5103339: Strengthen NoSafepointVerifier
Summary: Add NSV check at possible safepoint transition or places that could take out locks. Consolidate with clearing unhandled oops.
Reviewed-by: dholmes, rehn
/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2018 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "code/debugInfoRec.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "frame_ppc.hpp"
#include "gc/shared/gcLocker.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interp_masm.hpp"
#include "memory/resourceArea.hpp"
#include "oops/compiledICHolder.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/align.hpp"
#include "vmreg_ppc.inline.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
#ifdef COMPILER2
#include "opto/ad.hpp"
#include "opto/runtime.hpp"
#endif
#include <alloca.h>
#define __ masm->
#ifdef PRODUCT
#define BLOCK_COMMENT(str) // nothing
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
class RegisterSaver {
// Used for saving volatile registers.
public:
// Support different return pc locations.
enum ReturnPCLocation {
return_pc_is_lr,
return_pc_is_pre_saved,
return_pc_is_thread_saved_exception_pc
};
static OopMap* push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
int* out_frame_size_in_bytes,
bool generate_oop_map,
int return_pc_adjustment,
ReturnPCLocation return_pc_location,
bool save_vectors = false);
static void restore_live_registers_and_pop_frame(MacroAssembler* masm,
int frame_size_in_bytes,
bool restore_ctr,
bool save_vectors = false);
static void push_frame_and_save_argument_registers(MacroAssembler* masm,
Register r_temp,
int frame_size,
int total_args,
const VMRegPair *regs, const VMRegPair *regs2 = NULL);
static void restore_argument_registers_and_pop_frame(MacroAssembler*masm,
int frame_size,
int total_args,
const VMRegPair *regs, const VMRegPair *regs2 = NULL);
// During deoptimization only the result registers need to be restored
// all the other values have already been extracted.
static void restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes);
// Constants and data structures:
typedef enum {
int_reg,
float_reg,
special_reg,
vs_reg
} RegisterType;
typedef enum {
reg_size = 8,
half_reg_size = reg_size / 2,
vs_reg_size = 16
} RegisterConstants;
typedef struct {
RegisterType reg_type;
int reg_num;
VMReg vmreg;
} LiveRegType;
};
#define RegisterSaver_LiveIntReg(regname) \
{ RegisterSaver::int_reg, regname->encoding(), regname->as_VMReg() }
#define RegisterSaver_LiveFloatReg(regname) \
{ RegisterSaver::float_reg, regname->encoding(), regname->as_VMReg() }
#define RegisterSaver_LiveSpecialReg(regname) \
{ RegisterSaver::special_reg, regname->encoding(), regname->as_VMReg() }
#define RegisterSaver_LiveVSReg(regname) \
{ RegisterSaver::vs_reg, regname->encoding(), regname->as_VMReg() }
static const RegisterSaver::LiveRegType RegisterSaver_LiveRegs[] = {
// Live registers which get spilled to the stack. Register
// positions in this array correspond directly to the stack layout.
//
// live special registers:
//
RegisterSaver_LiveSpecialReg(SR_CTR),
//
// live float registers:
//
RegisterSaver_LiveFloatReg( F0 ),
RegisterSaver_LiveFloatReg( F1 ),
RegisterSaver_LiveFloatReg( F2 ),
RegisterSaver_LiveFloatReg( F3 ),
RegisterSaver_LiveFloatReg( F4 ),
RegisterSaver_LiveFloatReg( F5 ),
RegisterSaver_LiveFloatReg( F6 ),
RegisterSaver_LiveFloatReg( F7 ),
RegisterSaver_LiveFloatReg( F8 ),
RegisterSaver_LiveFloatReg( F9 ),
RegisterSaver_LiveFloatReg( F10 ),
RegisterSaver_LiveFloatReg( F11 ),
RegisterSaver_LiveFloatReg( F12 ),
RegisterSaver_LiveFloatReg( F13 ),
RegisterSaver_LiveFloatReg( F14 ),
RegisterSaver_LiveFloatReg( F15 ),
RegisterSaver_LiveFloatReg( F16 ),
RegisterSaver_LiveFloatReg( F17 ),
RegisterSaver_LiveFloatReg( F18 ),
RegisterSaver_LiveFloatReg( F19 ),
RegisterSaver_LiveFloatReg( F20 ),
RegisterSaver_LiveFloatReg( F21 ),
RegisterSaver_LiveFloatReg( F22 ),
RegisterSaver_LiveFloatReg( F23 ),
RegisterSaver_LiveFloatReg( F24 ),
RegisterSaver_LiveFloatReg( F25 ),
RegisterSaver_LiveFloatReg( F26 ),
RegisterSaver_LiveFloatReg( F27 ),
RegisterSaver_LiveFloatReg( F28 ),
RegisterSaver_LiveFloatReg( F29 ),
RegisterSaver_LiveFloatReg( F30 ),
RegisterSaver_LiveFloatReg( F31 ),
//
// live integer registers:
//
RegisterSaver_LiveIntReg( R0 ),
//RegisterSaver_LiveIntReg( R1 ), // stack pointer
RegisterSaver_LiveIntReg( R2 ),
RegisterSaver_LiveIntReg( R3 ),
RegisterSaver_LiveIntReg( R4 ),
RegisterSaver_LiveIntReg( R5 ),
RegisterSaver_LiveIntReg( R6 ),
RegisterSaver_LiveIntReg( R7 ),
RegisterSaver_LiveIntReg( R8 ),
RegisterSaver_LiveIntReg( R9 ),
RegisterSaver_LiveIntReg( R10 ),
RegisterSaver_LiveIntReg( R11 ),
RegisterSaver_LiveIntReg( R12 ),
//RegisterSaver_LiveIntReg( R13 ), // system thread id
RegisterSaver_LiveIntReg( R14 ),
RegisterSaver_LiveIntReg( R15 ),
RegisterSaver_LiveIntReg( R16 ),
RegisterSaver_LiveIntReg( R17 ),
RegisterSaver_LiveIntReg( R18 ),
RegisterSaver_LiveIntReg( R19 ),
RegisterSaver_LiveIntReg( R20 ),
RegisterSaver_LiveIntReg( R21 ),
RegisterSaver_LiveIntReg( R22 ),
RegisterSaver_LiveIntReg( R23 ),
RegisterSaver_LiveIntReg( R24 ),
RegisterSaver_LiveIntReg( R25 ),
RegisterSaver_LiveIntReg( R26 ),
RegisterSaver_LiveIntReg( R27 ),
RegisterSaver_LiveIntReg( R28 ),
RegisterSaver_LiveIntReg( R29 ),
RegisterSaver_LiveIntReg( R30 ),
RegisterSaver_LiveIntReg( R31 ) // must be the last register (see save/restore functions below)
};
static const RegisterSaver::LiveRegType RegisterSaver_LiveVSRegs[] = {
//
// live vector scalar registers (optional, only these ones are used by C2):
//
RegisterSaver_LiveVSReg( VSR32 ),
RegisterSaver_LiveVSReg( VSR33 ),
RegisterSaver_LiveVSReg( VSR34 ),
RegisterSaver_LiveVSReg( VSR35 ),
RegisterSaver_LiveVSReg( VSR36 ),
RegisterSaver_LiveVSReg( VSR37 ),
RegisterSaver_LiveVSReg( VSR38 ),
RegisterSaver_LiveVSReg( VSR39 ),
RegisterSaver_LiveVSReg( VSR40 ),
RegisterSaver_LiveVSReg( VSR41 ),
RegisterSaver_LiveVSReg( VSR42 ),
RegisterSaver_LiveVSReg( VSR43 ),
RegisterSaver_LiveVSReg( VSR44 ),
RegisterSaver_LiveVSReg( VSR45 ),
RegisterSaver_LiveVSReg( VSR46 ),
RegisterSaver_LiveVSReg( VSR47 ),
RegisterSaver_LiveVSReg( VSR48 ),
RegisterSaver_LiveVSReg( VSR49 ),
RegisterSaver_LiveVSReg( VSR50 ),
RegisterSaver_LiveVSReg( VSR51 )
};
OopMap* RegisterSaver::push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
int* out_frame_size_in_bytes,
bool generate_oop_map,
int return_pc_adjustment,
ReturnPCLocation return_pc_location,
bool save_vectors) {
// Push an abi_reg_args-frame and store all registers which may be live.
