8210320: PPC64: Fix uninitialized variable in C1 LIR assembler code
Reviewed-by: mbaesken, shade, mdoerr
/*
* Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2017, SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "c1/c1_Compilation.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "c1/c1_ValueStack.hpp"
#include "ci/ciArrayKlass.hpp"
#include "ci/ciInstance.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "nativeInst_ppc.hpp"
#include "oops/objArrayKlass.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/safepointMechanism.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#define __ _masm->
const ConditionRegister LIR_Assembler::BOOL_RESULT = CCR5;
bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
Unimplemented(); return false; // Currently not used on this platform.
}
LIR_Opr LIR_Assembler::receiverOpr() {
return FrameMap::R3_oop_opr;
}
LIR_Opr LIR_Assembler::osrBufferPointer() {
return FrameMap::R3_opr;
}
// This specifies the stack pointer decrement needed to build the frame.
int LIR_Assembler::initial_frame_size_in_bytes() const {
return in_bytes(frame_map()->framesize_in_bytes());
}
// Inline cache check: the inline cached class is in inline_cache_reg;
// we fetch the class of the receiver and compare it with the cached class.
// If they do not match we jump to slow case.
int LIR_Assembler::check_icache() {
int offset = __ offset();
__ inline_cache_check(R3_ARG1, R19_inline_cache_reg);
return offset;
}
void LIR_Assembler::osr_entry() {
// On-stack-replacement entry sequence:
//
// 1. Create a new compiled activation.
// 2. Initialize local variables in the compiled activation. The expression
// stack must be empty at the osr_bci; it is not initialized.
// 3. Jump to the continuation address in compiled code to resume execution.
// OSR entry point
offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
BlockBegin* osr_entry = compilation()->hir()->osr_entry();
ValueStack* entry_state = osr_entry->end()->state();
int number_of_locks = entry_state->locks_size();
// Create a frame for the compiled activation.
__ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
// OSR buffer is
//
// locals[nlocals-1..0]
// monitors[number_of_locks-1..0]
//
// Locals is a direct copy of the interpreter frame so in the osr buffer
// the first slot in the local array is the last local from the interpreter
// and the last slot is local[0] (receiver) from the interpreter.
//
// Similarly with locks. The first lock slot in the osr buffer is the nth lock
// from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
// in the interpreter frame (the method lock if a sync method).
// Initialize monitors in the compiled activation.
// R3: pointer to osr buffer
//
// All other registers are dead at this point and the locals will be
// copied into place by code emitted in the IR.
Register OSR_buf = osrBufferPointer()->as_register();
{ assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
int monitor_offset = BytesPerWord * method()->max_locals() +
(2 * BytesPerWord) * (number_of_locks - 1);
// SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
// the OSR buffer using 2 word entries: first the lock and then
// the oop.
for (int i = 0; i < number_of_locks; i++) {
int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
#ifdef ASSERT
// Verify the interpreter's monitor has a non-null object.
{
Label L;
__ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf);
__ cmpdi(CCR0, R0, 0);
__ bne(CCR0, L);
__ stop("locked object is NULL");
__ bind(L);
}
#endif // ASSERT
// Copy the lock field into the compiled activation.
Address ml = frame_map()->address_for_monitor_lock(i),
mo = frame_map()->address_for_monitor_object(i);
assert(ml.index() == noreg && mo.index() == noreg, "sanity");
__ ld(R0, slot_offset + 0, OSR_buf);
__ std(R0, ml.disp(), ml.base());
__ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf);
__ std(R0, mo.disp(), mo.base());
}
}
}
int LIR_Assembler::emit_exception_handler() {
// If the last instruction is a call (typically to do a throw which
// is coming at the end after block reordering) the return address
// must still point into the code area in order to avoid assertion
// failures when searching for the corresponding bci => add a nop
// (was bug 5/14/1999 - gri).
__ nop();
// Generate code for the exception handler.
address handler_base = __ start_a_stub(exception_handler_size());
if (handler_base == NULL) {
// Not enough space left for the handler.
bailout("exception handler overflow");
return -1;
}
int offset = code_offset();
address entry_point = CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::handle_exception_from_callee_id));
//__ load_const_optimized(R0, entry_point);
__ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(entry_point));
__ mtctr(R0);
__ bctr();
guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
__ end_a_stub();
return offset;
}
// Emit the code to remove the frame from the stack in the exception
// unwind path.
int LIR_Assembler::emit_unwind_handler() {
_masm->block_comment("Unwind handler");
int offset = code_offset();
bool preserve_exception = method()->is_synchronized() || compilation()->env()->dtrace_method_probes();
const Register Rexception = R3 /*LIRGenerator::exceptionOopOpr()*/, Rexception_save = R31;
// Fetch the exception from TLS and clear out exception related thread state.
__ ld(Rexception, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
__ li(R0, 0);
__ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
__ std(R0, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
__ bind(_unwind_handler_entry);
__ verify_not_null_oop(Rexception);
if (preserve_exception) { __ mr(Rexception_save, Rexception); }
// Perform needed unlocking
MonitorExitStub* stub = NULL;
if (method()->is_synchronized()) {
monitor_address(0, FrameMap::R4_opr);
stub = new MonitorExitStub(FrameMap::R4_opr, true, 0);
__ unlock_object(R5, R6, R4, *stub->entry());
__ bind(*stub->continuation());
}
if (compilation()->env()->dtrace_method_probes()) {
Unimplemented();
}
// Dispatch to the unwind logic.
address unwind_stub = Runtime1::entry_for(Runtime1::unwind_exception_id);
//__ load_const_optimized(R0, unwind_stub);
__ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(unwind_stub));
if (preserve_exception) { __ mr(Rexception, Rexception_save); }
__ mtctr(R0);
__ bctr();
// Emit the slow path assembly.
if (stub != NULL) {
stub->emit_code(this);
}
return offset;
}
int LIR_Assembler::emit_deopt_handler() {
// If the last instruction is a call (typically to do a throw which
// is coming at the end after block reordering) the return address
// must still point into the code area in order to avoid assertion
// failures when searching for the corresponding bci => add a nop
// (was bug 5/14/1999 - gri).
__ nop();
// Generate code for deopt handler.
address handler_base = __ start_a_stub(deopt_handler_size());
if (handler_base == NULL) {
// Not enough space left for the handler.
bailout("deopt handler overflow");
return -1;
}
int offset = code_offset();
__ bl64_patchable(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type);
guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
__ end_a_stub();
return offset;
}
void LIR_Assembler::jobject2reg(jobject o, Register reg) {
if (o == NULL) {
__ li(reg, 0);
} else {
AddressLiteral addrlit = __ constant_oop_address(o);
__ load_const(reg, addrlit, (reg != R0) ? R0 : noreg);
}
}
void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
// Allocate a new index in table to hold the object once it's been patched.
int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
AddressLiteral addrlit((address)NULL, oop_Relocation::spec(oop_index));
__ load_const(reg, addrlit, R0);
patching_epilog(patch, lir_patch_normal, reg, info);
}
void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
AddressLiteral md = __ constant_metadata_address(o); // Notify OOP recorder (don't need the relocation)
__ load_const_optimized(reg, md.value(), (reg != R0) ? R0 : noreg);
}
void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
// Allocate a new index in table to hold the klass once it's been patched.
int index = __ oop_recorder()->allocate_metadata_index(NULL);
PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
AddressLiteral addrlit((address)NULL, metadata_Relocation::spec(index));
assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
__ load_const(reg, addrlit, R0);
patching_epilog(patch, lir_patch_normal, reg, info);
}
void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
const bool is_int = result->is_single_cpu();
Register Rdividend = is_int ? left->as_register() : left->as_register_lo();
Register Rdivisor = noreg;
Register Rscratch = temp->as_register();
Register Rresult = is_int ? result->as_register() : result->as_register_lo();
long divisor = -1;
if (right->is_register()) {
Rdivisor = is_int ? right->as_register() : right->as_register_lo();
} else {
divisor = is_int ? right->as_constant_ptr()->as_jint()
: right->as_constant_ptr()->as_jlong();
}
assert(Rdividend != Rscratch, "");
assert(Rdivisor != Rscratch, "");
assert(code == lir_idiv || code == lir_irem, "Must be irem or idiv");
if (Rdivisor == noreg) {
if (divisor == 1) { // stupid, but can happen
if (code == lir_idiv) {
__ mr_if_needed(Rresult, Rdividend);
} else {
__ li(Rresult, 0);
}
} else if (is_power_of_2(divisor)) {
// Convert division by a power of two into some shifts and logical operations.
int log2 = log2_intptr(divisor);
// Round towards 0.
if (divisor == 2) {
if (is_int) {
__ srwi(Rscratch, Rdividend, 31);
} else {
__ srdi(Rscratch, Rdividend, 63);
}
} else {
if (is_int) {
__ srawi(Rscratch, Rdividend, 31);
} else {
__ sradi(Rscratch, Rdividend, 63);
}
__ clrldi(Rscratch, Rscratch, 64-log2);
}
__ add(Rscratch, Rdividend, Rscratch);
if (code == lir_idiv) {
if (is_int) {
__ srawi(Rresult, Rscratch, log2);
} else {
__ sradi(Rresult, Rscratch, log2);
}
} else { // lir_irem
__ clrrdi(Rscratch, Rscratch, log2);
__ sub(Rresult, Rdividend, Rscratch);
}
} else if (divisor == -1) {
if (code == lir_idiv) {
__ neg(Rresult, Rdividend);
} else {
__ li(Rresult, 0);
}
} else {
__ load_const_optimized(Rscratch, divisor);
if (code == lir_idiv) {
if (is_int) {
__ divw(Rresult, Rdividend, Rscratch); // Can't divide minint/-1.
} else {
__ divd(Rresult, Rdividend, Rscratch); // Can't divide minint/-1.
}
} else {
assert(Rscratch != R0, "need both");
if (is_int) {
__ divw(R0, Rdividend, Rscratch); // Can't divide minint/-1.
__ mullw(Rscratch, R0, Rscratch);
} else {
__ divd(R0, Rdividend, Rscratch); // Can't divide minint/-1.
__ mulld(Rscratch, R0, Rscratch);
}
__ sub(Rresult, Rdividend, Rscratch);
}
}
return;
}
Label regular, done;
