5103339: Strengthen NoSafepointVerifier
Summary: Add NSV check at possible safepoint transition or places that could take out locks. Consolidate with clearing unhandled oops.
Reviewed-by: dholmes, rehn
/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2019 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "asm/assembler.inline.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "compiler/disassembler.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/java.hpp"
#include "runtime/os.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "utilities/align.hpp"
#include "utilities/defaultStream.hpp"
#include "utilities/globalDefinitions.hpp"
#include "vm_version_ppc.hpp"
#include <sys/sysinfo.h>
#if defined(_AIX)
#include <libperfstat.h>
#endif
#if defined(LINUX) && defined(VM_LITTLE_ENDIAN)
#include <sys/auxv.h>
#ifndef PPC_FEATURE2_HTM_NOSC
#define PPC_FEATURE2_HTM_NOSC (1 << 24)
#endif
#endif
bool VM_Version::_is_determine_features_test_running = false;
uint64_t VM_Version::_dscr_val = 0;
#define MSG(flag) \
if (flag && !FLAG_IS_DEFAULT(flag)) \
jio_fprintf(defaultStream::error_stream(), \
"warning: -XX:+" #flag " requires -XX:+UseSIGTRAP\n" \
" -XX:+" #flag " will be disabled!\n");
void VM_Version::initialize() {
// Test which instructions are supported and measure cache line size.
determine_features();
// If PowerArchitecturePPC64 hasn't been specified explicitly determine from features.
if (FLAG_IS_DEFAULT(PowerArchitecturePPC64)) {
if (VM_Version::has_darn()) {
FLAG_SET_ERGO(PowerArchitecturePPC64, 9);
} else if (VM_Version::has_lqarx()) {
FLAG_SET_ERGO(PowerArchitecturePPC64, 8);
} else if (VM_Version::has_popcntw()) {
FLAG_SET_ERGO(PowerArchitecturePPC64, 7);
} else if (VM_Version::has_cmpb()) {
FLAG_SET_ERGO(PowerArchitecturePPC64, 6);
} else if (VM_Version::has_popcntb()) {
FLAG_SET_ERGO(PowerArchitecturePPC64, 5);
} else {
FLAG_SET_ERGO(PowerArchitecturePPC64, 0);
}
}
bool PowerArchitecturePPC64_ok = false;
switch (PowerArchitecturePPC64) {
case 9: if (!VM_Version::has_darn() ) break;
case 8: if (!VM_Version::has_lqarx() ) break;
case 7: if (!VM_Version::has_popcntw()) break;
case 6: if (!VM_Version::has_cmpb() ) break;
case 5: if (!VM_Version::has_popcntb()) break;
case 0: PowerArchitecturePPC64_ok = true; break;
default: break;
}
guarantee(PowerArchitecturePPC64_ok, "PowerArchitecturePPC64 cannot be set to "
UINTX_FORMAT " on this machine", PowerArchitecturePPC64);
// Power 8: Configure Data Stream Control Register.
if (PowerArchitecturePPC64 >= 8 && has_mfdscr()) {
config_dscr();
}
if (!UseSIGTRAP) {
MSG(TrapBasedICMissChecks);
MSG(TrapBasedNotEntrantChecks);
MSG(TrapBasedNullChecks);
FLAG_SET_ERGO(TrapBasedNotEntrantChecks, false);
FLAG_SET_ERGO(TrapBasedNullChecks, false);
FLAG_SET_ERGO(TrapBasedICMissChecks, false);
}
#ifdef COMPILER2
if (!UseSIGTRAP) {
MSG(TrapBasedRangeChecks);
FLAG_SET_ERGO(TrapBasedRangeChecks, false);
}
// On Power6 test for section size.