// If requested, create an OopMap: Record volatile registers as
// callee-save values in an OopMap so their save locations will be
// propagated to the RegisterMap of the caller frame during
// StackFrameStream construction (needed for deoptimization; see
// compiledVFrame::create_stack_value).
// If return_pc_adjustment != 0 adjust the return pc by return_pc_adjustment.
// Updated return pc is returned in R31 (if not return_pc_is_pre_saved).
// calcualte frame size
const int regstosave_num = sizeof(RegisterSaver_LiveRegs) /
sizeof(RegisterSaver::LiveRegType);
const int vsregstosave_num = save_vectors ? (sizeof(RegisterSaver_LiveVSRegs) /
sizeof(RegisterSaver::LiveRegType))
: 0;
const int register_save_size = regstosave_num * reg_size + vsregstosave_num * vs_reg_size;
const int frame_size_in_bytes = align_up(register_save_size, frame::alignment_in_bytes)
+ frame::abi_reg_args_size;
*out_frame_size_in_bytes = frame_size_in_bytes;
const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
const int register_save_offset = frame_size_in_bytes - register_save_size;
// OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words.
OopMap* map = generate_oop_map ? new OopMap(frame_size_in_slots, 0) : NULL;
BLOCK_COMMENT("push_frame_reg_args_and_save_live_registers {");
// push a new frame
__ push_frame(frame_size_in_bytes, noreg);
// Save some registers in the last (non-vector) slots of the new frame so we
// can use them as scratch regs or to determine the return pc.
__ std(R31, frame_size_in_bytes - reg_size - vsregstosave_num * vs_reg_size, R1_SP);
__ std(R30, frame_size_in_bytes - 2*reg_size - vsregstosave_num * vs_reg_size, R1_SP);
// save the flags
// Do the save_LR_CR by hand and adjust the return pc if requested.
__ mfcr(R30);
__ std(R30, frame_size_in_bytes + _abi(cr), R1_SP);
switch (return_pc_location) {
case return_pc_is_lr: __ mflr(R31); break;
case return_pc_is_pre_saved: assert(return_pc_adjustment == 0, "unsupported"); break;
case return_pc_is_thread_saved_exception_pc: __ ld(R31, thread_(saved_exception_pc)); break;
default: ShouldNotReachHere();
}
if (return_pc_location != return_pc_is_pre_saved) {
if (return_pc_adjustment != 0) {
__ addi(R31, R31, return_pc_adjustment);
}
__ std(R31, frame_size_in_bytes + _abi(lr), R1_SP);
}
// save all registers (ints and floats)
int offset = register_save_offset;
for (int i = 0; i < regstosave_num; i++) {
int reg_num = RegisterSaver_LiveRegs[i].reg_num;
int reg_type = RegisterSaver_LiveRegs[i].reg_type;
switch (reg_type) {
case RegisterSaver::int_reg: {
if (reg_num < 30) { // We spilled R30-31 right at the beginning.
__ std(as_Register(reg_num), offset, R1_SP);
}
break;
}
case RegisterSaver::float_reg: {
__ stfd(as_FloatRegister(reg_num), offset, R1_SP);
break;
}
case RegisterSaver::special_reg: {
if (reg_num == SR_CTR_SpecialRegisterEnumValue) {
__ mfctr(R30);
__ std(R30, offset, R1_SP);
} else {
Unimplemented();
}
break;
}
default:
ShouldNotReachHere();
}
if (generate_oop_map) {
map->set_callee_saved(VMRegImpl::stack2reg(offset>>2),
RegisterSaver_LiveRegs[i].vmreg);
map->set_callee_saved(VMRegImpl::stack2reg((offset + half_reg_size)>>2),
RegisterSaver_LiveRegs[i].vmreg->next());
}
offset += reg_size;
}
for (int i = 0; i < vsregstosave_num; i++) {
int reg_num = RegisterSaver_LiveVSRegs[i].reg_num;
int reg_type = RegisterSaver_LiveVSRegs[i].reg_type;
__ li(R30, offset);
__ stxvd2x(as_VectorSRegister(reg_num), R30, R1_SP);
if (generate_oop_map) {
map->set_callee_saved(VMRegImpl::stack2reg(offset>>2),
RegisterSaver_LiveVSRegs[i].vmreg);
}
offset += vs_reg_size;
}
assert(offset == frame_size_in_bytes, "consistency check");
BLOCK_COMMENT("} push_frame_reg_args_and_save_live_registers");
// And we're done.
return map;
}
// Pop the current frame and restore all the registers that we
// saved.
void RegisterSaver::restore_live_registers_and_pop_frame(MacroAssembler* masm,
int frame_size_in_bytes,
bool restore_ctr,
bool save_vectors) {
const int regstosave_num = sizeof(RegisterSaver_LiveRegs) /
sizeof(RegisterSaver::LiveRegType);
const int vsregstosave_num = save_vectors ? (sizeof(RegisterSaver_LiveVSRegs) /
sizeof(RegisterSaver::LiveRegType))
: 0;
const int register_save_size = regstosave_num * reg_size + vsregstosave_num * vs_reg_size;
const int register_save_offset = frame_size_in_bytes - register_save_size;
BLOCK_COMMENT("restore_live_registers_and_pop_frame {");
// restore all registers (ints and floats)
int offset = register_save_offset;
for (int i = 0; i < regstosave_num; i++) {
int reg_num = RegisterSaver_LiveRegs[i].reg_num;
int reg_type = RegisterSaver_LiveRegs[i].reg_type;
switch (reg_type) {
case RegisterSaver::int_reg: {
if (reg_num != 31) // R31 restored at the end, it's the tmp reg!
__ ld(as_Register(reg_num), offset, R1_SP);
break;
}
case RegisterSaver::float_reg: {
__ lfd(as_FloatRegister(reg_num), offset, R1_SP);
break;
}
case RegisterSaver::special_reg: {
if (reg_num == SR_CTR_SpecialRegisterEnumValue) {
if (restore_ctr) { // Nothing to do here if ctr already contains the next address.