if (is_int) {
__ cmpwi(CCR0, Rdivisor, -1);
} else {
__ cmpdi(CCR0, Rdivisor, -1);
}
__ bne(CCR0, regular);
if (code == lir_idiv) {
__ neg(Rresult, Rdividend);
__ b(done);
__ bind(regular);
if (is_int) {
__ divw(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1.
} else {
__ divd(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1.
}
} else { // lir_irem
__ li(Rresult, 0);
__ b(done);
__ bind(regular);
if (is_int) {
__ divw(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1.
__ mullw(Rscratch, Rscratch, Rdivisor);
} else {
__ divd(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1.
__ mulld(Rscratch, Rscratch, Rdivisor);
}
__ sub(Rresult, Rdividend, Rscratch);
}
__ bind(done);
}
void LIR_Assembler::emit_op3(LIR_Op3* op) {
switch (op->code()) {
case lir_idiv:
case lir_irem:
arithmetic_idiv(op->code(), op->in_opr1(), op->in_opr2(), op->in_opr3(),
op->result_opr(), op->info());
break;
case lir_fmad:
__ fmadd(op->result_opr()->as_double_reg(), op->in_opr1()->as_double_reg(),
op->in_opr2()->as_double_reg(), op->in_opr3()->as_double_reg());
break;
case lir_fmaf:
__ fmadds(op->result_opr()->as_float_reg(), op->in_opr1()->as_float_reg(),
op->in_opr2()->as_float_reg(), op->in_opr3()->as_float_reg());
break;
default: ShouldNotReachHere(); break;
}
}
void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
#ifdef ASSERT
assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
if (op->block() != NULL) _branch_target_blocks.append(op->block());
if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
#endif
Label *L = op->label();
if (op->cond() == lir_cond_always) {
__ b(*L);
} else {
Label done;
bool is_unordered = false;
if (op->code() == lir_cond_float_branch) {
assert(op->ublock() != NULL, "must have unordered successor");
is_unordered = true;
} else {
assert(op->code() == lir_branch, "just checking");
}
bool positive = false;
Assembler::Condition cond = Assembler::equal;
switch (op->cond()) {
case lir_cond_equal: positive = true ; cond = Assembler::equal ; is_unordered = false; break;
case lir_cond_notEqual: positive = false; cond = Assembler::equal ; is_unordered = false; break;
case lir_cond_less: positive = true ; cond = Assembler::less ; break;
case lir_cond_belowEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru
case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break;
case lir_cond_greater: positive = true ; cond = Assembler::greater; break;
case lir_cond_aboveEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru
case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break;
default: ShouldNotReachHere();
}
int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
int bi = Assembler::bi0(BOOL_RESULT, cond);
if (is_unordered) {
if (positive) {
if (op->ublock() == op->block()) {
__ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(BOOL_RESULT, Assembler::summary_overflow), *L);
}
} else {
if (op->ublock() != op->block()) { __ bso(BOOL_RESULT, done); }
}
}
__ bc_far_optimized(bo, bi, *L);
__ bind(done);
}
}
void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
Bytecodes::Code code = op->bytecode();
LIR_Opr src = op->in_opr(),
dst = op->result_opr();
switch(code) {
case Bytecodes::_i2l: {
__ extsw(dst->as_register_lo(), src->as_register());
break;
}
case Bytecodes::_l2i: {
__ mr_if_needed(dst->as_register(), src->as_register_lo()); // high bits are garbage
break;
}
case Bytecodes::_i2b: {
__ extsb(dst->as_register(), src->as_register());
break;
}
case Bytecodes::_i2c: {
__ clrldi(dst->as_register(), src->as_register(), 64-16);
break;
}
case Bytecodes::_i2s: {
__ extsh(dst->as_register(), src->as_register());
break;
}
case Bytecodes::_i2d:
case Bytecodes::_l2d: {
bool src_in_memory = !VM_Version::has_mtfprd();
FloatRegister rdst = dst->as_double_reg();
FloatRegister rsrc;
if (src_in_memory) {
rsrc = src->as_double_reg(); // via mem
} else {
// move src to dst register
if (code == Bytecodes::_i2d) {
__ mtfprwa(rdst, src->as_register());
} else {
__ mtfprd(rdst, src->as_register_lo());
}
rsrc = rdst;
}
__ fcfid(rdst, rsrc);
break;
}
case Bytecodes::_i2f:
case Bytecodes::_l2f: {
bool src_in_memory = !VM_Version::has_mtfprd();
FloatRegister rdst = dst->as_float_reg();
FloatRegister rsrc;
if (src_in_memory) {
rsrc = src->as_double_reg(); // via mem
} else {
// move src to dst register
if (code == Bytecodes::_i2f) {
__ mtfprwa(rdst, src->as_register());
} else {
__ mtfprd(rdst, src->as_register_lo());
}
rsrc = rdst;
}
if (VM_Version::has_fcfids()) {
__ fcfids(rdst, rsrc);
} else {
assert(code == Bytecodes::_i2f, "fcfid+frsp needs fixup code to avoid rounding incompatibility");
__ fcfid(rdst, rsrc);
__ frsp(rdst, rdst);
}
break;
}
case Bytecodes::_f2d: {
__ fmr_if_needed(dst->as_double_reg(), src->as_float_reg());
break;
}
case Bytecodes::_d2f: {
__ frsp(dst->as_float_reg(), src->as_double_reg());
break;
}
case Bytecodes::_d2i:
case Bytecodes::_f2i: {
bool dst_in_memory = !VM_Version::has_mtfprd();
FloatRegister rsrc = (code == Bytecodes::_d2i) ? src->as_double_reg() : src->as_float_reg();
Address addr = dst_in_memory ? frame_map()->address_for_slot(dst->double_stack_ix()) : NULL;
Label L;
// Result must be 0 if value is NaN; test by comparing value to itself.
__ fcmpu(CCR0, rsrc, rsrc);
if (dst_in_memory) {
__ li(R0, 0); // 0 in case of NAN
__ std(R0, addr.disp(), addr.base());
} else {
__ li(dst->as_register(), 0);
}
__ bso(CCR0, L);
__ fctiwz(rsrc, rsrc); // USE_KILL
if (dst_in_memory) {
__ stfd(rsrc, addr.disp(), addr.base());
} else {
__ mffprd(dst->as_register(), rsrc);
}
__ bind(L);
break;
}
case Bytecodes::_d2l:
case Bytecodes::_f2l: {
bool dst_in_memory = !VM_Version::has_mtfprd();
FloatRegister rsrc = (code == Bytecodes::_d2l) ? src->as_double_reg() : src->as_float_reg();
Address addr = dst_in_memory ? frame_map()->address_for_slot(dst->double_stack_ix()) : NULL;
Label L;
// Result must be 0 if value is NaN; test by comparing value to itself.
__ fcmpu(CCR0, rsrc, rsrc);
if (dst_in_memory) {
__ li(R0, 0); // 0 in case of NAN
__ std(R0, addr.disp(), addr.base());
} else {
__ li(dst->as_register_lo(), 0);
}
__ bso(CCR0, L);
__ fctidz(rsrc, rsrc); // USE_KILL
if (dst_in_memory) {
__ stfd(rsrc, addr.disp(), addr.base());
} else {
__ mffprd(dst->as_register_lo(), rsrc);
}
__ bind(L);
break;
}
default: ShouldNotReachHere();
}
}
void LIR_Assembler::align_call(LIR_Code) {
// do nothing since all instructions are word aligned on ppc
}
bool LIR_Assembler::emit_trampoline_stub_for_call(address target, Register Rtoc) {
int start_offset = __ offset();
// Put the entry point as a constant into the constant pool.
const address entry_point_toc_addr = __ address_constant(target, RelocationHolder::none);
if (entry_point_toc_addr == NULL) {
bailout("const section overflow");
return false;
}
const int entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
// Emit the trampoline stub which will be related to the branch-and-link below.
address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset, Rtoc);
if (!stub) {
bailout("no space for trampoline stub");
return false;
}
return true;
}
void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
assert(rtype==relocInfo::opt_virtual_call_type || rtype==relocInfo::static_call_type, "unexpected rtype");
bool success = emit_trampoline_stub_for_call(op->addr());
if (!success) { return; }
__ relocate(rtype);
// Note: At this point we do not have the address of the trampoline
// stub, and the entry point might be too far away for bl, so __ pc()
// serves as dummy and the bl will be patched later.
__ code()->set_insts_mark();
__ bl(__ pc());
add_call_info(code_offset(), op->info());
}
void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
__ calculate_address_from_global_toc(R2_TOC, __ method_toc());
// Virtual call relocation will point to ic load.
address virtual_call_meta_addr = __ pc();
// Load a clear inline cache.
AddressLiteral empty_ic((address) Universe::non_oop_word());
bool success = __ load_const_from_method_toc(R19_inline_cache_reg, empty_ic, R2_TOC);
if (!success) {
bailout("const section overflow");
return;
}
// Call to fixup routine. Fixup routine uses ScopeDesc info
// to determine who we intended to call.
__ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
success = emit_trampoline_stub_for_call(op->addr(), R2_TOC);
if (!success) { return; }
// Note: At this point we do not have the address of the trampoline
// stub, and the entry point might be too far away for bl, so __ pc()
// serves as dummy and the bl will be patched later.
__ bl(__ pc());
add_call_info(code_offset(), op->info());
}
void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
ShouldNotReachHere(); // ic_call is used instead.
}
void LIR_Assembler::explicit_null_check(Register addr, CodeEmitInfo* info) {
ImplicitNullCheckStub* stub = new ImplicitNullCheckStub(code_offset(), info);
__ null_check(addr, stub->entry());
append_code_stub(stub);
}
// Attention: caller must encode oop if needed
int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
int store_offset;
if (!Assembler::is_simm16(offset)) {
// For offsets larger than a simm16 we setup the offset.
assert(wide && !from_reg->is_same_register(FrameMap::R0_opr), "large offset only supported in special case");
__ load_const_optimized(R0, offset);
store_offset = store(from_reg, base, R0, type, wide);
} else {
store_offset = code_offset();
switch (type) {
case T_BOOLEAN: // fall through
case T_BYTE : __ stb(from_reg->as_register(), offset, base); break;
case T_CHAR :
case T_SHORT : __ sth(from_reg->as_register(), offset, base); break;
case T_INT : __ stw(from_reg->as_register(), offset, base); break;
case T_LONG : __ std(from_reg->as_register_lo(), offset, base); break;
case T_ADDRESS:
case T_METADATA: __ std(from_reg->as_register(), offset, base); break;
case T_ARRAY : // fall through
case T_OBJECT:
{
if (UseCompressedOops && !wide) {
// Encoding done in caller
__ stw(from_reg->as_register(), offset, base);
} else {
__ std(from_reg->as_register(), offset, base);
}
__ verify_oop(from_reg->as_register());
break;
}
case T_FLOAT : __ stfs(from_reg->as_float_reg(), offset, base); break;
case T_DOUBLE: __ stfd(from_reg->as_double_reg(), offset, base); break;
default : ShouldNotReachHere();
}
}
return store_offset;
}
// Attention: caller must encode oop if needed
int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
int store_offset = code_offset();
switch (type) {
case T_BOOLEAN: // fall through
case T_BYTE : __ stbx(from_reg->as_register(), base, disp); break;
case T_CHAR :
case T_SHORT : __ sthx(from_reg->as_register(), base, disp); break;
case T_INT : __ stwx(from_reg->as_register(), base, disp); break;
case T_LONG :
#ifdef _LP64
__ stdx(from_reg->as_register_lo(), base, disp);
#else
Unimplemented();
#endif
break;
case T_ADDRESS:
__ stdx(from_reg->as_register(), base, disp);
break;
case T_ARRAY : // fall through
case T_OBJECT:
{
if (UseCompressedOops && !wide) {
// Encoding done in caller.
__ stwx(from_reg->as_register(), base, disp);
} else {
__ stdx(from_reg->as_register(), base, disp);
}
__ verify_oop(from_reg->as_register()); // kills R0
break;
}
case T_FLOAT : __ stfsx(from_reg->as_float_reg(), base, disp); break;
case T_DOUBLE: __ stfdx(from_reg->as_double_reg(), base, disp); break;
default : ShouldNotReachHere();
}
return store_offset;
}
int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
int load_offset;
if (!Assembler::is_simm16(offset)) {
// For offsets larger than a simm16 we setup the offset.