if (PowerArchitecturePPC64 == 6) {
determine_section_size();
// TODO: PPC port } else {
// TODO: PPC port PdScheduling::power6SectorSize = 0x20;
}
if (PowerArchitecturePPC64 >= 8) {
if (FLAG_IS_DEFAULT(SuperwordUseVSX)) {
FLAG_SET_ERGO(SuperwordUseVSX, true);
}
} else {
if (SuperwordUseVSX) {
warning("SuperwordUseVSX specified, but needs at least Power8.");
FLAG_SET_DEFAULT(SuperwordUseVSX, false);
}
}
MaxVectorSize = SuperwordUseVSX ? 16 : 8;
if (PowerArchitecturePPC64 >= 9) {
if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstructionsPPC64)) {
FLAG_SET_ERGO(UseCountTrailingZerosInstructionsPPC64, true);
}
if (FLAG_IS_DEFAULT(UseCharacterCompareIntrinsics)) {
FLAG_SET_ERGO(UseCharacterCompareIntrinsics, true);
}
} else {
if (UseCountTrailingZerosInstructionsPPC64) {
warning("UseCountTrailingZerosInstructionsPPC64 specified, but needs at least Power9.");
FLAG_SET_DEFAULT(UseCountTrailingZerosInstructionsPPC64, false);
}
if (UseCharacterCompareIntrinsics) {
warning("UseCharacterCompareIntrinsics specified, but needs at least Power9.");
FLAG_SET_DEFAULT(UseCharacterCompareIntrinsics, false);
}
}
#endif
// Create and print feature-string.
char buf[(num_features+1) * 16]; // Max 16 chars per feature.
jio_snprintf(buf, sizeof(buf),
"ppc64%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
(has_fsqrt() ? " fsqrt" : ""),
(has_isel() ? " isel" : ""),
(has_lxarxeh() ? " lxarxeh" : ""),
(has_cmpb() ? " cmpb" : ""),
(has_popcntb() ? " popcntb" : ""),
(has_popcntw() ? " popcntw" : ""),
(has_fcfids() ? " fcfids" : ""),
(has_vand() ? " vand" : ""),
(has_lqarx() ? " lqarx" : ""),
(has_vcipher() ? " aes" : ""),
(has_vpmsumb() ? " vpmsumb" : ""),
(has_mfdscr() ? " mfdscr" : ""),
(has_vsx() ? " vsx" : ""),
(has_ldbrx() ? " ldbrx" : ""),
(has_stdbrx() ? " stdbrx" : ""),
(has_vshasig() ? " sha" : ""),
(has_tm() ? " rtm" : ""),
(has_darn() ? " darn" : "")
// Make sure number of %s matches num_features!
);
_features_string = os::strdup(buf);
if (Verbose) {
print_features();
}
// PPC64 supports 8-byte compare-exchange operations (see Atomic::cmpxchg)
// and 'atomic long memory ops' (see Unsafe_GetLongVolatile).
_supports_cx8 = true;
// Used by C1.
_supports_atomic_getset4 = true;
_supports_atomic_getadd4 = true;
_supports_atomic_getset8 = true;
_supports_atomic_getadd8 = true;
UseSSE = 0; // Only on x86 and x64
intx cache_line_size = L1_data_cache_line_size();
if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) AllocatePrefetchStyle = 1;
if (AllocatePrefetchStyle == 4) {
AllocatePrefetchStepSize = cache_line_size; // Need exact value.
if (FLAG_IS_DEFAULT(AllocatePrefetchLines)) AllocatePrefetchLines = 12; // Use larger blocks by default.
if (AllocatePrefetchDistance < 0) AllocatePrefetchDistance = 2*cache_line_size; // Default is not defined?
} else {
if (cache_line_size > AllocatePrefetchStepSize) AllocatePrefetchStepSize = cache_line_size;
if (FLAG_IS_DEFAULT(AllocatePrefetchLines)) AllocatePrefetchLines = 3; // Optimistic value.
if (AllocatePrefetchDistance < 0) AllocatePrefetchDistance = 3*cache_line_size; // Default is not defined?
}
assert(AllocatePrefetchLines > 0, "invalid value");
if (AllocatePrefetchLines < 1) { // Set valid value in product VM.
AllocatePrefetchLines = 1; // Conservative value.
}
if (AllocatePrefetchStyle == 3 && AllocatePrefetchDistance < cache_line_size) {
AllocatePrefetchStyle = 1; // Fall back if inappropriate.
}
assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
// If running on Power8 or newer hardware, the implementation uses the available vector instructions.
// In all other cases, the implementation uses only generally available instructions.
if (!UseCRC32Intrinsics) {
if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
FLAG_SET_DEFAULT(UseCRC32Intrinsics, true);
}
}
// Implementation does not use any of the vector instructions available with Power8.