__ ld(R31, offset, R1_SP);
__ mtctr(R31);
}
} else {
Unimplemented();
}
break;
}
default:
ShouldNotReachHere();
}
offset += reg_size;
}
for (int i = 0; i < vsregstosave_num; i++) {
int reg_num = RegisterSaver_LiveVSRegs[i].reg_num;
int reg_type = RegisterSaver_LiveVSRegs[i].reg_type;
__ li(R31, offset);
__ lxvd2x(as_VectorSRegister(reg_num), R31, R1_SP);
offset += vs_reg_size;
}
assert(offset == frame_size_in_bytes, "consistency check");
// restore link and the flags
__ ld(R31, frame_size_in_bytes + _abi(lr), R1_SP);
__ mtlr(R31);
__ ld(R31, frame_size_in_bytes + _abi(cr), R1_SP);
__ mtcr(R31);
// restore scratch register's value
__ ld(R31, frame_size_in_bytes - reg_size - vsregstosave_num * vs_reg_size, R1_SP);
// pop the frame
__ addi(R1_SP, R1_SP, frame_size_in_bytes);
BLOCK_COMMENT("} restore_live_registers_and_pop_frame");
}
void RegisterSaver::push_frame_and_save_argument_registers(MacroAssembler* masm, Register r_temp,
int frame_size,int total_args, const VMRegPair *regs,
const VMRegPair *regs2) {
__ push_frame(frame_size, r_temp);
int st_off = frame_size - wordSize;
for (int i = 0; i < total_args; i++) {
VMReg r_1 = regs[i].first();
VMReg r_2 = regs[i].second();
if (!r_1->is_valid()) {
assert(!r_2->is_valid(), "");
continue;
}
if (r_1->is_Register()) {
Register r = r_1->as_Register();
__ std(r, st_off, R1_SP);
st_off -= wordSize;
} else if (r_1->is_FloatRegister()) {
FloatRegister f = r_1->as_FloatRegister();
__ stfd(f, st_off, R1_SP);
st_off -= wordSize;
}
}
if (regs2 != NULL) {
for (int i = 0; i < total_args; i++) {
VMReg r_1 = regs2[i].first();
VMReg r_2 = regs2[i].second();
if (!r_1->is_valid()) {
assert(!r_2->is_valid(), "");
continue;
}
if (r_1->is_Register()) {
Register r = r_1->as_Register();
__ std(r, st_off, R1_SP);
st_off -= wordSize;
} else if (r_1->is_FloatRegister()) {
FloatRegister f = r_1->as_FloatRegister();
__ stfd(f, st_off, R1_SP);
st_off -= wordSize;
}
}
}
}
void RegisterSaver::restore_argument_registers_and_pop_frame(MacroAssembler*masm, int frame_size,
int total_args, const VMRegPair *regs,
const VMRegPair *regs2) {
int st_off = frame_size - wordSize;
for (int i = 0; i < total_args; i++) {
VMReg r_1 = regs[i].first();
VMReg r_2 = regs[i].second();
if (r_1->is_Register()) {
Register r = r_1->as_Register();
__ ld(r, st_off, R1_SP);
st_off -= wordSize;
} else if (r_1->is_FloatRegister()) {
FloatRegister f = r_1->as_FloatRegister();
__ lfd(f, st_off, R1_SP);
st_off -= wordSize;
}
}
if (regs2 != NULL)
for (int i = 0; i < total_args; i++) {
VMReg r_1 = regs2[i].first();
VMReg r_2 = regs2[i].second();
if (r_1->is_Register()) {
Register r = r_1->as_Register();
__ ld(r, st_off, R1_SP);
st_off -= wordSize;
} else if (r_1->is_FloatRegister()) {
FloatRegister f = r_1->as_FloatRegister();
__ lfd(f, st_off, R1_SP);
st_off -= wordSize;
}
}
__ pop_frame();
}
// Restore the registers that might be holding a result.
void RegisterSaver::restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes) {
const int regstosave_num = sizeof(RegisterSaver_LiveRegs) /
sizeof(RegisterSaver::LiveRegType);
const int register_save_size = regstosave_num * reg_size; // VS registers not relevant here.
const int register_save_offset = frame_size_in_bytes - register_save_size;
// restore all result registers (ints and floats)
int offset = register_save_offset;
for (int i = 0; i < regstosave_num; i++) {
int reg_num = RegisterSaver_LiveRegs[i].reg_num;
int reg_type = RegisterSaver_LiveRegs[i].reg_type;
switch (reg_type) {
case RegisterSaver::int_reg: {
if (as_Register(reg_num)==R3_RET) // int result_reg
__ ld(as_Register(reg_num), offset, R1_SP);
break;
}
case RegisterSaver::float_reg: {
if (as_FloatRegister(reg_num)==F1_RET) // float result_reg
__ lfd(as_FloatRegister(reg_num), offset, R1_SP);
break;
}
case RegisterSaver::special_reg: {
// Special registers don't hold a result.
break;
}
default:
ShouldNotReachHere();
}
offset += reg_size;
}
assert(offset == frame_size_in_bytes, "consistency check");
}
// Is vector's size (in bytes) bigger than a size saved by default?
bool SharedRuntime::is_wide_vector(int size) {
// Note, MaxVectorSize == 8/16 on PPC64.
assert(size <= (SuperwordUseVSX ? 16 : 8), "%d bytes vectors are not supported", size);
return size > 8;
}
size_t SharedRuntime::trampoline_size() {
return Assembler::load_const_size + 8;
}
void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
Register Rtemp = R12;
__ load_const(Rtemp, destination);
__ mtctr(Rtemp);
__ bctr();
}
#ifdef COMPILER2
static int reg2slot(VMReg r) {
return r->reg2stack() + SharedRuntime::out_preserve_stack_slots();
}
static int reg2offset(VMReg r) {
return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
}
#endif
// ---------------------------------------------------------------------------
// Read the array of BasicTypes from a signature, and compute where the
// arguments should go. Values in the VMRegPair regs array refer to 4-byte
// quantities. Values less than VMRegImpl::stack0 are registers, those above
// refer to 4-byte stack slots. All stack slots are based off of the stack pointer
// as framesizes are fixed.
// VMRegImpl::stack0 refers to the first slot 0(sp).
// and VMRegImpl::stack0+1 refers to the memory word 4-bytes higher. Register
// up to RegisterImpl::number_of_registers) are the 64-bit
// integer registers.
// Note: the INPUTS in sig_bt are in units of Java argument words, which are
// either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
// units regardless of build. Of course for i486 there is no 64 bit build
// The Java calling convention is a "shifted" version of the C ABI.
// By skipping the first C ABI register we can call non-static jni methods
// with small numbers of arguments without having to shuffle the arguments
// at all. Since we control the java ABI we ought to at least get some
// advantage out of it.
const VMReg java_iarg_reg[8] = {
R3->as_VMReg(),
R4->as_VMReg(),
R5->as_VMReg(),
R6->as_VMReg(),
R7->as_VMReg(),
R8->as_VMReg(),
R9->as_VMReg(),
R10->as_VMReg()
};
const VMReg java_farg_reg[13] = {
F1->as_VMReg(),
F2->as_VMReg(),
F3->as_VMReg(),
F4->as_VMReg(),
F5->as_VMReg(),
F6->as_VMReg(),
F7->as_VMReg(),
F8->as_VMReg(),
F9->as_VMReg(),
F10->as_VMReg(),
F11->as_VMReg(),
F12->as_VMReg(),
F13->as_VMReg()
};
const int num_java_iarg_registers = sizeof(java_iarg_reg) / sizeof(java_iarg_reg[0]);
const int num_java_farg_registers = sizeof(java_farg_reg) / sizeof(java_farg_reg[0]);
int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
VMRegPair *regs,
int total_args_passed,
int is_outgoing) {
// C2c calling conventions for compiled-compiled calls.