__ load_const_optimized(R0, offset);
load_offset = load(base, R0, to_reg, type, wide);
} else {
load_offset = code_offset();
switch(type) {
case T_BOOLEAN: // fall through
case T_BYTE : __ lbz(to_reg->as_register(), offset, base);
__ extsb(to_reg->as_register(), to_reg->as_register()); break;
case T_CHAR : __ lhz(to_reg->as_register(), offset, base); break;
case T_SHORT : __ lha(to_reg->as_register(), offset, base); break;
case T_INT : __ lwa(to_reg->as_register(), offset, base); break;
case T_LONG : __ ld(to_reg->as_register_lo(), offset, base); break;
case T_METADATA: __ ld(to_reg->as_register(), offset, base); break;
case T_ADDRESS:
if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
__ lwz(to_reg->as_register(), offset, base);
__ decode_klass_not_null(to_reg->as_register());
} else {
__ ld(to_reg->as_register(), offset, base);
}
break;
case T_ARRAY : // fall through
case T_OBJECT:
{
if (UseCompressedOops && !wide) {
__ lwz(to_reg->as_register(), offset, base);
__ decode_heap_oop(to_reg->as_register());
} else {
__ ld(to_reg->as_register(), offset, base);
}
__ verify_oop(to_reg->as_register());
break;
}
case T_FLOAT: __ lfs(to_reg->as_float_reg(), offset, base); break;
case T_DOUBLE: __ lfd(to_reg->as_double_reg(), offset, base); break;
default : ShouldNotReachHere();
}
}
return load_offset;
}
int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
int load_offset = code_offset();
switch(type) {
case T_BOOLEAN: // fall through
case T_BYTE : __ lbzx(to_reg->as_register(), base, disp);
__ extsb(to_reg->as_register(), to_reg->as_register()); break;
case T_CHAR : __ lhzx(to_reg->as_register(), base, disp); break;
case T_SHORT : __ lhax(to_reg->as_register(), base, disp); break;
case T_INT : __ lwax(to_reg->as_register(), base, disp); break;
case T_ADDRESS: __ ldx(to_reg->as_register(), base, disp); break;
case T_ARRAY : // fall through
case T_OBJECT:
{
if (UseCompressedOops && !wide) {
__ lwzx(to_reg->as_register(), base, disp);
__ decode_heap_oop(to_reg->as_register());
} else {
__ ldx(to_reg->as_register(), base, disp);
}
__ verify_oop(to_reg->as_register());
break;
}
case T_FLOAT: __ lfsx(to_reg->as_float_reg() , base, disp); break;
case T_DOUBLE: __ lfdx(to_reg->as_double_reg(), base, disp); break;
case T_LONG :
#ifdef _LP64
__ ldx(to_reg->as_register_lo(), base, disp);
#else
Unimplemented();
#endif
break;
default : ShouldNotReachHere();
}
return load_offset;
}
void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
LIR_Const* c = src->as_constant_ptr();
Register src_reg = R0;
switch (c->type()) {
case T_INT:
case T_FLOAT: {
int value = c->as_jint_bits();
__ load_const_optimized(src_reg, value);
Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
__ stw(src_reg, addr.disp(), addr.base());
break;
}
case T_ADDRESS: {
int value = c->as_jint_bits();
__ load_const_optimized(src_reg, value);
Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
__ std(src_reg, addr.disp(), addr.base());
break;
}
case T_OBJECT: {
jobject2reg(c->as_jobject(), src_reg);
Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
__ std(src_reg, addr.disp(), addr.base());
break;
}
case T_LONG:
case T_DOUBLE: {
int value = c->as_jlong_bits();
__ load_const_optimized(src_reg, value);
Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
__ std(src_reg, addr.disp(), addr.base());
break;
}
default:
Unimplemented();
}
}
void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
LIR_Const* c = src->as_constant_ptr();
LIR_Address* addr = dest->as_address_ptr();
Register base = addr->base()->as_pointer_register();
LIR_Opr tmp = LIR_OprFact::illegalOpr;
int offset = -1;
// Null check for large offsets in LIRGenerator::do_StoreField.
bool needs_explicit_null_check = !ImplicitNullChecks;
if (info != NULL && needs_explicit_null_check) {
explicit_null_check(base, info);
}
switch (c->type()) {
case T_FLOAT: type = T_INT;
case T_INT:
case T_ADDRESS: {
tmp = FrameMap::R0_opr;
__ load_const_optimized(tmp->as_register(), c->as_jint_bits());
break;
}
case T_DOUBLE: type = T_LONG;
case T_LONG: {
tmp = FrameMap::R0_long_opr;
__ load_const_optimized(tmp->as_register_lo(), c->as_jlong_bits());
break;
}
case T_OBJECT: {
tmp = FrameMap::R0_opr;
if (UseCompressedOops && !wide && c->as_jobject() != NULL) {
AddressLiteral oop_addr = __ constant_oop_address(c->as_jobject());
__ lis(R0, oop_addr.value() >> 16); // Don't care about sign extend (will use stw).
__ relocate(oop_addr.rspec(), /*compressed format*/ 1);
__ ori(R0, R0, oop_addr.value() & 0xffff);
} else {
jobject2reg(c->as_jobject(), R0);
}
break;
}
default:
Unimplemented();
}
// Handle either reg+reg or reg+disp address.
if (addr->index()->is_valid()) {
assert(addr->disp() == 0, "must be zero");
offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
} else {
assert(Assembler::is_simm16(addr->disp()), "can't handle larger addresses");
offset = store(tmp, base, addr->disp(), type, wide, false);
}
if (info != NULL) {
assert(offset != -1, "offset should've been set");
if (!needs_explicit_null_check) {
add_debug_info_for_null_check(offset, info);
}
}
}
void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
LIR_Const* c = src->as_constant_ptr();
LIR_Opr to_reg = dest;
switch (c->type()) {
case T_INT: {
assert(patch_code == lir_patch_none, "no patching handled here");
__ load_const_optimized(dest->as_register(), c->as_jint(), R0);
break;
}
case T_ADDRESS: {
assert(patch_code == lir_patch_none, "no patching handled here");
__ load_const_optimized(dest->as_register(), c->as_jint(), R0); // Yes, as_jint ...
break;
}
case T_LONG: {
assert(patch_code == lir_patch_none, "no patching handled here");
__ load_const_optimized(dest->as_register_lo(), c->as_jlong(), R0);
break;
}
case T_OBJECT: {
if (patch_code == lir_patch_none) {
jobject2reg(c->as_jobject(), to_reg->as_register());
} else {
jobject2reg_with_patching(to_reg->as_register(), info);
}
break;
}
case T_METADATA:
{
if (patch_code == lir_patch_none) {
metadata2reg(c->as_metadata(), to_reg->as_register());
} else {
klass2reg_with_patching(to_reg->as_register(), info);
}
}
break;
case T_FLOAT:
{
if (to_reg->is_single_fpu()) {
address const_addr = __ float_constant(c->as_jfloat());
if (const_addr == NULL) {
bailout("const section overflow");
break;
}
RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
__ relocate(rspec);
__ load_const(R0, const_addr);
__ lfsx(to_reg->as_float_reg(), R0);
} else {
assert(to_reg->is_single_cpu(), "Must be a cpu register.");
__ load_const_optimized(to_reg->as_register(), jint_cast(c->as_jfloat()), R0);
}
}
break;
case T_DOUBLE:
{
if (to_reg->is_double_fpu()) {
address const_addr = __ double_constant(c->as_jdouble());
if (const_addr == NULL) {
bailout("const section overflow");
break;
}
RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
__ relocate(rspec);
__ load_const(R0, const_addr);
__ lfdx(to_reg->as_double_reg(), R0);
} else {
assert(to_reg->is_double_cpu(), "Must be a long register.");
__ load_const_optimized(to_reg->as_register_lo(), jlong_cast(c->as_jdouble()), R0);
}
}
break;
default:
ShouldNotReachHere();
}
}
Address LIR_Assembler::as_Address(LIR_Address* addr) {
Unimplemented(); return Address();
}
inline RegisterOrConstant index_or_disp(LIR_Address* addr) {
if (addr->index()->is_illegal()) {
return (RegisterOrConstant)(addr->disp());
} else {
return (RegisterOrConstant)(addr->index()->as_pointer_register());
}
}
void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
const Register tmp = R0;
switch (type) {
case T_INT:
case T_FLOAT: {
Address from = frame_map()->address_for_slot(src->single_stack_ix());
Address to = frame_map()->address_for_slot(dest->single_stack_ix());
__ lwz(tmp, from.disp(), from.base());
__ stw(tmp, to.disp(), to.base());
break;
}
case T_ADDRESS:
case T_OBJECT: {
Address from = frame_map()->address_for_slot(src->single_stack_ix());
Address to = frame_map()->address_for_slot(dest->single_stack_ix());
__ ld(tmp, from.disp(), from.base());
__ std(tmp, to.disp(), to.base());
break;
}
case T_LONG:
case T_DOUBLE: {
Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
__ ld(tmp, from.disp(), from.base());
__ std(tmp, to.disp(), to.base());
break;
}
default:
ShouldNotReachHere();
}
}
Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
Unimplemented(); return Address();
}
Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
Unimplemented(); return Address();
}
void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
assert(type != T_METADATA, "load of metadata ptr not supported");
LIR_Address* addr = src_opr->as_address_ptr();
LIR_Opr to_reg = dest;
Register src = addr->base()->as_pointer_register();
Register disp_reg = noreg;
int disp_value = addr->disp();
bool needs_patching = (patch_code != lir_patch_none);
// null check for large offsets in LIRGenerator::do_LoadField
bool needs_explicit_null_check = !os::zero_page_read_protected() || !ImplicitNullChecks;
if (info != NULL && needs_explicit_null_check) {
explicit_null_check(src, info);
}
if (addr->base()->type() == T_OBJECT) {
__ verify_oop(src);
}
PatchingStub* patch = NULL;
if (needs_patching) {
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
assert(!to_reg->is_double_cpu() ||
patch_code == lir_patch_none ||
patch_code == lir_patch_normal, "patching doesn't match register");
}
if (addr->index()->is_illegal()) {
if (!Assembler::is_simm16(disp_value)) {
if (needs_patching) {
__ load_const32(R0, 0); // patchable int
} else {
__ load_const_optimized(R0, disp_value);
}
disp_reg = R0;
}
} else {
disp_reg = addr->index()->as_pointer_register();
assert(disp_value == 0, "can't handle 3 operand addresses");
}
// Remember the offset of the load. The patching_epilog must be done
// before the call to add_debug_info, otherwise the PcDescs don't get
// entered in increasing order.
int offset;
if (disp_reg == noreg) {
assert(Assembler::is_simm16(disp_value), "should have set this up");
offset = load(src, disp_value, to_reg, type, wide, unaligned);
} else {
assert(!unaligned, "unexpected");
offset = load(src, disp_reg, to_reg, type, wide);
}
if (patch != NULL) {
patching_epilog(patch, patch_code, src, info);
}
if (info != NULL && !needs_explicit_null_check) {
add_debug_info_for_null_check(offset, info);
}
}
void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
Address addr;
if (src->is_single_word()) {
addr = frame_map()->address_for_slot(src->single_stack_ix());
} else if (src->is_double_word()) {
addr = frame_map()->address_for_double_slot(src->double_stack_ix());
}
bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
}
void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
Address addr;
if (dest->is_single_word()) {
addr = frame_map()->address_for_slot(dest->single_stack_ix());
} else if (dest->is_double_word()) {
addr = frame_map()->address_for_slot(dest->double_stack_ix());
}
bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
}
void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
if (from_reg->is_double_fpu()) {
// double to double moves
assert(to_reg->is_double_fpu(), "should match");
__ fmr_if_needed(to_reg->as_double_reg(), from_reg->as_double_reg());
} else {
// float to float moves
assert(to_reg->is_single_fpu(), "should match");
__ fmr_if_needed(to_reg->as_float_reg(), from_reg->as_float_reg());
}
} else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
if (from_reg->is_double_cpu()) {
__ mr_if_needed(to_reg->as_pointer_register(), from_reg->as_pointer_register());
} else if (to_reg->is_double_cpu()) {
// int to int moves
__ mr_if_needed(to_reg->as_register_lo(), from_reg->as_register());
} else {
// int to int moves
__ mr_if_needed(to_reg->as_register(), from_reg->as_register());
}
} else {
ShouldNotReachHere();
}
if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
__ verify_oop(to_reg->as_register());
}
}
void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
bool wide, bool unaligned) {
assert(type != T_METADATA, "store of metadata ptr not supported");
LIR_Address* addr = dest->as_address_ptr();
Register src = addr->base()->as_pointer_register();
Register disp_reg = noreg;
int disp_value = addr->disp();
bool needs_patching = (patch_code != lir_patch_none);
bool compress_oop = (type == T_ARRAY || type == T_OBJECT) && UseCompressedOops && !wide &&
Universe::narrow_oop_mode() != Universe::UnscaledNarrowOop;
bool load_disp = addr->index()->is_illegal() && !Assembler::is_simm16(disp_value);
bool use_R29 = compress_oop && load_disp; // Avoid register conflict, also do null check before killing R29.