// Their exploitation is still pending (aka "work in progress").
if (!UseCRC32CIntrinsics) {
if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
FLAG_SET_DEFAULT(UseCRC32CIntrinsics, true);
}
}
// TODO: Provide implementation.
if (UseAdler32Intrinsics) {
warning("Adler32Intrinsics not available on this CPU.");
FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
}
// The AES intrinsic stubs require AES instruction support.
if (has_vcipher()) {
if (FLAG_IS_DEFAULT(UseAES)) {
UseAES = true;
}
} else if (UseAES) {
if (!FLAG_IS_DEFAULT(UseAES))
warning("AES instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseAES, false);
}
if (UseAES && has_vcipher()) {
if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
UseAESIntrinsics = true;
}
} else if (UseAESIntrinsics) {
if (!FLAG_IS_DEFAULT(UseAESIntrinsics))
warning("AES intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
}
if (UseAESCTRIntrinsics) {
warning("AES/CTR intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
}
if (UseGHASHIntrinsics) {
warning("GHASH intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
}
if (FLAG_IS_DEFAULT(UseFMA)) {
FLAG_SET_DEFAULT(UseFMA, true);
}
if (has_vshasig()) {
if (FLAG_IS_DEFAULT(UseSHA)) {
UseSHA = true;
}
} else if (UseSHA) {
if (!FLAG_IS_DEFAULT(UseSHA))
warning("SHA instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseSHA, false);
}
if (UseSHA1Intrinsics) {
warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
}
if (UseSHA && has_vshasig()) {
if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA256Intrinsics, true);
}
} else if (UseSHA256Intrinsics) {
warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
}
if (UseSHA && has_vshasig()) {
if (FLAG_IS_DEFAULT(UseSHA512Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA512Intrinsics, true);
}
} else if (UseSHA512Intrinsics) {
warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
}
if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA, false);
}
if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
UseSquareToLenIntrinsic = true;
}
if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
UseMulAddIntrinsic = true;
}
if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
UseMultiplyToLenIntrinsic = true;
}
if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
UseMontgomeryMultiplyIntrinsic = true;
}
if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
UseMontgomerySquareIntrinsic = true;
}
if (UseVectorizedMismatchIntrinsic) {
warning("UseVectorizedMismatchIntrinsic specified, but not available on this CPU.");
FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
}
// Adjust RTM (Restricted Transactional Memory) flags.
if (UseRTMLocking) {
// If CPU or OS do not support TM:
// Can't continue because UseRTMLocking affects UseBiasedLocking flag
// setting during arguments processing. See use_biased_locking().
// VM_Version_init() is executed after UseBiasedLocking is used
// in Thread::allocate().
if (PowerArchitecturePPC64 < 8) {
vm_exit_during_initialization("RTM instructions are not available on this CPU.");
}
if (!has_tm()) {
vm_exit_during_initialization("RTM is not supported on this OS version.");
}
}
if (UseRTMLocking) {
#if INCLUDE_RTM_OPT
if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
// RTM locking should be used only for applications with
// high lock contention. For now we do not use it by default.
vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
}
#else
// Only C2 does RTM locking optimization.
// Can't continue because UseRTMLocking affects UseBiasedLocking flag
// setting during arguments processing. See use_biased_locking().
vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
#endif
} else { // !UseRTMLocking
if (UseRTMForStackLocks) {
if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
}
FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
}
if (UseRTMDeopt) {
FLAG_SET_DEFAULT(UseRTMDeopt, false);
}
if (PrintPreciseRTMLockingStatistics) {
FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
}
}
// This machine allows unaligned memory accesses
if (FLAG_IS_DEFAULT(UseUnalignedAccesses)) {
FLAG_SET_DEFAULT(UseUnalignedAccesses, true);
}
check_virtualizations();
}
void VM_Version::check_virtualizations() {
#if defined(_AIX)
int rc = 0;
perfstat_partition_total_t pinfo;
rc = perfstat_partition_total(NULL, &pinfo, sizeof(perfstat_partition_total_t), 1);
if (rc == 1) {
Abstract_VM_Version::_detected_virtualization = PowerVM;
}
#else
const char* info_file = "/proc/ppc64/lparcfg";