// Put 8 ints/longs into registers _AND_ 13 float/doubles into
// registers _AND_ put the rest on the stack.
const int inc_stk_for_intfloat = 1; // 1 slots for ints and floats
const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
int i;
VMReg reg;
int stk = 0;
int ireg = 0;
int freg = 0;
// We put the first 8 arguments into registers and the rest on the
// stack, float arguments are already in their argument registers
// due to c2c calling conventions (see calling_convention).
for (int i = 0; i < total_args_passed; ++i) {
switch(sig_bt[i]) {
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
if (ireg < num_java_iarg_registers) {
// Put int/ptr in register
reg = java_iarg_reg[ireg];
++ireg;
} else {
// Put int/ptr on stack.
reg = VMRegImpl::stack2reg(stk);
stk += inc_stk_for_intfloat;
}
regs[i].set1(reg);
break;
case T_LONG:
assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half");
if (ireg < num_java_iarg_registers) {
// Put long in register.
reg = java_iarg_reg[ireg];
++ireg;
} else {
// Put long on stack. They must be aligned to 2 slots.
if (stk & 0x1) ++stk;
reg = VMRegImpl::stack2reg(stk);
stk += inc_stk_for_longdouble;
}
regs[i].set2(reg);
break;
case T_OBJECT:
case T_ARRAY:
case T_ADDRESS:
if (ireg < num_java_iarg_registers) {
// Put ptr in register.
reg = java_iarg_reg[ireg];
++ireg;
} else {
// Put ptr on stack. Objects must be aligned to 2 slots too,
// because "64-bit pointers record oop-ishness on 2 aligned
// adjacent registers." (see OopFlow::build_oop_map).
if (stk & 0x1) ++stk;
reg = VMRegImpl::stack2reg(stk);
stk += inc_stk_for_longdouble;
}
regs[i].set2(reg);
break;
case T_FLOAT:
if (freg < num_java_farg_registers) {
// Put float in register.
reg = java_farg_reg[freg];
++freg;
} else {
// Put float on stack.
reg = VMRegImpl::stack2reg(stk);
stk += inc_stk_for_intfloat;
}
regs[i].set1(reg);
break;
case T_DOUBLE:
assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half");
if (freg < num_java_farg_registers) {
// Put double in register.
reg = java_farg_reg[freg];
++freg;
} else {
// Put double on stack. They must be aligned to 2 slots.
if (stk & 0x1) ++stk;
reg = VMRegImpl::stack2reg(stk);
stk += inc_stk_for_longdouble;
}
regs[i].set2(reg);
break;
case T_VOID:
// Do not count halves.
regs[i].set_bad();
break;
default:
ShouldNotReachHere();
}
}
return align_up(stk, 2);
}
#if defined(COMPILER1) || defined(COMPILER2)
// Calling convention for calling C code.
int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
VMRegPair *regs,
VMRegPair *regs2,
int total_args_passed) {
// Calling conventions for C runtime calls and calls to JNI native methods.
//
// PPC64 convention: Hoist the first 8 int/ptr/long's in the first 8
// int regs, leaving int regs undefined if the arg is flt/dbl. Hoist
// the first 13 flt/dbl's in the first 13 fp regs but additionally
// copy flt/dbl to the stack if they are beyond the 8th argument.
const VMReg iarg_reg[8] = {
R3->as_VMReg(),
R4->as_VMReg(),
R5->as_VMReg(),
R6->as_VMReg(),
R7->as_VMReg(),
R8->as_VMReg(),
R9->as_VMReg(),
R10->as_VMReg()
};
const VMReg farg_reg[13] = {
F1->as_VMReg(),
F2->as_VMReg(),
F3->as_VMReg(),
F4->as_VMReg(),
F5->as_VMReg(),
F6->as_VMReg(),
F7->as_VMReg(),
F8->as_VMReg(),
F9->as_VMReg(),
F10->as_VMReg(),
F11->as_VMReg(),
F12->as_VMReg(),
F13->as_VMReg()
};
// Check calling conventions consistency.
assert(sizeof(iarg_reg) / sizeof(iarg_reg[0]) == Argument::n_int_register_parameters_c &&
sizeof(farg_reg) / sizeof(farg_reg[0]) == Argument::n_float_register_parameters_c,
"consistency");
// `Stk' counts stack slots. Due to alignment, 32 bit values occupy
// 2 such slots, like 64 bit values do.
const int inc_stk_for_intfloat = 2; // 2 slots for ints and floats
const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
int i;
VMReg reg;
// Leave room for C-compatible ABI_REG_ARGS.
int stk = (frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size;
int arg = 0;
int freg = 0;
// Avoid passing C arguments in the wrong stack slots.
#if defined(ABI_ELFv2)
assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 96,
"passing C arguments in wrong stack slots");
#else
assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 112,
"passing C arguments in wrong stack slots");
#endif
// We fill-out regs AND regs2 if an argument must be passed in a
// register AND in a stack slot. If regs2 is NULL in such a
// situation, we bail-out with a fatal error.
for (int i = 0; i < total_args_passed; ++i, ++arg) {
// Initialize regs2 to BAD.
if (regs2 != NULL) regs2[i].set_bad();
switch(sig_bt[i]) {
//
// If arguments 0-7 are integers, they are passed in integer registers.
// Argument i is placed in iarg_reg[i].
//
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
// We must cast ints to longs and use full 64 bit stack slots
// here. Thus fall through, handle as long.
case T_LONG:
case T_OBJECT:
case T_ARRAY:
case T_ADDRESS:
case T_METADATA:
// Oops are already boxed if required (JNI).
if (arg < Argument::n_int_register_parameters_c) {
reg = iarg_reg[arg];
} else {
reg = VMRegImpl::stack2reg(stk);
stk += inc_stk_for_longdouble;
}
regs[i].set2(reg);
break;
//
// Floats are treated differently from int regs: The first 13 float arguments
// are passed in registers (not the float args among the first 13 args).
// Thus argument i is NOT passed in farg_reg[i] if it is float. It is passed
// in farg_reg[j] if argument i is the j-th float argument of this call.
//
case T_FLOAT:
#if defined(LINUX)
// Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
// in the least significant word of an argument slot.
#if defined(VM_LITTLE_ENDIAN)
#define FLOAT_WORD_OFFSET_IN_SLOT 0
#else
#define FLOAT_WORD_OFFSET_IN_SLOT 1
#endif
#elif defined(AIX)
// Although AIX runs on big endian CPU, float is in the most
// significant word of an argument slot.