// Null check for large offsets in LIRGenerator::do_StoreField.
bool needs_explicit_null_check = !ImplicitNullChecks || use_R29;
if (info != NULL && needs_explicit_null_check) {
explicit_null_check(src, info);
}
if (addr->base()->is_oop_register()) {
__ verify_oop(src);
}
PatchingStub* patch = NULL;
if (needs_patching) {
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
assert(!from_reg->is_double_cpu() ||
patch_code == lir_patch_none ||
patch_code == lir_patch_normal, "patching doesn't match register");
}
if (addr->index()->is_illegal()) {
if (load_disp) {
disp_reg = use_R29 ? R29_TOC : R0;
if (needs_patching) {
__ load_const32(disp_reg, 0); // patchable int
} else {
__ load_const_optimized(disp_reg, disp_value);
}
}
} else {
disp_reg = addr->index()->as_pointer_register();
assert(disp_value == 0, "can't handle 3 operand addresses");
}
// remember the offset of the store. The patching_epilog must be done
// before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
// entered in increasing order.
int offset;
if (compress_oop) {
Register co = __ encode_heap_oop(R0, from_reg->as_register());
from_reg = FrameMap::as_opr(co);
}
if (disp_reg == noreg) {
assert(Assembler::is_simm16(disp_value), "should have set this up");
offset = store(from_reg, src, disp_value, type, wide, unaligned);
} else {
assert(!unaligned, "unexpected");
offset = store(from_reg, src, disp_reg, type, wide);
}
if (use_R29) {
__ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); // reinit
}
if (patch != NULL) {
patching_epilog(patch, patch_code, src, info);
}
if (info != NULL && !needs_explicit_null_check) {
add_debug_info_for_null_check(offset, info);
}
}
void LIR_Assembler::return_op(LIR_Opr result) {
const Register return_pc = R31; // Must survive C-call to enable_stack_reserved_zone().
const Register polling_page = R12;
// Pop the stack before the safepoint code.
int frame_size = initial_frame_size_in_bytes();
if (Assembler::is_simm(frame_size, 16)) {
__ addi(R1_SP, R1_SP, frame_size);
} else {
__ pop_frame();
}
if (SafepointMechanism::uses_thread_local_poll()) {
__ ld(polling_page, in_bytes(Thread::polling_page_offset()), R16_thread);
} else {
__ load_const_optimized(polling_page, (long)(address) os::get_polling_page(), R0);
}
// Restore return pc relative to callers' sp.
__ ld(return_pc, _abi(lr), R1_SP);
// Move return pc to LR.
__ mtlr(return_pc);
if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
__ reserved_stack_check(return_pc);
}
// We need to mark the code position where the load from the safepoint
// polling page was emitted as relocInfo::poll_return_type here.
__ relocate(relocInfo::poll_return_type);
__ load_from_polling_page(polling_page);
// Return.
__ blr();
}
int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
const Register poll_addr = tmp->as_register();
if (SafepointMechanism::uses_thread_local_poll()) {
__ ld(poll_addr, in_bytes(Thread::polling_page_offset()), R16_thread);
} else {
__ load_const_optimized(poll_addr, (intptr_t)os::get_polling_page(), R0);
}
if (info != NULL) {
add_debug_info_for_branch(info);
}
int offset = __ offset();
__ relocate(relocInfo::poll_type);
__ load_from_polling_page(poll_addr);
return offset;
}
void LIR_Assembler::emit_static_call_stub() {
address call_pc = __ pc();
address stub = __ start_a_stub(static_call_stub_size());
if (stub == NULL) {
bailout("static call stub overflow");
return;
}
// For java_to_interp stubs we use R11_scratch1 as scratch register
// and in call trampoline stubs we use R12_scratch2. This way we
// can distinguish them (see is_NativeCallTrampolineStub_at()).
const Register reg_scratch = R11_scratch1;
// Create a static stub relocation which relates this stub
// with the call instruction at insts_call_instruction_offset in the
// instructions code-section.
int start = __ offset();
__ relocate(static_stub_Relocation::spec(call_pc));
// Now, create the stub's code:
// - load the TOC
// - load the inline cache oop from the constant pool
// - load the call target from the constant pool
// - call
__ calculate_address_from_global_toc(reg_scratch, __ method_toc());
AddressLiteral ic = __ allocate_metadata_address((Metadata *)NULL);
bool success = __ load_const_from_method_toc(R19_inline_cache_reg, ic, reg_scratch, /*fixed_size*/ true);
if (ReoptimizeCallSequences) {
__ b64_patchable((address)-1, relocInfo::none);
} else {
AddressLiteral a((address)-1);
success = success && __ load_const_from_method_toc(reg_scratch, a, reg_scratch, /*fixed_size*/ true);
__ mtctr(reg_scratch);
__ bctr();
}
if (!success) {
bailout("const section overflow");
return;
}
assert(__ offset() - start <= static_call_stub_size(), "stub too big");
__ end_a_stub();
}
void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
bool unsigned_comp = (condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual);
if (opr1->is_single_fpu()) {
__ fcmpu(BOOL_RESULT, opr1->as_float_reg(), opr2->as_float_reg());
} else if (opr1->is_double_fpu()) {
__ fcmpu(BOOL_RESULT, opr1->as_double_reg(), opr2->as_double_reg());
} else if (opr1->is_single_cpu()) {
if (opr2->is_constant()) {
switch (opr2->as_constant_ptr()->type()) {
case T_INT:
{
jint con = opr2->as_constant_ptr()->as_jint();
if (unsigned_comp) {
if (Assembler::is_uimm(con, 16)) {
__ cmplwi(BOOL_RESULT, opr1->as_register(), con);
} else {
__ load_const_optimized(R0, con);
__ cmplw(BOOL_RESULT, opr1->as_register(), R0);
}
} else {
if (Assembler::is_simm(con, 16)) {
__ cmpwi(BOOL_RESULT, opr1->as_register(), con);
} else {
__ load_const_optimized(R0, con);
__ cmpw(BOOL_RESULT, opr1->as_register(), R0);
}
}
}
break;
case T_OBJECT:
// There are only equal/notequal comparisons on objects.
{
assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
jobject con = opr2->as_constant_ptr()->as_jobject();
if (con == NULL) {
__ cmpdi(BOOL_RESULT, opr1->as_register(), 0);
} else {
jobject2reg(con, R0);
__ cmpd(BOOL_RESULT, opr1->as_register(), R0);
}
}
break;
default:
ShouldNotReachHere();
break;
}
} else {
if (opr2->is_address()) {
DEBUG_ONLY( Unimplemented(); ) // Seems to be unused at the moment.
LIR_Address *addr = opr2->as_address_ptr();
BasicType type = addr->type();
if (type == T_OBJECT) { __ ld(R0, index_or_disp(addr), addr->base()->as_register()); }
else { __ lwa(R0, index_or_disp(addr), addr->base()->as_register()); }
__ cmpd(BOOL_RESULT, opr1->as_register(), R0);
} else {
if (unsigned_comp) {
__ cmplw(BOOL_RESULT, opr1->as_register(), opr2->as_register());
} else {
__ cmpw(BOOL_RESULT, opr1->as_register(), opr2->as_register());
}
}
}
} else if (opr1->is_double_cpu()) {
if (opr2->is_constant()) {
jlong con = opr2->as_constant_ptr()->as_jlong();
if (unsigned_comp) {
if (Assembler::is_uimm(con, 16)) {
__ cmpldi(BOOL_RESULT, opr1->as_register_lo(), con);
} else {
__ load_const_optimized(R0, con);
__ cmpld(BOOL_RESULT, opr1->as_register_lo(), R0);
}
} else {
if (Assembler::is_simm(con, 16)) {
__ cmpdi(BOOL_RESULT, opr1->as_register_lo(), con);
} else {
__ load_const_optimized(R0, con);
__ cmpd(BOOL_RESULT, opr1->as_register_lo(), R0);
}
}
} else if (opr2->is_register()) {
if (unsigned_comp) {
__ cmpld(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo());
} else {
__ cmpd(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo());
}
} else {
ShouldNotReachHere();
}
} else if (opr1->is_address()) {
DEBUG_ONLY( Unimplemented(); ) // Seems to be unused at the moment.
LIR_Address * addr = opr1->as_address_ptr();
BasicType type = addr->type();
assert (opr2->is_constant(), "Checking");
if (type == T_OBJECT) { __ ld(R0, index_or_disp(addr), addr->base()->as_register()); }
else { __ lwa(R0, index_or_disp(addr), addr->base()->as_register()); }
__ cmpdi(BOOL_RESULT, R0, opr2->as_constant_ptr()->as_jint());
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
const Register Rdst = dst->as_register();
Label done;
if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
bool is_unordered_less = (code == lir_ucmp_fd2i);
if (left->is_single_fpu()) {
__ fcmpu(CCR0, left->as_float_reg(), right->as_float_reg());
} else if (left->is_double_fpu()) {
__ fcmpu(CCR0, left->as_double_reg(), right->as_double_reg());
} else {
ShouldNotReachHere();
}
__ li(Rdst, is_unordered_less ? -1 : 1);
__ bso(CCR0, done);
} else if (code == lir_cmp_l2i) {
__ cmpd(CCR0, left->as_register_lo(), right->as_register_lo());
} else {
ShouldNotReachHere();
}
__ mfcr(R0); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
__ srwi(Rdst, R0, 30);
__ srawi(R0, R0, 31);
__ orr(Rdst, R0, Rdst); // set result as follows: <: -1, =: 0, >: 1
__ bind(done);
}
inline void load_to_reg(LIR_Assembler *lasm, LIR_Opr src, LIR_Opr dst) {
if (src->is_constant()) {
lasm->const2reg(src, dst, lir_patch_none, NULL);
} else if (src->is_register()) {
lasm->reg2reg(src, dst);
} else if (src->is_stack()) {
lasm->stack2reg(src, dst, dst->type());
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
if (opr1->is_equal(opr2) || opr1->is_same_register(opr2)) {
load_to_reg(this, opr1, result); // Condition doesn't matter.
return;
}
bool positive = false;
Assembler::Condition cond = Assembler::equal;
switch (condition) {
case lir_cond_equal: positive = true ; cond = Assembler::equal ; break;
case lir_cond_notEqual: positive = false; cond = Assembler::equal ; break;
case lir_cond_less: positive = true ; cond = Assembler::less ; break;
case lir_cond_belowEqual:
case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break;
case lir_cond_greater: positive = true ; cond = Assembler::greater; break;
case lir_cond_aboveEqual:
case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break;
default: ShouldNotReachHere();
}
// Try to use isel on >=Power7.
if (VM_Version::has_isel() && result->is_cpu_register()) {
bool o1_is_reg = opr1->is_cpu_register(), o2_is_reg = opr2->is_cpu_register();
const Register result_reg = result->is_single_cpu() ? result->as_register() : result->as_register_lo();
// We can use result_reg to load one operand if not already in register.