// system_type=...qemu indicates PowerKVM
// e.g. system_type=IBM pSeries (emulated by qemu)
char line[500];
FILE* fp = fopen(info_file, "r");
if (fp == NULL) {
return;
}
const char* system_type="system_type="; // in case this line contains qemu, it is KVM
const char* num_lpars="NumLpars="; // in case of non-KVM : if this line is found it is PowerVM
bool num_lpars_found = false;
while (fgets(line, sizeof(line), fp) != NULL) {
if (strncmp(line, system_type, strlen(system_type)) == 0) {
if (strstr(line, "qemu") != 0) {
Abstract_VM_Version::_detected_virtualization = PowerKVM;
fclose(fp);
return;
}
}
if (strncmp(line, num_lpars, strlen(num_lpars)) == 0) {
num_lpars_found = true;
}
}
if (num_lpars_found) {
Abstract_VM_Version::_detected_virtualization = PowerVM;
} else {
Abstract_VM_Version::_detected_virtualization = PowerFullPartitionMode;
}
fclose(fp);
#endif
}
void VM_Version::print_platform_virtualization_info(outputStream* st) {
#if defined(_AIX)
// more info about perfstat API see
// https://www.ibm.com/support/knowledgecenter/en/ssw_aix_72/com.ibm.aix.prftools/idprftools_perfstat_glob_partition.htm
int rc = 0;
perfstat_partition_total_t pinfo;
memset(&pinfo, 0, sizeof(perfstat_partition_total_t));
rc = perfstat_partition_total(NULL, &pinfo, sizeof(perfstat_partition_total_t), 1);
if (rc != 1) {
return;
} else {
st->print_cr("Virtualization type : PowerVM");
}
// CPU information
perfstat_cpu_total_t cpuinfo;
memset(&cpuinfo, 0, sizeof(perfstat_cpu_total_t));
rc = perfstat_cpu_total(NULL, &cpuinfo, sizeof(perfstat_cpu_total_t), 1);
if (rc != 1) {
return;
}
st->print_cr("Processor description : %s", cpuinfo.description);
st->print_cr("Processor speed : %llu Hz", cpuinfo.processorHZ);
st->print_cr("LPAR partition name : %s", pinfo.name);
st->print_cr("LPAR partition number : %u", pinfo.lpar_id);
st->print_cr("LPAR partition type : %s", pinfo.type.b.shared_enabled ? "shared" : "dedicated");
st->print_cr("LPAR mode : %s", pinfo.type.b.donate_enabled ? "donating" : pinfo.type.b.capped ? "capped" : "uncapped");
st->print_cr("LPAR partition group ID : %u", pinfo.group_id);
st->print_cr("LPAR shared pool ID : %u", pinfo.pool_id);
st->print_cr("AMS (active memory sharing) : %s", pinfo.type.b.ams_capable ? "capable" : "not capable");
st->print_cr("AMS (active memory sharing) : %s", pinfo.type.b.ams_enabled ? "on" : "off");
st->print_cr("AME (active memory expansion) : %s", pinfo.type.b.ame_enabled ? "on" : "off");
if (pinfo.type.b.ame_enabled) {
st->print_cr("AME true memory in bytes : %llu", pinfo.true_memory);
st->print_cr("AME expanded memory in bytes : %llu", pinfo.expanded_memory);
}
st->print_cr("SMT : %s", pinfo.type.b.smt_capable ? "capable" : "not capable");
st->print_cr("SMT : %s", pinfo.type.b.smt_enabled ? "on" : "off");
int ocpus = pinfo.online_cpus > 0 ? pinfo.online_cpus : 1;
st->print_cr("LPAR threads : %d", cpuinfo.ncpus/ocpus);
st->print_cr("LPAR online virtual cpus : %d", pinfo.online_cpus);
st->print_cr("LPAR logical cpus : %d", cpuinfo.ncpus);
st->print_cr("LPAR maximum virtual cpus : %u", pinfo.max_cpus);
st->print_cr("LPAR minimum virtual cpus : %u", pinfo.min_cpus);
st->print_cr("LPAR entitled capacity : %4.2f", (double) (pinfo.entitled_proc_capacity/100.0));
st->print_cr("LPAR online memory : %llu MB", pinfo.online_memory);
st->print_cr("LPAR maximum memory : %llu MB", pinfo.max_memory);
st->print_cr("LPAR minimum memory : %llu MB", pinfo.min_memory);
#else
const char* info_file = "/proc/ppc64/lparcfg";
const char* kw[] = { "system_type=", // qemu indicates PowerKVM
"partition_entitled_capacity=", // entitled processor capacity percentage
"partition_max_entitled_capacity=",
"capacity_weight=", // partition CPU weight
"partition_active_processors=",
"partition_potential_processors=",
"entitled_proc_capacity_available=",
"capped=", // 0 - uncapped, 1 - vcpus capped at entitled processor capacity percentage
"shared_processor_mode=", // (non)dedicated partition
"system_potential_processors=",
"pool=", // CPU-pool number
"pool_capacity=",
"NumLpars=", // on non-KVM machines, NumLpars is not found for full partition mode machines
NULL };
if (!print_matching_lines_from_file(info_file, st, kw)) {
st->print_cr(" <%s Not Available>", info_file);
}
#endif
}
bool VM_Version::use_biased_locking() {
#if INCLUDE_RTM_OPT
// RTM locking is most useful when there is high lock contention and
// low data contention. With high lock contention the lock is usually
// inflated and biased locking is not suitable for that case.