#define FLOAT_WORD_OFFSET_IN_SLOT 0
#else
#error "unknown OS"
#endif
if (freg < Argument::n_float_register_parameters_c) {
// Put float in register ...
reg = farg_reg[freg];
++freg;
// Argument i for i > 8 is placed on the stack even if it's
// placed in a register (if it's a float arg). Aix disassembly
// shows that xlC places these float args on the stack AND in
// a register. This is not documented, but we follow this
// convention, too.
if (arg >= Argument::n_regs_not_on_stack_c) {
// ... and on the stack.
guarantee(regs2 != NULL, "must pass float in register and stack slot");
VMReg reg2 = VMRegImpl::stack2reg(stk + FLOAT_WORD_OFFSET_IN_SLOT);
regs2[i].set1(reg2);
stk += inc_stk_for_intfloat;
}
} else {
// Put float on stack.
reg = VMRegImpl::stack2reg(stk + FLOAT_WORD_OFFSET_IN_SLOT);
stk += inc_stk_for_intfloat;
}
regs[i].set1(reg);
break;
case T_DOUBLE:
assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half");
if (freg < Argument::n_float_register_parameters_c) {
// Put double in register ...
reg = farg_reg[freg];
++freg;
// Argument i for i > 8 is placed on the stack even if it's
// placed in a register (if it's a double arg). Aix disassembly
// shows that xlC places these float args on the stack AND in
// a register. This is not documented, but we follow this
// convention, too.
if (arg >= Argument::n_regs_not_on_stack_c) {
// ... and on the stack.
guarantee(regs2 != NULL, "must pass float in register and stack slot");
VMReg reg2 = VMRegImpl::stack2reg(stk);
regs2[i].set2(reg2);
stk += inc_stk_for_longdouble;
}
} else {
// Put double on stack.
reg = VMRegImpl::stack2reg(stk);
stk += inc_stk_for_longdouble;
}
regs[i].set2(reg);
break;
case T_VOID:
// Do not count halves.
regs[i].set_bad();
--arg;
break;
default:
ShouldNotReachHere();
}
}
return align_up(stk, 2);
}
#endif // COMPILER2
static address gen_c2i_adapter(MacroAssembler *masm,
int total_args_passed,
int comp_args_on_stack,
const BasicType *sig_bt,
const VMRegPair *regs,
Label& call_interpreter,
const Register& ientry) {
address c2i_entrypoint;
const Register sender_SP = R21_sender_SP; // == R21_tmp1
const Register code = R22_tmp2;
//const Register ientry = R23_tmp3;
const Register value_regs[] = { R24_tmp4, R25_tmp5, R26_tmp6 };
const int num_value_regs = sizeof(value_regs) / sizeof(Register);
int value_regs_index = 0;
const Register return_pc = R27_tmp7;
const Register tmp = R28_tmp8;
assert_different_registers(sender_SP, code, ientry, return_pc, tmp);
// Adapter needs TOP_IJAVA_FRAME_ABI.
const int adapter_size = frame::top_ijava_frame_abi_size +
align_up(total_args_passed * wordSize, frame::alignment_in_bytes);
// regular (verified) c2i entry point
c2i_entrypoint = __ pc();
// Does compiled code exists? If yes, patch the caller's callsite.
__ ld(code, method_(code));
__ cmpdi(CCR0, code, 0);
__ ld(ientry, method_(interpreter_entry)); // preloaded
__ beq(CCR0, call_interpreter);
// Patch caller's callsite, method_(code) was not NULL which means that
// compiled code exists.
__ mflr(return_pc);
__ std(return_pc, _abi(lr), R1_SP);
RegisterSaver::push_frame_and_save_argument_registers(masm, tmp, adapter_size, total_args_passed, regs);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), R19_method, return_pc);
RegisterSaver::restore_argument_registers_and_pop_frame(masm, adapter_size, total_args_passed, regs);
__ ld(return_pc, _abi(lr), R1_SP);
__ ld(ientry, method_(interpreter_entry)); // preloaded
__ mtlr(return_pc);
// Call the interpreter.
__ BIND(call_interpreter);
__ mtctr(ientry);
// Get a copy of the current SP for loading caller's arguments.
__ mr(sender_SP, R1_SP);
// Add space for the adapter.
__ resize_frame(-adapter_size, R12_scratch2);
int st_off = adapter_size - wordSize;
// Write the args into the outgoing interpreter space.
for (int i = 0; i < total_args_passed; i++) {
VMReg r_1 = regs[i].first();
VMReg r_2 = regs[i].second();
if (!r_1->is_valid()) {
assert(!r_2->is_valid(), "");
continue;
}
if (r_1->is_stack()) {
Register tmp_reg = value_regs[value_regs_index];
value_regs_index = (value_regs_index + 1) % num_value_regs;
// The calling convention produces OptoRegs that ignore the out
// preserve area (JIT's ABI). We must account for it here.
int ld_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
if (!r_2->is_valid()) {
__ lwz(tmp_reg, ld_off, sender_SP);
} else {
__ ld(tmp_reg, ld_off, sender_SP);
}
// Pretend stack targets were loaded into tmp_reg.
r_1 = tmp_reg->as_VMReg();
}
if (r_1->is_Register()) {
Register r = r_1->as_Register();
if (!r_2->is_valid()) {
__ stw(r, st_off, R1_SP);
st_off-=wordSize;
} else {
// Longs are given 2 64-bit slots in the interpreter, but the
// data is passed in only 1 slot.
if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
st_off-=wordSize;
}
__ std(r, st_off, R1_SP);
st_off-=wordSize;
}
} else {
assert(r_1->is_FloatRegister(), "");
FloatRegister f = r_1->as_FloatRegister();
if (!r_2->is_valid()) {
__ stfs(f, st_off, R1_SP);
st_off-=wordSize;
} else {
// In 64bit, doubles are given 2 64-bit slots in the interpreter, but the
// data is passed in only 1 slot.
// One of these should get known junk...
DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
st_off-=wordSize;
__ stfd(f, st_off, R1_SP);
st_off-=wordSize;
}
}
}
// Jump to the interpreter just as if interpreter was doing it.
__ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
// load TOS
__ addi(R15_esp, R1_SP, st_off);
// Frame_manager expects initial_caller_sp (= SP without resize by c2i) in R21_tmp1.
assert(sender_SP == R21_sender_SP, "passing initial caller's SP in wrong register");
__ bctr();
return c2i_entrypoint;
}
void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
int total_args_passed,
int comp_args_on_stack,
const BasicType *sig_bt,
const VMRegPair *regs) {
// Load method's entry-point from method.
__ ld(R12_scratch2, in_bytes(Method::from_compiled_offset()), R19_method);
__ mtctr(R12_scratch2);
// We will only enter here from an interpreted frame and never from after
// passing thru a c2i. Azul allowed this but we do not. If we lose the
// race and use a c2i we will remain interpreted for the race loser(s).
// This removes all sorts of headaches on the x86 side and also eliminates
// the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
// Note: r13 contains the senderSP on entry. We must preserve it since
// we may do a i2c -> c2i transition if we lose a race where compiled
// code goes non-entrant while we get args ready.
// In addition we use r13 to locate all the interpreter args as
// we must align the stack to 16 bytes on an i2c entry else we
// lose alignment we expect in all compiled code and register
// save code can segv when fxsave instructions find improperly
// aligned stack pointer.
const Register ld_ptr = R15_esp;
const Register value_regs[] = { R22_tmp2, R23_tmp3, R24_tmp4, R25_tmp5, R26_tmp6 };
const int num_value_regs = sizeof(value_regs) / sizeof(Register);
int value_regs_index = 0;
int ld_offset = total_args_passed*wordSize;
// Cut-out for having no stack args. Since up to 2 int/oop args are passed
// in registers, we will occasionally have no stack args.
int comp_words_on_stack = 0;
if (comp_args_on_stack) {
// Sig words on the stack are greater-than VMRegImpl::stack0. Those in
// registers are below. By subtracting stack0, we either get a negative
// number (all values in registers) or the maximum stack slot accessed.
// Convert 4-byte c2 stack slots to words.
comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
// Round up to miminum stack alignment, in wordSize.
comp_words_on_stack = align_up(comp_words_on_stack, 2);
__ resize_frame(-comp_words_on_stack * wordSize, R11_scratch1);
}
// Now generate the shuffle code. Pick up all register args and move the
// rest through register value=Z_R12.
