_on(outputStream* st) {
check_is_loaded();
GUARDED_VM_ENTRY(get_methodOop()->print_codes_on(st);)
}
#define FETCH_FLAG_FROM_VM(flag_accessor) { \
check_is_loaded(); \
VM_ENTRY_MARK; \
return get_methodOop()->flag_accessor(); \
}
bool ciMethod::is_empty_method() const { FETCH_FLAG_FROM_VM(is_empty_method); }
bool ciMethod::is_vanilla_constructor() const { FETCH_FLAG_FROM_VM(is_vanilla_constructor); }
bool ciMethod::has_loops () const { FETCH_FLAG_FROM_VM(has_loops); }
bool ciMethod::has_jsrs () const { FETCH_FLAG_FROM_VM(has_jsrs); }
bool ciMethod::is_accessor () const { FETCH_FLAG_FROM_VM(is_accessor); }
bool ciMethod::is_initializer () const { FETCH_FLAG_FROM_VM(is_initializer); }
BCEscapeAnalyzer *ciMethod::get_bcea() {
if (_bcea == NULL) {
_bcea = new (CURRENT_ENV->arena()) BCEscapeAnalyzer(this, NULL);
}
return _bcea;
}
ciMethodBlocks *ciMethod::get_method_blocks() {
Arena *arena = CURRENT_ENV->arena();
if (_method_blocks == NULL) {
_method_blocks = new (arena) ciMethodBlocks(arena, this);
}
return _method_blocks;
}
#undef FETCH_FLAG_FROM_VM
// ------------------------------------------------------------------
// ciMethod::print_codes
//
// Print a range of the bytecodes for this method.
void ciMethod::print_codes_on(int from, int to, outputStream* st) {
check_is_loaded();
GUARDED_VM_ENTRY(get_methodOop()->print_codes_on(from, to, st);)
}
// ------------------------------------------------------------------
// ciMethod::print_name
//
// Print the name of this method, including signature and some flags.
void ciMethod::print_name(outputStream* st) {
check_is_loaded();
GUARDED_VM_ENTRY(get_methodOop()->print_name(st);)
}
// ------------------------------------------------------------------
// ciMethod::print_short_name
//
// Print the name of this method, without signature.
void ciMethod::print_short_name(outputStream* st) {
check_is_loaded();
GUARDED_VM_ENTRY(get_methodOop()->print_short_name(st);)
}
// ------------------------------------------------------------------
// ciMethod::print_impl
//
// Implementation of the print method.
void ciMethod::print_impl(outputStream* st) {
ciObject::print_impl(st);
st->print(" name=");
name()->print_symbol_on(st);
st->print(" holder=");
holder()->print_name_on(st);
st->print(" signature=");
signature()->as_symbol()->print_symbol_on(st);
if (is_loaded()) {
st->print(" loaded=true flags=");
flags().print_member_flags(st);
} else {
st->print(" loaded=false");
}
}