// RTM locking code requires that biased locking is off.
// Note: we can't switch off UseBiasedLocking in get_processor_features()
// because it is used by Thread::allocate() which is called before
// VM_Version::initialize().
if (UseRTMLocking && UseBiasedLocking) {
if (FLAG_IS_DEFAULT(UseBiasedLocking)) {
FLAG_SET_DEFAULT(UseBiasedLocking, false);
} else {
warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." );
UseBiasedLocking = false;
}
}
#endif
return UseBiasedLocking;
}
void VM_Version::print_features() {
tty->print_cr("Version: %s L1_data_cache_line_size=%d", features_string(), L1_data_cache_line_size());
}
#ifdef COMPILER2
// Determine section size on power6: If section size is 8 instructions,
// there should be a difference between the two testloops of ~15 %. If
// no difference is detected the section is assumed to be 32 instructions.
void VM_Version::determine_section_size() {
int unroll = 80;
const int code_size = (2* unroll * 32 + 100)*BytesPerInstWord;
// Allocate space for the code.
ResourceMark rm;
CodeBuffer cb("detect_section_size", code_size, 0);
MacroAssembler* a = new MacroAssembler(&cb);
uint32_t *code = (uint32_t *)a->pc();
// Emit code.
void (*test1)() = (void(*)())(void *)a->function_entry();
Label l1;
a->li(R4, 1);
a->sldi(R4, R4, 28);
a->b(l1);
a->align(CodeEntryAlignment);
a->bind(l1);
for (int i = 0; i < unroll; i++) {
// Schleife 1
// ------- sector 0 ------------
// ;; 0
a->nop(); // 1
a->fpnop0(); // 2
a->fpnop1(); // 3
a->addi(R4,R4, -1); // 4
// ;; 1
a->nop(); // 5
a->fmr(F6, F6); // 6
a->fmr(F7, F7); // 7
a->endgroup(); // 8
// ------- sector 8 ------------
// ;; 2
a->nop(); // 9
a->nop(); // 10
a->fmr(F8, F8); // 11
a->fmr(F9, F9); // 12
// ;; 3
a->nop(); // 13
a->fmr(F10, F10); // 14
a->fmr(F11, F11); // 15
a->endgroup(); // 16
// -------- sector 16 -------------
// ;; 4
a->nop(); // 17
a->nop(); // 18
a->fmr(F15, F15); // 19
a->fmr(F16, F16); // 20
// ;; 5
a->nop(); // 21
a->fmr(F17, F17); // 22
a->fmr(F18, F18); // 23
a->endgroup(); // 24
// ------- sector 24 ------------
// ;; 6
a->nop(); // 25
a->nop(); // 26
a->fmr(F19, F19); // 27
a->fmr(F20, F20); // 28
// ;; 7
a->nop(); // 29
a->fmr(F21, F21); // 30
a->fmr(F22, F22); // 31
a->brnop0(); // 32
// ------- sector 32 ------------
}
// ;; 8
a->cmpdi(CCR0, R4, unroll); // 33
a->bge(CCR0, l1); // 34
a->blr();
// Emit code.