Register first = o1_is_reg ? (opr1->is_single_cpu() ? opr1->as_register() : opr1->as_register_lo()) : result_reg,
second = o2_is_reg ? (opr2->is_single_cpu() ? opr2->as_register() : opr2->as_register_lo()) : result_reg;
if (first != second) {
if (!o1_is_reg) {
load_to_reg(this, opr1, result);
}
if (!o2_is_reg) {
load_to_reg(this, opr2, result);
}
__ isel(result_reg, BOOL_RESULT, cond, !positive, first, second);
return;
}
} // isel
load_to_reg(this, opr1, result);
Label skip;
int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
int bi = Assembler::bi0(BOOL_RESULT, cond);
__ bc(bo, bi, skip);
load_to_reg(this, opr2, result);
__ bind(skip);
}
void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest,
CodeEmitInfo* info, bool pop_fpu_stack) {
assert(info == NULL, "unused on this code path");
assert(left->is_register(), "wrong items state");
assert(dest->is_register(), "wrong items state");
if (right->is_register()) {
if (dest->is_float_kind()) {
FloatRegister lreg, rreg, res;
if (right->is_single_fpu()) {
lreg = left->as_float_reg();
rreg = right->as_float_reg();
res = dest->as_float_reg();
switch (code) {
case lir_add: __ fadds(res, lreg, rreg); break;
case lir_sub: __ fsubs(res, lreg, rreg); break;
case lir_mul: // fall through
case lir_mul_strictfp: __ fmuls(res, lreg, rreg); break;
case lir_div: // fall through
case lir_div_strictfp: __ fdivs(res, lreg, rreg); break;
default: ShouldNotReachHere();
}
} else {
lreg = left->as_double_reg();
rreg = right->as_double_reg();
res = dest->as_double_reg();
switch (code) {
case lir_add: __ fadd(res, lreg, rreg); break;
case lir_sub: __ fsub(res, lreg, rreg); break;
case lir_mul: // fall through
case lir_mul_strictfp: __ fmul(res, lreg, rreg); break;
case lir_div: // fall through
case lir_div_strictfp: __ fdiv(res, lreg, rreg); break;
default: ShouldNotReachHere();
}
}
} else if (dest->is_double_cpu()) {
Register dst_lo = dest->as_register_lo();
Register op1_lo = left->as_pointer_register();
Register op2_lo = right->as_pointer_register();
switch (code) {
case lir_add: __ add(dst_lo, op1_lo, op2_lo); break;
case lir_sub: __ sub(dst_lo, op1_lo, op2_lo); break;
case lir_mul: __ mulld(dst_lo, op1_lo, op2_lo); break;
default: ShouldNotReachHere();
}
} else {
assert (right->is_single_cpu(), "Just Checking");
Register lreg = left->as_register();
Register res = dest->as_register();
Register rreg = right->as_register();
switch (code) {
case lir_add: __ add (res, lreg, rreg); break;
case lir_sub: __ sub (res, lreg, rreg); break;
case lir_mul: __ mullw(res, lreg, rreg); break;
default: ShouldNotReachHere();
}
}
} else {
assert (right->is_constant(), "must be constant");
if (dest->is_single_cpu()) {
Register lreg = left->as_register();
Register res = dest->as_register();
int simm16 = right->as_constant_ptr()->as_jint();
switch (code) {
case lir_sub: assert(Assembler::is_simm16(-simm16), "cannot encode"); // see do_ArithmeticOp_Int
simm16 = -simm16;
case lir_add: if (res == lreg && simm16 == 0) break;
__ addi(res, lreg, simm16); break;
case lir_mul: if (res == lreg && simm16 == 1) break;
__ mulli(res, lreg, simm16); break;
default: ShouldNotReachHere();
}
} else {
Register lreg = left->as_pointer_register();
Register res = dest->as_register_lo();
long con = right->as_constant_ptr()->as_jlong();
assert(Assembler::is_simm16(con), "must be simm16");
switch (code) {
case lir_sub: assert(Assembler::is_simm16(-con), "cannot encode"); // see do_ArithmeticOp_Long
con = -con;
case lir_add: if (res == lreg && con == 0) break;
__ addi(res, lreg, (int)con); break;
case lir_mul: if (res == lreg && con == 1) break;
__ mulli(res, lreg, (int)con); break;
default: ShouldNotReachHere();
}
}
}
}
void LIR_Assembler::fpop() {
Unimplemented();
// do nothing
}
void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
switch (code) {
case lir_sqrt: {
__ fsqrt(dest->as_double_reg(), value->as_double_reg());
break;
}
case lir_abs: {
__ fabs(dest->as_double_reg(), value->as_double_reg());
break;
}
default: {
ShouldNotReachHere();
break;
}
}
}
void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
if (right->is_constant()) { // see do_LogicOp
long uimm;
Register d, l;
if (dest->is_single_cpu()) {
uimm = right->as_constant_ptr()->as_jint();
d = dest->as_register();
l = left->as_register();
} else {
uimm = right->as_constant_ptr()->as_jlong();
d = dest->as_register_lo();
l = left->as_register_lo();
}
long uimms = (unsigned long)uimm >> 16,
uimmss = (unsigned long)uimm >> 32;
switch (code) {
case lir_logic_and:
if (uimmss != 0 || (uimms != 0 && (uimm & 0xFFFF) != 0) || is_power_of_2_long(uimm)) {
__ andi(d, l, uimm); // special cases
} else if (uimms != 0) { __ andis_(d, l, uimms); }
else { __ andi_(d, l, uimm); }
break;
case lir_logic_or:
if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ oris(d, l, uimms); }
else { __ ori(d, l, uimm); }
break;
case lir_logic_xor:
if (uimm == -1) { __ nand(d, l, l); } // special case
else if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ xoris(d, l, uimms); }
else { __ xori(d, l, uimm); }
break;
default: ShouldNotReachHere();
}
} else {
assert(right->is_register(), "right should be in register");
if (dest->is_single_cpu()) {
switch (code) {
case lir_logic_and: __ andr(dest->as_register(), left->as_register(), right->as_register()); break;
case lir_logic_or: __ orr (dest->as_register(), left->as_register(), right->as_register()); break;
case lir_logic_xor: __ xorr(dest->as_register(), left->as_register(), right->as_register()); break;
default: ShouldNotReachHere();
}
} else {
Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
left->as_register_lo();
Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
right->as_register_lo();
switch (code) {
case lir_logic_and: __ andr(dest->as_register_lo(), l, r); break;
case lir_logic_or: __ orr (dest->as_register_lo(), l, r); break;
case lir_logic_xor: __ xorr(dest->as_register_lo(), l, r); break;
default: ShouldNotReachHere();
}
}
}
}
int LIR_Assembler::shift_amount(BasicType t) {
int elem_size = type2aelembytes(t);
switch (elem_size) {
case 1 : return 0;
case 2 : return 1;
case 4 : return 2;
case 8 : return 3;
}
ShouldNotReachHere();
return -1;
}
void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
info->add_register_oop(exceptionOop);
// Reuse the debug info from the safepoint poll for the throw op itself.
address pc_for_athrow = __ pc();
int pc_for_athrow_offset = __ offset();
//RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
//__ relocate(rspec);
//__ load_const(exceptionPC->as_register(), pc_for_athrow, R0);
__ calculate_address_from_global_toc(exceptionPC->as_register(), pc_for_athrow, true, true, /*add_relocation*/ true);
add_call_info(pc_for_athrow_offset, info); // for exception handler
address stub = Runtime1::entry_for(compilation()->has_fpu_code() ? Runtime1::handle_exception_id
: Runtime1::handle_exception_nofpu_id);
//__ load_const_optimized(R0, stub);
__ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub));
__ mtctr(R0);
__ bctr();
}
void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
// Note: Not used with EnableDebuggingOnDemand.
assert(exceptionOop->as_register() == R3, "should match");
__ b(_unwind_handler_entry);
}
void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
Register src = op->src()->as_register();
Register dst = op->dst()->as_register();
Register src_pos = op->src_pos()->as_register();
Register dst_pos = op->dst_pos()->as_register();
Register length = op->length()->as_register();
Register tmp = op->tmp()->as_register();
Register tmp2 = R0;
int flags = op->flags();
ciArrayKlass* default_type = op->expected_type();
BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
if (basic_type == T_ARRAY) basic_type = T_OBJECT;
// Set up the arraycopy stub information.
ArrayCopyStub* stub = op->stub();
const int frame_resize = frame::abi_reg_args_size - sizeof(frame::jit_abi); // C calls need larger frame.
// Always do stub if no type information is available. It's ok if
// the known type isn't loaded since the code sanity checks
// in debug mode and the type isn't required when we know the exact type
// also check that the type is an array type.
if (op->expected_type() == NULL) {
assert(src->is_nonvolatile() && src_pos->is_nonvolatile() && dst->is_nonvolatile() && dst_pos->is_nonvolatile() &&
length->is_nonvolatile(), "must preserve");
address copyfunc_addr = StubRoutines::generic_arraycopy();
assert(copyfunc_addr != NULL, "generic arraycopy stub required");
// 3 parms are int. Convert to long.
__ mr(R3_ARG1, src);
__ extsw(R4_ARG2, src_pos);
__ mr(R5_ARG3, dst);
__ extsw(R6_ARG4, dst_pos);
__ extsw(R7_ARG5, length);
#ifndef PRODUCT
if (PrintC1Statistics) {
address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
__ lwz(R11_scratch1, simm16_offs, tmp);
__ addi(R11_scratch1, R11_scratch1, 1);
__ stw(R11_scratch1, simm16_offs, tmp);
}
#endif
__ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0);
__ nand(tmp, R3_RET, R3_RET);
__ subf(length, tmp, length);
__ add(src_pos, tmp, src_pos);
__ add(dst_pos, tmp, dst_pos);
__ cmpwi(CCR0, R3_RET, 0);
__ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(CCR0, Assembler::less), *stub->entry());
__ bind(*stub->continuation());
return;
}
assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
Label cont, slow, copyfunc;
bool simple_check_flag_set = flags & (LIR_OpArrayCopy::src_null_check |
LIR_OpArrayCopy::dst_null_check |
LIR_OpArrayCopy::src_pos_positive_check |
LIR_OpArrayCopy::dst_pos_positive_check |
LIR_OpArrayCopy::length_positive_check);
// Use only one conditional branch for simple checks.
if (simple_check_flag_set) {
ConditionRegister combined_check = CCR1, tmp_check = CCR1;
// Make sure src and dst are non-null.
if (flags & LIR_OpArrayCopy::src_null_check) {
__ cmpdi(combined_check, src, 0);
tmp_check = CCR0;
}
if (flags & LIR_OpArrayCopy::dst_null_check) {
__ cmpdi(tmp_check, dst, 0);
if (tmp_check != combined_check) {
__ cror(combined_check, Assembler::equal, tmp_check, Assembler::equal);
}
tmp_check = CCR0;
}
// Clear combined_check.eq if not already used.
if (tmp_check == combined_check) {
__ crandc(combined_check, Assembler::equal, combined_check, Assembler::equal);
tmp_check = CCR0;
}
if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
// Test src_pos register.
__ cmpwi(tmp_check, src_pos, 0);
__ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
}
if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
// Test dst_pos register.
__ cmpwi(tmp_check, dst_pos, 0);
__ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
}
if (flags & LIR_OpArrayCopy::length_positive_check) {
// Make sure length isn't negative.
__ cmpwi(tmp_check, length, 0);
__ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
}
__ beq(combined_check, slow);
}
// If the compiler was not able to prove that exact type of the source or the destination
// of the arraycopy is an array type, check at runtime if the source or the destination is
// an instance type.
if (flags & LIR_OpArrayCopy::type_check) {
if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
__ load_klass(tmp, dst);
__ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
__ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value);
__ bge(CCR0, slow);
}
if (!(flags & LIR_OpArrayCopy::src_objarray)) {
__ load_klass(tmp, src);
__ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
__ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value);
__ bge(CCR0, slow);
}
}
// Higher 32bits must be null.