BLOCK_COMMENT("Shuffle arguments");
for (int i = 0; i < total_args_passed; i++) {
if (sig_bt[i] == T_VOID) {
assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
continue;
}
// Pick up 0, 1 or 2 words from ld_ptr.
assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
"scrambled load targets?");
VMReg r_1 = regs[i].first();
VMReg r_2 = regs[i].second();
if (!r_1->is_valid()) {
assert(!r_2->is_valid(), "");
continue;
}
if (r_1->is_FloatRegister()) {
if (!r_2->is_valid()) {
__ lfs(r_1->as_FloatRegister(), ld_offset, ld_ptr);
ld_offset-=wordSize;
} else {
// Skip the unused interpreter slot.
__ lfd(r_1->as_FloatRegister(), ld_offset-wordSize, ld_ptr);
ld_offset-=2*wordSize;
}
} else {
Register r;
if (r_1->is_stack()) {
// Must do a memory to memory move thru "value".
r = value_regs[value_regs_index];
value_regs_index = (value_regs_index + 1) % num_value_regs;
} else {
r = r_1->as_Register();
}
if (!r_2->is_valid()) {
// Not sure we need to do this but it shouldn't hurt.
if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ADDRESS || sig_bt[i] == T_ARRAY) {
__ ld(r, ld_offset, ld_ptr);
ld_offset-=wordSize;
} else {
__ lwz(r, ld_offset, ld_ptr);
ld_offset-=wordSize;
}
} else {
// In 64bit, longs are given 2 64-bit slots in the interpreter, but the
// data is passed in only 1 slot.
if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
ld_offset-=wordSize;
}
__ ld(r, ld_offset, ld_ptr);
ld_offset-=wordSize;
}
if (r_1->is_stack()) {
// Now store value where the compiler expects it
int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots())*VMRegImpl::stack_slot_size;
if (sig_bt[i] == T_INT || sig_bt[i] == T_FLOAT ||sig_bt[i] == T_BOOLEAN ||
sig_bt[i] == T_SHORT || sig_bt[i] == T_CHAR || sig_bt[i] == T_BYTE) {
__ stw(r, st_off, R1_SP);
} else {
__ std(r, st_off, R1_SP);
}
}
}
}
BLOCK_COMMENT("Store method");
// Store method into thread->callee_target.
// We might end up in handle_wrong_method if the callee is
// deoptimized as we race thru here. If that happens we don't want
// to take a safepoint because the caller frame will look
// interpreted and arguments are now "compiled" so it is much better
// to make this transition invisible to the stack walking
// code. Unfortunately if we try and find the callee by normal means
// a safepoint is possible. So we stash the desired callee in the
// thread and the vm will find there should this case occur.
__ std(R19_method, thread_(callee_target));
// Jump to the compiled code just as if compiled code was doing it.
__ bctr();
}
AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
int total_args_passed,
int comp_args_on_stack,
const BasicType *sig_bt,
const VMRegPair *regs,
AdapterFingerPrint* fingerprint) {
address i2c_entry;
address c2i_unverified_entry;
address c2i_entry;
// entry: i2c
__ align(CodeEntryAlignment);
i2c_entry = __ pc();
gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
// entry: c2i unverified
__ align(CodeEntryAlignment);
BLOCK_COMMENT("c2i unverified entry");
c2i_unverified_entry = __ pc();
// inline_cache contains a compiledICHolder
const Register ic = R19_method;
const Register ic_klass = R11_scratch1;
const Register receiver_klass = R12_scratch2;
const Register code = R21_tmp1;
const Register ientry = R23_tmp3;
assert_different_registers(ic, ic_klass, receiver_klass, R3_ARG1, code, ientry);
assert(R11_scratch1 == R11, "need prologue scratch register");
Label call_interpreter;
assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()),
"klass offset should reach into any page");
// Check for NULL argument if we don't have implicit null checks.
if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
if (TrapBasedNullChecks) {
__ trap_null_check(R3_ARG1);
} else {
Label valid;
__ cmpdi(CCR0, R3_ARG1, 0);
__ bne_predict_taken(CCR0, valid);
// We have a null argument, branch to ic_miss_stub.
__ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
relocInfo::runtime_call_type);
__ BIND(valid);
}
}
// Assume argument is not NULL, load klass from receiver.
__ load_klass(receiver_klass, R3_ARG1);
__ ld(ic_klass, CompiledICHolder::holder_klass_offset(), ic);
if (TrapBasedICMissChecks) {
__ trap_ic_miss_check(receiver_klass, ic_klass);
} else {
Label valid;
__ cmpd(CCR0, receiver_klass, ic_klass);
__ beq_predict_taken(CCR0, valid);
// We have an unexpected klass, branch to ic_miss_stub.
__ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
relocInfo::runtime_call_type);
__ BIND(valid);
}
// Argument is valid and klass is as expected, continue.
// Extract method from inline cache, verified entry point needs it.
__ ld(R19_method, CompiledICHolder::holder_metadata_offset(), ic);
assert(R19_method == ic, "the inline cache register is dead here");
__ ld(code, method_(code));
__ cmpdi(CCR0, code, 0);
__ ld(ientry, method_(interpreter_entry)); // preloaded
__ beq_predict_taken(CCR0, call_interpreter);
// Branch to ic_miss_stub.
__ b64_patchable((address)SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type);
// entry: c2i
c2i_entry = __ pc();
// Class initialization barrier for static methods
address c2i_no_clinit_check_entry = NULL;
if (VM_Version::supports_fast_class_init_checks()) {
Label L_skip_barrier;
{ // Bypass the barrier for non-static methods
__ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
__ andi_(R0, R0, JVM_ACC_STATIC);
__ beq(CCR0, L_skip_barrier); // non-static
}
Register klass = R11_scratch1;
__ load_method_holder(klass, R19_method);
__ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/);
__ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0);
__ mtctr(klass);
__ bctr();
__ bind(L_skip_barrier);
c2i_no_clinit_check_entry = __ pc();
}
gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, call_interpreter, ientry);
return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
}
#ifdef COMPILER2
// An oop arg. Must pass a handle not the oop itself.
static void object_move(MacroAssembler* masm,
int frame_size_in_slots,
OopMap* oop_map, int oop_handle_offset,
bool is_receiver, int* receiver_offset,
VMRegPair src, VMRegPair dst,
Register r_caller_sp, Register r_temp_1, Register r_temp_2) {
assert(!is_receiver || (is_receiver && (*receiver_offset == -1)),
"receiver has already been moved");
// We must pass a handle. First figure out the location we use as a handle.
if (src.first()->is_stack()) {
// stack to stack or reg
const Register r_handle = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
Label skip;
const int oop_slot_in_callers_frame = reg2slot(src.first());
guarantee(!is_receiver, "expecting receiver in register");
oop_map->set_oop(VMRegImpl::stack2reg(oop_slot_in_callers_frame + frame_size_in_slots));
__ addi(r_handle, r_caller_sp, reg2offset(src.first()));
__ ld( r_temp_2, reg2offset(src.first()), r_caller_sp);
__ cmpdi(CCR0, r_temp_2, 0);
__ bne(CCR0, skip);
// Use a NULL handle if oop is NULL.
__ li(r_handle, 0);
__ bind(skip);
if (dst.first()->is_stack()) {
// stack to stack
__ std(r_handle, reg2offset(dst.first()), R1_SP);
} else {
// stack to reg
// Nothing to do, r_handle is already the dst register.