void (*test2)() = (void(*)())(void *)a->function_entry();
// uint32_t *code = (uint32_t *)a->pc();
Label l2;
a->li(R4, 1);
a->sldi(R4, R4, 28);
a->b(l2);
a->align(CodeEntryAlignment);
a->bind(l2);
for (int i = 0; i < unroll; i++) {
// Schleife 2
// ------- sector 0 ------------
// ;; 0
a->brnop0(); // 1
a->nop(); // 2
//a->cmpdi(CCR0, R4, unroll);
a->fpnop0(); // 3
a->fpnop1(); // 4
a->addi(R4,R4, -1); // 5
// ;; 1
a->nop(); // 6
a->fmr(F6, F6); // 7
a->fmr(F7, F7); // 8
// ------- sector 8 ---------------
// ;; 2
a->endgroup(); // 9
// ;; 3
a->nop(); // 10
a->nop(); // 11
a->fmr(F8, F8); // 12
// ;; 4
a->fmr(F9, F9); // 13
a->nop(); // 14
a->fmr(F10, F10); // 15
// ;; 5
a->fmr(F11, F11); // 16
// -------- sector 16 -------------
// ;; 6
a->endgroup(); // 17
// ;; 7
a->nop(); // 18
a->nop(); // 19
a->fmr(F15, F15); // 20
// ;; 8
a->fmr(F16, F16); // 21
a->nop(); // 22
a->fmr(F17, F17); // 23
// ;; 9
a->fmr(F18, F18); // 24
// -------- sector 24 -------------
// ;; 10
a->endgroup(); // 25
// ;; 11
a->nop(); // 26
a->nop(); // 27
a->fmr(F19, F19); // 28
// ;; 12
a->fmr(F20, F20); // 29
a->nop(); // 30
a->fmr(F21, F21); // 31
// ;; 13
a->fmr(F22, F22); // 32
}
// -------- sector 32 -------------
// ;; 14
a->cmpdi(CCR0, R4, unroll); // 33
a->bge(CCR0, l2); // 34
a->blr();
uint32_t *code_end = (uint32_t *)a->pc();
a->flush();
cb.insts()->set_end((u_char*)code_end);
double loop1_seconds,loop2_seconds, rel_diff;
uint64_t start1, stop1;
start1 = os::current_thread_cpu_time(false);
(*test1)();
stop1 = os::current_thread_cpu_time(false);
loop1_seconds = (stop1- start1) / (1000 *1000 *1000.0);
start1 = os::current_thread_cpu_time(false);
(*test2)();
stop1 = os::current_thread_cpu_time(false);
loop2_seconds = (stop1 - start1) / (1000 *1000 *1000.0);
rel_diff = (loop2_seconds - loop1_seconds) / loop1_seconds *100;
if (PrintAssembly || PrintStubCode) {
ttyLocker ttyl;
tty->print_cr("Decoding section size detection stub at " INTPTR_FORMAT " before execution:", p2i(code));
// Use existing decode function. This enables the [MachCode] format which is needed to DecodeErrorFile.
Disassembler::decode(&cb, (u_char*)code, (u_char*)code_end, tty);
tty->print_cr("Time loop1 :%f", loop1_seconds);
tty->print_cr("Time loop2 :%f", loop2_seconds);
tty->print_cr("(time2 - time1) / time1 = %f %%", rel_diff);
if (rel_diff > 12.0) {
tty->print_cr("Section Size 8 Instructions");
} else{
tty->print_cr("Section Size 32 Instructions or Power5");
}
}
#if 0 // TODO: PPC port
// Set sector size (if not set explicitly).
if (FLAG_IS_DEFAULT(Power6SectorSize128PPC64)) {
if (rel_diff > 12.0) {
PdScheduling::power6SectorSize = 0x20;
} else {
PdScheduling::power6SectorSize = 0x80;
}
} else if (Power6SectorSize128PPC64) {
PdScheduling::power6SectorSize = 0x80;
} else {
PdScheduling::power6SectorSize = 0x20;
}
#endif
if (UsePower6SchedulerPPC64) Unimplemented();
}
#endif // COMPILER2
void VM_Version::determine_features() {
#if defined(ABI_ELFv2)
// 1 InstWord per call for the blr instruction.
const int code_size = (num_features+1+2*1)*BytesPerInstWord;
#else
// 7 InstWords for each call (function descriptor + blr instruction).
const int code_size = (num_features+1+2*7)*BytesPerInstWord;
#endif
int features = 0;
// create test area
enum { BUFFER_SIZE = 2*4*K }; // Needs to be >=2* max cache line size (cache line size can't exceed min page size).
char test_area[BUFFER_SIZE];
char *mid_of_test_area = &test_area[BUFFER_SIZE>>1];
// Allocate space for the code.
ResourceMark rm;
CodeBuffer cb("detect_cpu_features", code_size, 0);
MacroAssembler* a = new MacroAssembler(&cb);
// Must be set to true so we can generate the test code.