__ extsw(length, length);
__ extsw(src_pos, src_pos);
if (flags & LIR_OpArrayCopy::src_range_check) {
__ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), src);
__ add(tmp, length, src_pos);
__ cmpld(CCR0, tmp2, tmp);
__ ble(CCR0, slow);
}
__ extsw(dst_pos, dst_pos);
if (flags & LIR_OpArrayCopy::dst_range_check) {
__ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), dst);
__ add(tmp, length, dst_pos);
__ cmpld(CCR0, tmp2, tmp);
__ ble(CCR0, slow);
}
int shift = shift_amount(basic_type);
if (!(flags & LIR_OpArrayCopy::type_check)) {
__ b(cont);
} else {
// We don't know the array types are compatible.
if (basic_type != T_OBJECT) {
// Simple test for basic type arrays.
if (UseCompressedClassPointers) {
// We don't need decode because we just need to compare.
__ lwz(tmp, oopDesc::klass_offset_in_bytes(), src);
__ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst);
__ cmpw(CCR0, tmp, tmp2);
} else {
__ ld(tmp, oopDesc::klass_offset_in_bytes(), src);
__ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst);
__ cmpd(CCR0, tmp, tmp2);
}
__ beq(CCR0, cont);
} else {
// For object arrays, if src is a sub class of dst then we can
// safely do the copy.
address copyfunc_addr = StubRoutines::checkcast_arraycopy();
const Register sub_klass = R5, super_klass = R4; // like CheckCast/InstanceOf
assert_different_registers(tmp, tmp2, sub_klass, super_klass);
__ load_klass(sub_klass, src);
__ load_klass(super_klass, dst);
__ check_klass_subtype_fast_path(sub_klass, super_klass, tmp, tmp2,
&cont, copyfunc_addr != NULL ? ©func : &slow, NULL);
address slow_stc = Runtime1::entry_for(Runtime1::slow_subtype_check_id);
//__ load_const_optimized(tmp, slow_stc, tmp2);
__ calculate_address_from_global_toc(tmp, slow_stc, true, true, false);
__ mtctr(tmp);
__ bctrl(); // sets CR0
__ beq(CCR0, cont);
if (copyfunc_addr != NULL) { // Use stub if available.
__ bind(copyfunc);
// Src is not a sub class of dst so we have to do a
// per-element check.
int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
if ((flags & mask) != mask) {
assert(flags & mask, "one of the two should be known to be an object array");
if (!(flags & LIR_OpArrayCopy::src_objarray)) {
__ load_klass(tmp, src);
} else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
__ load_klass(tmp, dst);
}
__ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
__ load_const_optimized(tmp, objArray_lh);
__ cmpw(CCR0, tmp, tmp2);
__ bne(CCR0, slow);
}
Register src_ptr = R3_ARG1;
Register dst_ptr = R4_ARG2;
Register len = R5_ARG3;
Register chk_off = R6_ARG4;
Register super_k = R7_ARG5;
__ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
__ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
if (shift == 0) {
__ add(src_ptr, src_pos, src_ptr);
__ add(dst_ptr, dst_pos, dst_ptr);
} else {
__ sldi(tmp, src_pos, shift);
__ sldi(tmp2, dst_pos, shift);
__ add(src_ptr, tmp, src_ptr);
__ add(dst_ptr, tmp2, dst_ptr);
}
__ load_klass(tmp, dst);
__ mr(len, length);
int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
__ ld(super_k, ek_offset, tmp);
int sco_offset = in_bytes(Klass::super_check_offset_offset());
__ lwz(chk_off, sco_offset, super_k);
__ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0);
#ifndef PRODUCT
if (PrintC1Statistics) {
Label failed;
__ cmpwi(CCR0, R3_RET, 0);
__ bne(CCR0, failed);
address counter = (address)&Runtime1::_arraycopy_checkcast_cnt;
int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
__ lwz(R11_scratch1, simm16_offs, tmp);
__ addi(R11_scratch1, R11_scratch1, 1);
__ stw(R11_scratch1, simm16_offs, tmp);
__ bind(failed);
}
#endif
__ nand(tmp, R3_RET, R3_RET);
__ cmpwi(CCR0, R3_RET, 0);
__ beq(CCR0, *stub->continuation());
#ifndef PRODUCT
if (PrintC1Statistics) {
address counter = (address)&Runtime1::_arraycopy_checkcast_attempt_cnt;
int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
__ lwz(R11_scratch1, simm16_offs, tmp);
__ addi(R11_scratch1, R11_scratch1, 1);
__ stw(R11_scratch1, simm16_offs, tmp);
}
#endif
__ subf(length, tmp, length);
__ add(src_pos, tmp, src_pos);
__ add(dst_pos, tmp, dst_pos);
}
}
}
__ bind(slow);
__ b(*stub->entry());
__ bind(cont);
#ifdef ASSERT
if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
// Sanity check the known type with the incoming class. For the
// primitive case the types must match exactly with src.klass and
// dst.klass each exactly matching the default type. For the
// object array case, if no type check is needed then either the
// dst type is exactly the expected type and the src type is a
// subtype which we can't check or src is the same array as dst
// but not necessarily exactly of type default_type.
Label known_ok, halt;
metadata2reg(op->expected_type()->constant_encoding(), tmp);
if (UseCompressedClassPointers) {
// Tmp holds the default type. It currently comes uncompressed after the
// load of a constant, so encode it.
__ encode_klass_not_null(tmp);
// Load the raw value of the dst klass, since we will be comparing
// uncompressed values directly.
__ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst);
__ cmpw(CCR0, tmp, tmp2);
if (basic_type != T_OBJECT) {
__ bne(CCR0, halt);
// Load the raw value of the src klass.
__ lwz(tmp2, oopDesc::klass_offset_in_bytes(), src);
__ cmpw(CCR0, tmp, tmp2);
__ beq(CCR0, known_ok);
} else {
__ beq(CCR0, known_ok);
__ cmpw(CCR0, src, dst);
__ beq(CCR0, known_ok);
}
} else {
__ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst);
__ cmpd(CCR0, tmp, tmp2);
if (basic_type != T_OBJECT) {
__ bne(CCR0, halt);
// Load the raw value of the src klass.
__ ld(tmp2, oopDesc::klass_offset_in_bytes(), src);
__ cmpd(CCR0, tmp, tmp2);
__ beq(CCR0, known_ok);
} else {
__ beq(CCR0, known_ok);
__ cmpd(CCR0, src, dst);
__ beq(CCR0, known_ok);
}
}
__ bind(halt);
__ stop("incorrect type information in arraycopy");
__ bind(known_ok);
}
#endif
#ifndef PRODUCT
if (PrintC1Statistics) {
address counter = Runtime1::arraycopy_count_address(basic_type);
int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
__ lwz(R11_scratch1, simm16_offs, tmp);
__ addi(R11_scratch1, R11_scratch1, 1);
__ stw(R11_scratch1, simm16_offs, tmp);
}
#endif
Register src_ptr = R3_ARG1;
Register dst_ptr = R4_ARG2;
Register len = R5_ARG3;
__ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
__ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
if (shift == 0) {
__ add(src_ptr, src_pos, src_ptr);
__ add(dst_ptr, dst_pos, dst_ptr);
} else {
__ sldi(tmp, src_pos, shift);
__ sldi(tmp2, dst_pos, shift);
__ add(src_ptr, tmp, src_ptr);
__ add(dst_ptr, tmp2, dst_ptr);
}
bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
const char *name;
address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
// Arraycopy stubs takes a length in number of elements, so don't scale it.
__ mr(len, length);
__ call_c_with_frame_resize(entry, /*stub does not need resized frame*/ 0);
__ bind(*stub->continuation());
}
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
if (dest->is_single_cpu()) {
__ rldicl(tmp->as_register(), count->as_register(), 0, 64-5);
#ifdef _LP64
if (left->type() == T_OBJECT) {
switch (code) {
case lir_shl: __ sld(dest->as_register(), left->as_register(), tmp->as_register()); break;
case lir_shr: __ srad(dest->as_register(), left->as_register(), tmp->as_register()); break;
case lir_ushr: __ srd(dest->as_register(), left->as_register(), tmp->as_register()); break;
default: ShouldNotReachHere();
}
} else
#endif
switch (code) {
case lir_shl: __ slw(dest->as_register(), left->as_register(), tmp->as_register()); break;
case lir_shr: __ sraw(dest->as_register(), left->as_register(), tmp->as_register()); break;
case lir_ushr: __ srw(dest->as_register(), left->as_register(), tmp->as_register()); break;
default: ShouldNotReachHere();
}
} else {
__ rldicl(tmp->as_register(), count->as_register(), 0, 64-6);
switch (code) {
case lir_shl: __ sld(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
case lir_shr: __ srad(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
case lir_ushr: __ srd(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
default: ShouldNotReachHere();
}
}
}
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
#ifdef _LP64
if (left->type() == T_OBJECT) {
count = count & 63; // Shouldn't shift by more than sizeof(intptr_t).
if (count == 0) { __ mr_if_needed(dest->as_register_lo(), left->as_register()); }
else {
switch (code) {
case lir_shl: __ sldi(dest->as_register_lo(), left->as_register(), count); break;
case lir_shr: __ sradi(dest->as_register_lo(), left->as_register(), count); break;
case lir_ushr: __ srdi(dest->as_register_lo(), left->as_register(), count); break;
default: ShouldNotReachHere();
}
}
return;
}
#endif
if (dest->is_single_cpu()) {
count = count & 0x1F; // Java spec
if (count == 0) { __ mr_if_needed(dest->as_register(), left->as_register()); }
else {
switch (code) {
case lir_shl: __ slwi(dest->as_register(), left->as_register(), count); break;
case lir_shr: __ srawi(dest->as_register(), left->as_register(), count); break;
case lir_ushr: __ srwi(dest->as_register(), left->as_register(), count); break;
default: ShouldNotReachHere();
}
}
} else if (dest->is_double_cpu()) {
count = count & 63; // Java spec
if (count == 0) { __ mr_if_needed(dest->as_pointer_register(), left->as_pointer_register()); }
else {
switch (code) {
case lir_shl: __ sldi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
case lir_shr: __ sradi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
case lir_ushr: __ srdi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
default: ShouldNotReachHere();
}
}
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
if (op->init_check()) {
if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
explicit_null_check(op->klass()->as_register(), op->stub()->info());
} else {
add_debug_info_for_null_check_here(op->stub()->info());
}
__ lbz(op->tmp1()->as_register(),
in_bytes(InstanceKlass::init_state_offset()), op->klass()->as_register());
__ cmpwi(CCR0, op->tmp1()->as_register(), InstanceKlass::fully_initialized);
__ bc_far_optimized(Assembler::bcondCRbiIs0, __ bi0(CCR0, Assembler::equal), *op->stub()->entry());
}
__ allocate_object(op->obj()->as_register(),
op->tmp1()->as_register(),
op->tmp2()->as_register(),
op->tmp3()->as_register(),
op->header_size(),
op->object_size(),
op->klass()->as_register(),
*op->stub()->entry());
__ bind(*op->stub()->continuation());
__ verify_oop(op->obj()->as_register());
}
void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
LP64_ONLY( __ extsw(op->len()->as_register(), op->len()->as_register()); )
if (UseSlowPath ||
(!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
(!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
__ b(*op->stub()->entry());
} else {
__ allocate_array(op->obj()->as_register(),
op->len()->as_register(),
op->tmp1()->as_register(),
op->tmp2()->as_register(),
op->tmp3()->as_register(),
arrayOopDesc::header_size(op->type()),
type2aelembytes(op->type()),
op->klass()->as_register(),
*op->stub()->entry());
}
__ bind(*op->stub()->continuation());
}
void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
ciMethodData *md, ciProfileData *data,
Register recv, Register tmp1, Label* update_done) {
uint i;
for (i = 0; i < VirtualCallData::row_limit(); i++) {
Label next_test;
// See if the receiver is receiver[n].
__ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
__ verify_klass_ptr(tmp1);
__ cmpd(CCR0, recv, tmp1);
__ bne(CCR0, next_test);
__ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
__ addi(tmp1, tmp1, DataLayout::counter_increment);
__ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
__ b(*update_done);
__ bind(next_test);
}
// Didn't find receiver; find next empty slot and fill it in.
for (i = 0; i < VirtualCallData::row_limit(); i++) {
Label next_test;
__ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
__ cmpdi(CCR0, tmp1, 0);
__ bne(CCR0, next_test);
__ li(tmp1, DataLayout::counter_increment);
__ std(recv, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
__ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
__ b(*update_done);
__ bind(next_test);
}
}
void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
md = method->method_data_or_null();
assert(md != NULL, "Sanity");
data = md->bci_to_data(bci);
assert(data != NULL, "need data for checkcast");
assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
if (!Assembler::is_simm16(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
// The offset is large so bias the mdo by the base of the slot so
// that the ld can use simm16s to reference the slots of the data.
mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
}
}
void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
Register obj = op->object()->as_register();
Register k_RInfo = op->tmp1()->as_register();
Register klass_RInfo = op->tmp2()->as_register();
Register Rtmp1 = op->tmp3()->as_register();
Register dst = op->result_opr()->as_register();
ciKlass* k = op->klass();
bool should_profile = op->should_profile();
bool move_obj_to_dst = (op->code() == lir_checkcast);
// Attention: do_temp(opTypeCheck->_object) is not used, i.e. obj may be same as one of the temps.
bool reg_conflict = (obj == k_RInfo || obj == klass_RInfo || obj == Rtmp1);
bool restore_obj = move_obj_to_dst && reg_conflict;
__ cmpdi(CCR0, obj, 0);
if (move_obj_to_dst || reg_conflict) {
__ mr_if_needed(dst, obj);
if (reg_conflict) { obj = dst; }
}
ciMethodData* md = NULL;
ciProfileData* data = NULL;
int mdo_offset_bias = 0;
if (should_profile) {
ciMethod* method = op->profiled_method();
assert(method != NULL, "Should have method");
setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
Register mdo = k_RInfo;
Register data_val = Rtmp1;
Label not_null;
__ bne(CCR0, not_null);
metadata2reg(md->constant_encoding(), mdo);
__ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
__ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
__ ori(data_val, data_val, BitData::null_seen_byte_constant());
__ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
__ b(*obj_is_null);
__ bind(not_null);
} else {
__ beq(CCR0, *obj_is_null);
}
// get object class
__ load_klass(klass_RInfo, obj);
if (k->is_loaded()) {
metadata2reg(k->constant_encoding(), k_RInfo);
} else {
klass2reg_with_patching(k_RInfo, op->info_for_patch());
}
Label profile_cast_failure, failure_restore_obj, profile_cast_success;
Label *failure_target = should_profile ? &profile_cast_failure : failure;
Label *success_target = should_profile ? &profile_cast_success : success;
if (op->fast_check()) {
assert_different_registers(klass_RInfo, k_RInfo);
__ cmpd(CCR0, k_RInfo, klass_RInfo);
if (should_profile) {
__ bne(CCR0, *failure_target);
// Fall through to success case.
} else {
__ beq(CCR0, *success);
// Fall through to failure case.
}
} else {
bool need_slow_path = true;
if (k->is_loaded()) {
if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset())) {
need_slow_path = false;
}
// Perform the fast part of the checking logic.
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, (need_slow_path ? success_target : NULL),
failure_target, NULL, RegisterOrConstant(k->super_check_offset()));
} else {
// Perform the fast part of the checking logic.
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, failure_target);
}
if (!need_slow_path) {
if (!should_profile) { __ b(*success); }
} else {
// Call out-of-line instance of __ check_klass_subtype_slow_path(...):
address entry = Runtime1::entry_for(Runtime1::slow_subtype_check_id);
//__ load_const_optimized(Rtmp1, entry, R0);
__ calculate_address_from_global_toc(Rtmp1, entry, true, true, false);
__ mtctr(Rtmp1);
__ bctrl(); // sets CR0
if (should_profile) {
__ bne(CCR0, *failure_target);
// Fall through to success case.
} else {
__ beq(CCR0, *success);
// Fall through to failure case.
}
}
}
if (should_profile) {
Register mdo = k_RInfo, recv = klass_RInfo;
assert_different_registers(mdo, recv, Rtmp1);
__ bind(profile_cast_success);
metadata2reg(md->constant_encoding(), mdo);
__ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
type_profile_helper(mdo, mdo_offset_bias, md, data, recv, Rtmp1, success);
__ b(*success);
// Cast failure case.
__ bind(profile_cast_failure);
metadata2reg(md->constant_encoding(), mdo);
__ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
__ ld(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
__ addi(Rtmp1, Rtmp1, -DataLayout::counter_increment);
__ std(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
}
__ bind(*failure);
if (restore_obj) {
__ mr(op->object()->as_register(), dst);
// Fall through to failure case.
}
}
void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
LIR_Code code = op->code();
if (code == lir_store_check) {
Register value = op->object()->as_register();
Register array = op->array()->as_register();
Register k_RInfo = op->tmp1()->as_register();
Register klass_RInfo = op->tmp2()->as_register();
Register Rtmp1 = op->tmp3()->as_register();
bool should_profile = op->should_profile();
__ verify_oop(value);
CodeStub* stub = op->stub();
// Check if it needs to be profiled.
ciMethodData* md = NULL;
ciProfileData* data = NULL;
int mdo_offset_bias = 0;
if (should_profile) {
ciMethod* method = op->profiled_method();
assert(method != NULL, "Should have method");
setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
}
Label profile_cast_success, failure, done;
Label *success_target = should_profile ? &profile_cast_success : &done;
__ cmpdi(CCR0, value, 0);
if (should_profile) {
Label not_null;
__ bne(CCR0, not_null);
Register mdo = k_RInfo;
Register data_val = Rtmp1;
metadata2reg(md->constant_encoding(), mdo);
__ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
__ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
__ ori(data_val, data_val, BitData::null_seen_byte_constant());
__ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
__ b(done);
__ bind(not_null);
} else {
__ beq(CCR0, done);
}
if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
explicit_null_check(array, op->info_for_exception());
} else {
add_debug_info_for_null_check_here(op->info_for_exception());
}
__ load_klass(k_RInfo, array);
__ load_klass(klass_RInfo, value);
// Get instance klass.
__ ld(k_RInfo, in_bytes(ObjArrayKlass::element_klass_offset()), k_RInfo);
// Perform the fast part of the checking logic.
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, &failure, NULL);
// Call out-of-line instance of __ check_klass_subtype_slow_path(...):
const address slow_path = Runtime1::entry_for(Runtime1::slow_subtype_check_id);
//__ load_const_optimized(R0, slow_path);
__ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(slow_path));
__ mtctr(R0);
__ bctrl(); // sets CR0
if (!should_profile) {
__ beq(CCR0, done);
__ bind(failure);
} else {
__ bne(CCR0, failure);
// Fall through to the success case.
Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
assert_different_registers(value, mdo, recv, tmp1);
__ bind(profile_cast_success);
metadata2reg(md->constant_encoding(), mdo);
__ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
__ load_klass(recv, value);
type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
__ b(done);
// Cast failure case.
__ bind(failure);
metadata2reg(md->constant_encoding(), mdo);
__ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
__ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
__ addi(tmp1, tmp1, -DataLayout::counter_increment);
__ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
}
__ b(*stub->entry());
__ bind(done);
} else if (code == lir_checkcast) {
Label success, failure;
emit_typecheck_helper(op, &success, /*fallthru*/&failure, &success); // Moves obj to dst.
__ b(*op->stub()->entry());
__ align(32, 12);
__ bind(success);
} else if (code == lir_instanceof) {
Register dst = op->result_opr()->as_register();
Label success, failure, done;
emit_typecheck_helper(op, &success, /*fallthru*/&failure, &failure);
__ li(dst, 0);
__ b(done);
__ align(32, 12);
__ bind(success);
__ li(dst, 1);
__ bind(done);
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
Register addr = op->addr()->as_pointer_register();
Register cmp_value = noreg, new_value = noreg;
bool is_64bit = false;
if (op->code() == lir_cas_long) {
cmp_value = op->cmp_value()->as_register_lo();
new_value = op->new_value()->as_register_lo();
is_64bit = true;
} else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
cmp_value = op->cmp_value()->as_register();
new_value = op->new_value()->as_register();
if (op->code() == lir_cas_obj) {
if (UseCompressedOops) {
Register t1 = op->tmp1()->as_register();
Register t2 = op->tmp2()->as_register();
cmp_value = __ encode_heap_oop(t1, cmp_value);
new_value = __ encode_heap_oop(t2, new_value);
} else {
is_64bit = true;
}
}
} else {
Unimplemented();
}
if (is_64bit) {
__ cmpxchgd(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr,
MacroAssembler::MemBarNone,
MacroAssembler::cmpxchgx_hint_atomic_update(),
noreg, NULL, /*check without ldarx first*/true);
} else {
__ cmpxchgw(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr,
MacroAssembler::MemBarNone,
MacroAssembler::cmpxchgx_hint_atomic_update(),
noreg, /*check without ldarx first*/true);
}
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ isync();
} else {
__ sync();
}
}
void LIR_Assembler::set_24bit_FPU() {
Unimplemented();
}
void LIR_Assembler::reset_FPU() {
Unimplemented();
}
void LIR_Assembler::breakpoint() {
__ illtrap();
}
void LIR_Assembler::push(LIR_Opr opr) {
Unimplemented();
}
void LIR_Assembler::pop(LIR_Opr opr) {
Unimplemented();
}
void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
Register dst = dst_opr->as_register();
Register reg = mon_addr.base();
int offset = mon_addr.disp();
// Compute pointer to BasicLock.
__ add_const_optimized(dst, reg, offset);
}
void LIR_Assembler::emit_lock(LIR_OpLock* op) {
Register obj = op->obj_opr()->as_register();
Register hdr = op->hdr_opr()->as_register();
Register lock = op->lock_opr()->as_register();
// Obj may not be an oop.
if (op->code() == lir_lock) {
MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
if (UseFastLocking) {
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
// Add debug info for NullPointerException only if one is possible.
if (op->info() != NULL) {
if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
explicit_null_check(obj, op->info());
} else {
add_debug_info_for_null_check_here(op->info());
}
}
__ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
} else {
// always do slow locking
// note: The slow locking code could be inlined here, however if we use
// slow locking, speed doesn't matter anyway and this solution is
// simpler and requires less duplicated code - additionally, the
// slow locking code is the same in either case which simplifies
// debugging.
__ b(*op->stub()->entry());
}
} else {
assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
if (UseFastLocking) {
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
__ unlock_object(hdr, obj, lock, *op->stub()->entry());
} else {
// always do slow unlocking
// note: The slow unlocking code could be inlined here, however if we use
// slow unlocking, speed doesn't matter anyway and this solution is
// simpler and requires less duplicated code - additionally, the
// slow unlocking code is the same in either case which simplifies
// debugging.
__ b(*op->stub()->entry());
}
}
__ bind(*op->stub()->continuation());
}
void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
ciMethod* method = op->profiled_method();
int bci = op->profiled_bci();
ciMethod* callee = op->profiled_callee();
// Update counter for all call types.
ciMethodData* md = method->method_data_or_null();
assert(md != NULL, "Sanity");
ciProfileData* data = md->bci_to_data(bci);
assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
Register mdo = op->mdo()->as_register();
#ifdef _LP64
assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
Register tmp1 = op->tmp1()->as_register_lo();
#else
assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
Register tmp1 = op->tmp1()->as_register();
#endif
metadata2reg(md->constant_encoding(), mdo);
int mdo_offset_bias = 0;
if (!Assembler::is_simm16(md->byte_offset_of_slot(data, CounterData::count_offset()) +
data->size_in_bytes())) {
// The offset is large so bias the mdo by the base of the slot so
// that the ld can use simm16s to reference the slots of the data.
mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
__ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
}
// Perform additional virtual call profiling for invokevirtual and
// invokeinterface bytecodes
if (op->should_profile_receiver_type()) {
assert(op->recv()->is_single_cpu(), "recv must be allocated");
Register recv = op->recv()->as_register();
assert_different_registers(mdo, tmp1, recv);
assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
ciKlass* known_klass = op->known_holder();
if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
// We know the type that will be seen at this call site; we can
// statically update the MethodData* rather than needing to do
// dynamic tests on the receiver type.