_features = VM_Version::all_features_m;
// Emit code.
void (*test)(address addr, uint64_t offset)=(void(*)(address addr, uint64_t offset))(void *)a->function_entry();
uint32_t *code = (uint32_t *)a->pc();
// Don't use R0 in ldarx.
// Keep R3_ARG1 unmodified, it contains &field (see below).
// Keep R4_ARG2 unmodified, it contains offset = 0 (see below).
a->fsqrt(F3, F4); // code[0] -> fsqrt_m
a->fsqrts(F3, F4); // code[1] -> fsqrts_m
a->isel(R7, R5, R6, 0); // code[2] -> isel_m
a->ldarx_unchecked(R7, R3_ARG1, R4_ARG2, 1); // code[3] -> lxarx_m
a->cmpb(R7, R5, R6); // code[4] -> cmpb
a->popcntb(R7, R5); // code[5] -> popcntb
a->popcntw(R7, R5); // code[6] -> popcntw
a->fcfids(F3, F4); // code[7] -> fcfids
a->vand(VR0, VR0, VR0); // code[8] -> vand
// arg0 of lqarx must be an even register, (arg1 + arg2) must be a multiple of 16
a->lqarx_unchecked(R6, R3_ARG1, R4_ARG2, 1); // code[9] -> lqarx_m
a->vcipher(VR0, VR1, VR2); // code[10] -> vcipher
a->vpmsumb(VR0, VR1, VR2); // code[11] -> vpmsumb
a->mfdscr(R0); // code[12] -> mfdscr
a->lxvd2x(VSR0, R3_ARG1); // code[13] -> vsx
a->ldbrx(R7, R3_ARG1, R4_ARG2); // code[14] -> ldbrx
a->stdbrx(R7, R3_ARG1, R4_ARG2); // code[15] -> stdbrx
a->vshasigmaw(VR0, VR1, 1, 0xF); // code[16] -> vshasig
// rtm is determined by OS
a->darn(R7); // code[17] -> darn
a->blr();
// Emit function to set one cache line to zero. Emit function descriptor and get pointer to it.
void (*zero_cacheline_func_ptr)(char*) = (void(*)(char*))(void *)a->function_entry();
a->dcbz(R3_ARG1); // R3_ARG1 = addr
a->blr();
uint32_t *code_end = (uint32_t *)a->pc();
a->flush();
_features = VM_Version::unknown_m;
// Print the detection code.
if (PrintAssembly) {
ttyLocker ttyl;
tty->print_cr("Decoding cpu-feature detection stub at " INTPTR_FORMAT " before execution:", p2i(code));
Disassembler::decode((u_char*)code, (u_char*)code_end, tty);
}
// Measure cache line size.
memset(test_area, 0xFF, BUFFER_SIZE); // Fill test area with 0xFF.
(*zero_cacheline_func_ptr)(mid_of_test_area); // Call function which executes dcbz to the middle.
int count = 0; // count zeroed bytes
for (int i = 0; i < BUFFER_SIZE; i++) if (test_area[i] == 0) count++;
guarantee(is_power_of_2(count), "cache line size needs to be a power of 2");
_L1_data_cache_line_size = count;
// Execute code. Illegal instructions will be replaced by 0 in the signal handler.
VM_Version::_is_determine_features_test_running = true;
// We must align the first argument to 16 bytes because of the lqarx check.
(*test)(align_up((address)mid_of_test_area, 16), 0);
VM_Version::_is_determine_features_test_running = false;
// determine which instructions are legal.
int feature_cntr = 0;
if (code[feature_cntr++]) features |= fsqrt_m;
if (code[feature_cntr++]) features |= fsqrts_m;
if (code[feature_cntr++]) features |= isel_m;
if (code[feature_cntr++]) features |= lxarxeh_m;
if (code[feature_cntr++]) features |= cmpb_m;
if (code[feature_cntr++]) features |= popcntb_m;
if (code[feature_cntr++]) features |= popcntw_m;
if (code[feature_cntr++]) features |= fcfids_m;
if (code[feature_cntr++]) features |= vand_m;
if (code[feature_cntr++]) features |= lqarx_m;
if (code[feature_cntr++]) features |= vcipher_m;
if (code[feature_cntr++]) features |= vpmsumb_m;
if (code[feature_cntr++]) features |= mfdscr_m;
if (code[feature_cntr++]) features |= vsx_m;
if (code[feature_cntr++]) features |= ldbrx_m;
if (code[feature_cntr++]) features |= stdbrx_m;
if (code[feature_cntr++]) features |= vshasig_m;
// feature rtm_m is determined by OS
if (code[feature_cntr++]) features |= darn_m;
// Print the detection code.
if (PrintAssembly) {
ttyLocker ttyl;
tty->print_cr("Decoding cpu-feature detection stub at " INTPTR_FORMAT " after execution:", p2i(code));
Disassembler::decode((u_char*)code, (u_char*)code_end, tty);
}
_features = features;
#ifdef AIX
// To enable it on AIX it's necessary POWER8 or above and at least AIX 7.2.
// Actually, this is supported since AIX 7.1.. Unfortunately, this first
// contained bugs, so that it can only be enabled after AIX 7.1.3.30.
// The Java property os.version, which is used in RTM tests to decide
// whether the feature is available, only knows major and minor versions.
// We don't want to change this property, as user code might depend on it.
// So the tests can not check on subversion 3.30, and we only enable RTM
// with AIX 7.2.
if (has_lqarx()) { // POWER8 or above
if (os::Aix::os_version() >= 0x07020000) { // At least AIX 7.2.
_features |= rtm_m;
}
}
#endif
#if defined(LINUX) && defined(VM_LITTLE_ENDIAN)
unsigned long auxv = getauxval(AT_HWCAP2);
if (auxv & PPC_FEATURE2_HTM_NOSC) {
if (auxv & PPC_FEATURE2_HAS_HTM) {
// TM on POWER8 and POWER9 in compat mode (VM) is supported by the JVM.
// TM on POWER9 DD2.1 NV (baremetal) is not supported by the JVM (TM on
// POWER9 DD2.1 NV has a few issues that need a couple of firmware
// and kernel workarounds, so there is a new mode only supported
// on non-virtualized P9 machines called HTM with no Suspend Mode).
// TM on POWER9 D2.2+ NV is not supported at all by Linux.
_features |= rtm_m;
}
}
#endif
}
// Power 8: Configure Data Stream Control Register.
void VM_Version::config_dscr() {
// 7 InstWords for each call (function descriptor + blr instruction).
const int code_size = (2+2*7)*BytesPerInstWord;
// Allocate space for the code.
ResourceMark rm;
CodeBuffer cb("config_dscr", code_size, 0);
MacroAssembler* a = new MacroAssembler(&cb);
// Emit code.
uint64_t (*get_dscr)() = (uint64_t(*)())(void *)a->function_entry();
uint32_t *code = (uint32_t *)a->pc();
a->mfdscr(R3);
a->blr();
void (*set_dscr)(long) = (void(*)(long))(void *)a->function_entry();
a->mtdscr(R3);
a->blr();
uint32_t *code_end = (uint32_t *)a->pc();
a->flush();
// Print the detection code.
if (PrintAssembly) {
ttyLocker ttyl;
tty->print_cr("Decoding dscr configuration stub at " INTPTR_FORMAT " before execution:", p2i(code));
Disassembler::decode((u_char*)code, (u_char*)code_end, tty);
}
// Apply the configuration if needed.
_dscr_val = (*get_dscr)();
if (Verbose) {
tty->print_cr("dscr value was 0x%lx" , _dscr_val);
}
bool change_requested = false;
if (DSCR_PPC64 != (uintx)-1) {
_dscr_val = DSCR_PPC64;
change_requested = true;
}
if (DSCR_DPFD_PPC64 <= 7) {
uint64_t mask = 0x7;
if ((_dscr_val & mask) != DSCR_DPFD_PPC64) {
_dscr_val = (_dscr_val & ~mask) | (DSCR_DPFD_PPC64);
change_requested = true;
}
}
if (DSCR_URG_PPC64 <= 7) {
uint64_t mask = 0x7 << 6;
if ((_dscr_val & mask) != DSCR_DPFD_PPC64 << 6) {
_dscr_val = (_dscr_val & ~mask) | (DSCR_URG_PPC64 << 6);
change_requested = true;
}
}
if (change_requested) {
(*set_dscr)(_dscr_val);
if (Verbose) {
tty->print_cr("dscr was set to 0x%lx" , (*get_dscr)());
}
}
}
static uint64_t saved_features = 0;
void VM_Version::allow_all() {
saved_features = _features;
_features = all_features_m;
}
void VM_Version::revert() {
_features = saved_features;
}