// NOTE: we should probably put a lock around this search to
// avoid collisions by concurrent compilations.
ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
uint i;
for (i = 0; i < VirtualCallData::row_limit(); i++) {
ciKlass* receiver = vc_data->receiver(i);
if (known_klass->equals(receiver)) {
__ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
__ addi(tmp1, tmp1, DataLayout::counter_increment);
__ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
return;
}
}
// Receiver type not found in profile data; select an empty slot.
// Note that this is less efficient than it should be because it
// always does a write to the receiver part of the
// VirtualCallData rather than just the first time.
for (i = 0; i < VirtualCallData::row_limit(); i++) {
ciKlass* receiver = vc_data->receiver(i);
if (receiver == NULL) {
metadata2reg(known_klass->constant_encoding(), tmp1);
__ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) - mdo_offset_bias, mdo);
__ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
__ addi(tmp1, tmp1, DataLayout::counter_increment);
__ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
return;
}
}
} else {
__ load_klass(recv, recv);
Label update_done;
type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
// Receiver did not match any saved receiver and there is no empty row for it.
// Increment total counter to indicate polymorphic case.
__ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
__ addi(tmp1, tmp1, DataLayout::counter_increment);
__ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
__ bind(update_done);
}
} else {
// Static call
__ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
__ addi(tmp1, tmp1, DataLayout::counter_increment);
__ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
}
}
void LIR_Assembler::align_backward_branch_target() {
__ align(32, 12); // Insert up to 3 nops to align with 32 byte boundary.
}
void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
Unimplemented();
}
void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
assert(left->is_register(), "can only handle registers");
if (left->is_single_cpu()) {
__ neg(dest->as_register(), left->as_register());
} else if (left->is_single_fpu()) {
__ fneg(dest->as_float_reg(), left->as_float_reg());
} else if (left->is_double_fpu()) {
__ fneg(dest->as_double_reg(), left->as_double_reg());
} else {
assert (left->is_double_cpu(), "Must be a long");
__ neg(dest->as_register_lo(), left->as_register_lo());
}
}
void LIR_Assembler::fxch(int i) {
Unimplemented();
}
void LIR_Assembler::fld(int i) {
Unimplemented();
}
void LIR_Assembler::ffree(int i) {
Unimplemented();
}
void LIR_Assembler::rt_call(LIR_Opr result, address dest,
const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
// Stubs: Called via rt_call, but dest is a stub address (no function descriptor).
if (dest == Runtime1::entry_for(Runtime1::register_finalizer_id) ||
dest == Runtime1::entry_for(Runtime1::new_multi_array_id )) {
//__ load_const_optimized(R0, dest);
__ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(dest));
__ mtctr(R0);
__ bctrl();
assert(info != NULL, "sanity");
add_call_info_here(info);
return;
}
__ call_c_with_frame_resize(dest, /*no resizing*/ 0);
if (info != NULL) {
add_call_info_here(info);
}
}
void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
ShouldNotReachHere(); // Not needed on _LP64.
}
void LIR_Assembler::membar() {
__ fence();
}
void LIR_Assembler::membar_acquire() {
__ acquire();
}
void LIR_Assembler::membar_release() {
__ release();
}
void LIR_Assembler::membar_loadload() {
__ membar(Assembler::LoadLoad);
}
void LIR_Assembler::membar_storestore() {
__ membar(Assembler::StoreStore);
}
void LIR_Assembler::membar_loadstore() {
__ membar(Assembler::LoadStore);
}
void LIR_Assembler::membar_storeload() {
__ membar(Assembler::StoreLoad);
}
void LIR_Assembler::on_spin_wait() {
Unimplemented();
}
void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
assert(patch_code == lir_patch_none, "Patch code not supported");
LIR_Address* addr = addr_opr->as_address_ptr();
assert(addr->scale() == LIR_Address::times_1, "no scaling on this platform");
if (addr->index()->is_illegal()) {
__ add_const_optimized(dest->as_pointer_register(), addr->base()->as_pointer_register(), addr->disp());
} else {
assert(addr->disp() == 0, "can't have both: index and disp");
__ add(dest->as_pointer_register(), addr->index()->as_pointer_register(), addr->base()->as_pointer_register());
}
}
void LIR_Assembler::get_thread(LIR_Opr result_reg) {
ShouldNotReachHere();
}
#ifdef ASSERT
// Emit run-time assertion.
void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
Unimplemented();
}
#endif
void LIR_Assembler::peephole(LIR_List* lir) {
// Optimize instruction pairs before emitting.
LIR_OpList* inst = lir->instructions_list();
for (int i = 1; i < inst->length(); i++) {
LIR_Op* op = inst->at(i);
// 2 register-register-moves
if (op->code() == lir_move) {
LIR_Opr in2 = ((LIR_Op1*)op)->in_opr(),
res2 = ((LIR_Op1*)op)->result_opr();
if (in2->is_register() && res2->is_register()) {
LIR_Op* prev = inst->at(i - 1);
if (prev && prev->code() == lir_move) {
LIR_Opr in1 = ((LIR_Op1*)prev)->in_opr(),
res1 = ((LIR_Op1*)prev)->result_opr();
if (in1->is_same_register(res2) && in2->is_same_register(res1)) {
inst->remove_at(i);
}
}
}
}
}
return;
}
void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
const LIR_Address *addr = src->as_address_ptr();
assert(addr->disp() == 0 && addr->index()->is_illegal(), "use leal!");
const Register Rptr = addr->base()->as_pointer_register(),
Rtmp = tmp->as_register();
Register Rco = noreg;
if (UseCompressedOops && data->is_oop()) {
Rco = __ encode_heap_oop(Rtmp, data->as_register());
}
Label Lretry;
__ bind(Lretry);
if (data->type() == T_INT) {
const Register Rold = dest->as_register(),
Rsrc = data->as_register();
assert_different_registers(Rptr, Rtmp, Rold, Rsrc);
__ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
if (code == lir_xadd) {
__ add(Rtmp, Rsrc, Rold);
__ stwcx_(Rtmp, Rptr);
} else {
__ stwcx_(Rsrc, Rptr);
}
} else if (data->is_oop()) {
assert(code == lir_xchg, "xadd for oops");
const Register Rold = dest->as_register();
if (UseCompressedOops) {
assert_different_registers(Rptr, Rold, Rco);
__ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
__ stwcx_(Rco, Rptr);
} else {
const Register Robj = data->as_register();
assert_different_registers(Rptr, Rold, Robj);
__ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
__ stdcx_(Robj, Rptr);
}
} else if (data->type() == T_LONG) {
const Register Rold = dest->as_register_lo(),
Rsrc = data->as_register_lo();
assert_different_registers(Rptr, Rtmp, Rold, Rsrc);
__ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
if (code == lir_xadd) {
__ add(Rtmp, Rsrc, Rold);
__ stdcx_(Rtmp, Rptr);
} else {
__ stdcx_(Rsrc, Rptr);
}
} else {
ShouldNotReachHere();
}
if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
__ bne_predict_not_taken(CCR0, Lretry);
} else {
__ bne( CCR0, Lretry);
}
if (UseCompressedOops && data->is_oop()) {
__ decode_heap_oop(dest->as_register());
}
}
void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
Register obj = op->obj()->as_register();
Register tmp = op->tmp()->as_pointer_register();
LIR_Address* mdo_addr = op->mdp()->as_address_ptr();
ciKlass* exact_klass = op->exact_klass();
intptr_t current_klass = op->current_klass();
bool not_null = op->not_null();
bool no_conflict = op->no_conflict();
Label Lupdate, Ldo_update, Ldone;
bool do_null = !not_null;
bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
assert(do_null || do_update, "why are we here?");
assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
__ verify_oop(obj);
if (do_null) {
if (!TypeEntries::was_null_seen(current_klass)) {
__ cmpdi(CCR0, obj, 0);
__ bne(CCR0, Lupdate);
__ ld(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
__ ori(R0, R0, TypeEntries::null_seen);
if (do_update) {
__ b(Ldo_update);
} else {
__ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
}
} else {
if (do_update) {
__ cmpdi(CCR0, obj, 0);
__ beq(CCR0, Ldone);
}
}
#ifdef ASSERT
} else {
__ cmpdi(CCR0, obj, 0);
__ bne(CCR0, Lupdate);
__ stop("unexpect null obj", 0x9652);
#endif
}
__ bind(Lupdate);
if (do_update) {
Label Lnext;
const Register klass = R29_TOC; // kill and reload
bool klass_reg_used = false;
#ifdef ASSERT
if (exact_klass != NULL) {
Label ok;
klass_reg_used = true;
__ load_klass(klass, obj);
metadata2reg(exact_klass->constant_encoding(), R0);
__ cmpd(CCR0, klass, R0);
__ beq(CCR0, ok);
__ stop("exact klass and actual klass differ", 0x8564);
__ bind(ok);
}
#endif
if (!no_conflict) {
if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
klass_reg_used = true;
if (exact_klass != NULL) {
__ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
metadata2reg(exact_klass->constant_encoding(), klass);
} else {
__ load_klass(klass, obj);
__ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); // may kill obj
}
// Like InterpreterMacroAssembler::profile_obj_type
__ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
// Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
__ cmpd(CCR1, R0, klass);
// Klass seen before, nothing to do (regardless of unknown bit).
//beq(CCR1, do_nothing);
__ andi_(R0, klass, TypeEntries::type_unknown);
// Already unknown. Nothing to do anymore.
//bne(CCR0, do_nothing);
__ crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne
__ beq(CCR0, Lnext);
if (TypeEntries::is_type_none(current_klass)) {
__ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
__ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
__ beq(CCR0, Ldo_update); // First time here. Set profile type.
}
} else {
assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
__ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
__ andi_(R0, tmp, TypeEntries::type_unknown);
// Already unknown. Nothing to do anymore.
__ bne(CCR0, Lnext);
}
// Different than before. Cannot keep accurate profile.
__ ori(R0, tmp, TypeEntries::type_unknown);
} else {
// There's a single possible klass at this profile point
assert(exact_klass != NULL, "should be");
__ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
if (TypeEntries::is_type_none(current_klass)) {
klass_reg_used = true;
metadata2reg(exact_klass->constant_encoding(), klass);
__ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
// Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
__ cmpd(CCR1, R0, klass);
// Klass seen before, nothing to do (regardless of unknown bit).
__ beq(CCR1, Lnext);
#ifdef ASSERT
{
Label ok;
__ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
__ beq(CCR0, ok); // First time here.
__ stop("unexpected profiling mismatch", 0x7865);
__ bind(ok);
}
#endif
// First time here. Set profile type.
__ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
} else {
assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
// Already unknown. Nothing to do anymore.
__ andi_(R0, tmp, TypeEntries::type_unknown);
__ bne(CCR0, Lnext);
// Different than before. Cannot keep accurate profile.
__ ori(R0, tmp, TypeEntries::type_unknown);
}
}
__ bind(Ldo_update);
__ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
__ bind(Lnext);
if (klass_reg_used) { __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); } // reinit
}
__ bind(Ldone);
}
void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
assert(op->crc()->is_single_cpu(), "crc must be register");
assert(op->val()->is_single_cpu(), "byte value must be register");
assert(op->result_opr()->is_single_cpu(), "result must be register");
Register crc = op->crc()->as_register();
Register val = op->val()->as_register();
Register res = op->result_opr()->as_register();
assert_different_registers(val, crc, res);
__ load_const_optimized(res, StubRoutines::crc_table_addr(), R0);
__ kernel_crc32_singleByteReg(crc, val, res, true);
__ mr(res, crc);
}
#undef __