}
} else {
// reg to stack or reg
const Register r_oop = src.first()->as_Register();
const Register r_handle = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
const int oop_slot = (r_oop->encoding()-R3_ARG1->encoding()) * VMRegImpl::slots_per_word
+ oop_handle_offset; // in slots
const int oop_offset = oop_slot * VMRegImpl::stack_slot_size;
Label skip;
if (is_receiver) {
*receiver_offset = oop_offset;
}
oop_map->set_oop(VMRegImpl::stack2reg(oop_slot));
__ std( r_oop, oop_offset, R1_SP);
__ addi(r_handle, R1_SP, oop_offset);
__ cmpdi(CCR0, r_oop, 0);
__ bne(CCR0, skip);
// Use a NULL handle if oop is NULL.
__ li(r_handle, 0);
__ bind(skip);
if (dst.first()->is_stack()) {
// reg to stack
__ std(r_handle, reg2offset(dst.first()), R1_SP);
} else {
// reg to reg
// Nothing to do, r_handle is already the dst register.
}
}
}
static void int_move(MacroAssembler*masm,
VMRegPair src, VMRegPair dst,
Register r_caller_sp, Register r_temp) {
assert(src.first()->is_valid(), "incoming must be int");
assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
if (src.first()->is_stack()) {
if (dst.first()->is_stack()) {
// stack to stack
__ lwa(r_temp, reg2offset(src.first()), r_caller_sp);
__ std(r_temp, reg2offset(dst.first()), R1_SP);
} else {
// stack to reg
__ lwa(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
}
} else if (dst.first()->is_stack()) {
// reg to stack
__ extsw(r_temp, src.first()->as_Register());
__ std(r_temp, reg2offset(dst.first()), R1_SP);
} else {
// reg to reg
__ extsw(dst.first()->as_Register(), src.first()->as_Register());
}
}
static void long_move(MacroAssembler*masm,
VMRegPair src, VMRegPair dst,
Register r_caller_sp, Register r_temp) {
assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long");
assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
if (src.first()->is_stack()) {
if (dst.first()->is_stack()) {
// stack to stack
__ ld( r_temp, reg2offset(src.first()), r_caller_sp);
__ std(r_temp, reg2offset(dst.first()), R1_SP);
} else {
// stack to reg
__ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
}
} else if (dst.first()->is_stack()) {
// reg to stack
__ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
} else {
// reg to reg
if (dst.first()->as_Register() != src.first()->as_Register())
__ mr(dst.first()->as_Register(), src.first()->as_Register());
}
}
static void float_move(MacroAssembler*masm,
VMRegPair src, VMRegPair dst,
Register r_caller_sp, Register r_temp) {
assert(src.first()->is_valid() && !src.second()->is_valid(), "incoming must be float");
assert(dst.first()->is_valid() && !dst.second()->is_valid(), "outgoing must be float");
if (src.first()->is_stack()) {
if (dst.first()->is_stack()) {
// stack to stack
__ lwz(r_temp, reg2offset(src.first()), r_caller_sp);
__ stw(r_temp, reg2offset(dst.first()), R1_SP);
} else {
// stack to reg
__ lfs(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
}
} else if (dst.first()->is_stack()) {
// reg to stack
__ stfs(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
} else {
// reg to reg
if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
__ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
}
}
static void double_move(MacroAssembler*masm,
VMRegPair src, VMRegPair dst,
Register r_caller_sp, Register r_temp) {
assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be double");
assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be double");
if (src.first()->is_stack()) {
if (dst.first()->is_stack()) {
// stack to stack
__ ld( r_temp, reg2offset(src.first()), r_caller_sp);
__ std(r_temp, reg2offset(dst.first()), R1_SP);
} else {
// stack to reg
__ lfd(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
}
} else if (dst.first()->is_stack()) {
// reg to stack
__ stfd(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
} else {
// reg to reg
if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
__ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
}
}
void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
switch (ret_type) {
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
__ stw (R3_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
break;
case T_ARRAY:
case T_OBJECT:
case T_LONG:
__ std (R3_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
break;
case T_FLOAT:
__ stfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
break;
case T_DOUBLE:
__ stfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
break;
case T_VOID:
break;
default:
ShouldNotReachHere();
break;
}
}
void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
switch (ret_type) {
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
__ lwz(R3_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
break;
case T_ARRAY:
case T_OBJECT:
case T_LONG:
__ ld (R3_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
break;
case T_FLOAT:
__ lfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
break;
case T_DOUBLE:
__ lfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
break;
case T_VOID:
break;
default:
ShouldNotReachHere();
break;
}
}
static void save_or_restore_arguments(MacroAssembler* masm,
const int stack_slots,
const int total_in_args,
const int arg_save_area,
OopMap* map,
VMRegPair* in_regs,
BasicType* in_sig_bt) {
// If map is non-NULL then the code should store the values,
// otherwise it should load them.
int slot = arg_save_area;
// Save down double word first.
for (int i = 0; i < total_in_args; i++) {
if (in_regs[i].first()->is_FloatRegister() && in_sig_bt[i] == T_DOUBLE) {
int offset = slot * VMRegImpl::stack_slot_size;
slot += VMRegImpl::slots_per_word;
assert(slot <= stack_slots, "overflow (after DOUBLE stack slot)");
if (map != NULL) {
__ stfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
} else {
__ lfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
}
} else if (in_regs[i].first()->is_Register() &&
(in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
int offset = slot * VMRegImpl::stack_slot_size;
if (map != NULL) {
__ std(in_regs[i].first()->as_Register(), offset, R1_SP);
if (in_sig_bt[i] == T_ARRAY) {
map->set_oop(VMRegImpl::stack2reg(slot));
}
} else {
__ ld(in_regs[i].first()->as_Register(), offset, R1_SP);
}
slot += VMRegImpl::slots_per_word;
assert(slot <= stack_slots, "overflow (after LONG/ARRAY stack slot)");
}
}
// Save or restore single word registers.
for (int i = 0; i < total_in_args; i++) {
if (in_regs[i].first()->is_Register()) {
int offset = slot * VMRegImpl::stack_slot_size;
// Value lives in an input register. Save it on stack.
switch (in_sig_bt[i]) {
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
if (map != NULL) {
__ stw(in_regs[i].first()->as_Register(), offset, R1_SP);
} else {
__ lwa(in_regs[i].first()->as_Register(), offset, R1_SP);
}
slot++;
assert(slot <= stack_slots, "overflow (after INT or smaller stack slot)");
break;
case T_ARRAY:
case T_LONG:
// handled above
break;
case T_OBJECT:
default: ShouldNotReachHere();
}
} else if (in_regs[i].first()->is_FloatRegister()) {
if (in_sig_bt[i] == T_FLOAT) {
int offset = slot * VMRegImpl::stack_slot_size;
slot++;
assert(slot <= stack_slots, "overflow (after FLOAT stack slot)");
if (map != NULL) {
__ stfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
} else {
__ lfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
}
}
} else if (in_regs[i].first()->is_stack()) {
if (in_sig_bt[i] == T_ARRAY && map != NULL) {
int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
}
}
}
}
// Check GCLocker::needs_gc and enter the runtime if it's true. This
// keeps a new JNI critical region from starting until a GC has been
// forced. Save down any oops in registers and describe them in an
// OopMap.
static void check_needs_gc_for_critical_native(MacroAssembler* masm,
const int stack_slots,
const int total_in_args,
const int arg_save_area,
OopMapSet* oop_maps,
VMRegPair* in_regs,
BasicType* in_sig_bt,
Register tmp_reg ) {
__ block_comment("check GCLocker::needs_gc");
Label cont;
__ lbz(tmp_reg, (RegisterOrConstant)(intptr_t)GCLocker::needs_gc_address());
__ cmplwi(CCR0, tmp_reg, 0);
__ beq(CCR0, cont);
// Save down any values that are live in registers and call into the
// runtime to halt for a GC.
OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
save_or_restore_arguments(masm, stack_slots, total_in_args,
arg_save_area, map, in_regs, in_sig_bt);
__ mr(R3_ARG1, R16_thread);
__ set_last_Java_frame(R1_SP, noreg);
__ block_comment("block_for_jni_critical");
address entry_point = CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical);
#if defined(ABI_ELFv2)
__ call_c(entry_point, relocInfo::runtime_call_type);
#else
__ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::runtime_call_type);
#endif
address start = __ pc() - __ offset(),
calls_return_pc = __ last_calls_return_pc();
oop_maps->add_gc_map(calls_return_pc - start, map);
__ reset_last_Java_frame();
// Reload all the register arguments.
save_or_restore_arguments(masm, stack_slots, total_in_args,
arg_save_area, NULL, in_regs, in_sig_bt);
__ BIND(cont);
#ifdef ASSERT
if (StressCriticalJNINatives) {
// Stress register saving.
OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
save_or_restore_arguments(masm, stack_slots, total_in_args,
arg_save_area, map, in_regs, in_sig_bt);
// Destroy argument registers.
for (int i = 0; i < total_in_args; i++) {
if (in_regs[i].first()->is_Register()) {
const Register reg = in_regs[i].first()->as_Register();
__ neg(reg, reg);
} else if (in_regs[i].first()->is_FloatRegister()) {
__ fneg(in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
}
}
save_or_restore_arguments(masm, stack_slots, total_in_args,
arg_save_area, NULL, in_regs, in_sig_bt);
}
#endif
}
static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst, Register r_caller_sp, Register r_temp) {
if (src.first()->is_stack()) {
if (dst.first()->is_stack()) {
// stack to stack
__ ld(r_temp, reg2offset(src.first()), r_caller_sp);
__ std(r_temp, reg2offset(dst.first()), R1_SP);
} else {
// stack to reg
__ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
}
} else if (dst.first()->is_stack()) {
// reg to stack
__ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
} else {
if (dst.first() != src.first()) {
__ mr(dst.first()->as_Register(), src.first()->as_Register());
}
}
}
// Unpack an array argument into a pointer to the body and the length
// if the array is non-null, otherwise pass 0 for both.
static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type,
VMRegPair body_arg, VMRegPair length_arg, Register r_caller_sp,
Register tmp_reg, Register tmp2_reg) {
assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
"possible collision");
assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
"possible collision");
// Pass the length, ptr pair.
Label set_out_args;
VMRegPair tmp, tmp2;
tmp.set_ptr(tmp_reg->as_VMReg());
tmp2.set_ptr(tmp2_reg->as_VMReg());
if (reg.first()->is_stack()) {
// Load the arg up from the stack.
move_ptr(masm, reg, tmp, r_caller_sp, /*unused*/ R0);
reg = tmp;
}
__ li(tmp2_reg, 0); // Pass zeros if Array=null.
if (tmp_reg != reg.first()->as_Register()) __ li(tmp_reg, 0);
__ cmpdi(CCR0, reg.first()->as_Register(), 0);
__ beq(CCR0, set_out_args);
__ lwa(tmp2_reg, arrayOopDesc::length_offset_in_bytes(), reg.first()->as_Register());
__ addi(tmp_reg, reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type));
__ bind(set_out_args);
move_ptr(masm, tmp, body_arg, r_caller_sp, /*unused*/ R0);
move_ptr(masm, tmp2, length_arg, r_caller_sp, /*unused*/ R0); // Same as move32_64 on PPC64.
}
static void verify_oop_args(MacroAssembler* masm,
const methodHandle& method,
const BasicType* sig_bt,
const VMRegPair* regs) {
Register temp_reg = R19_method; // not part of any compiled calling seq
if (VerifyOops) {
for (int i = 0; i < method->size_of_parameters(); i++) {
if (sig_bt[i] == T_OBJECT ||
sig_bt[i] == T_ARRAY) {
VMReg r = regs[i].first();
assert(r->is_valid(), "bad oop arg");
if (r->is_stack()) {
__ ld(temp_reg, reg2offset(r), R1_SP);
__ verify_oop(temp_reg);
} else {
__ verify_oop(r->as_Register());
}
}
}
}
}
static void gen_special_dispatch(MacroAssembler* masm,
const methodHandle& method,
const BasicType* sig_bt,
const VMRegPair* regs) {
verify_oop_args(masm, method, sig_bt, regs);
vmIntrinsics::ID iid = method->intrinsic_id();
// Now write the args into the outgoing interpreter space
bool has_receiver = false;
Register receiver_reg = noreg;
int member_arg_pos = -1;
Register member_reg = noreg;
int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
if (ref_kind != 0) {
member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument
member_reg = R19_method; // known to be free at this point
has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
} else if (iid == vmIntrinsics::_invokeBasic) {
has_receiver = true;
} else {
fatal("unexpected intrinsic id %d", iid);
}
if (member_reg != noreg) {
// Load the member_arg into register, if necessary.
SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
VMReg r = regs[member_arg_pos].first();
if (r->is_stack()) {
__ ld(member_reg, reg2offset(r), R1_SP);
} else {
// no data motion is needed
member_reg = r->as_Register();
}
}
if (has_receiver) {
// Make sure the receiver is loaded into a register.
assert(method->size_of_parameters() > 0, "oob");
assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
VMReg r = regs[0].first();
assert(r->is_valid(), "bad receiver arg");
if (r->is_stack()) {
// Porting note: This assumes that compiled calling conventions always
// pass the receiver oop in a register. If this is not true on some
// platform, pick a temp and load the receiver from stack.
fatal("receiver always in a register");
receiver_reg = R11_scratch1; // TODO (hs24): is R11_scratch1 really free at this point?
__ ld(receiver_reg, reg2offset(r), R1_SP);
} else {
// no data motion is needed
receiver_reg = r->as_Register();
}
}
// Figure out which address we are really jumping to:
MethodHandles::generate_method_handle_dispatch(masm, iid,
receiver_reg, member_reg, /*for_compiler_entry:*/ true);
}
#endif // COMPILER2
// ---------------------------------------------------------------------------
// Generate a native wrapper for a given method. The method takes arguments
// in the Java compiled code convention, marshals them to the native
// convention (handlizes oops, etc), transitions to native, makes the call,
// returns to java state (possibly blocking), unhandlizes any result and
// returns.
//
// Critical native functions are a shorthand for the use of
// GetPrimtiveArrayCritical and disallow the use of any other JNI
// functions. The wrapper is expected to unpack the arguments before
// passing them to the callee and perform checks before and after the
// native call to ensure that they GCLocker
// lock_critical/unlock_critical semantics are followed. Some other
// parts of JNI setup are skipped like the tear down of the JNI handle
// block and the check for pending exceptions it's impossible for them
// to be thrown.
//
// They are roughly structured like this:
// if (GCLocker::needs_gc())
// SharedRuntime::block_for_jni_critical();
// tranistion to thread_in_native
// unpack arrray arguments and call native entry point
// check for safepoint in progress
// check if any thread suspend flags are set
// call into JVM and possible unlock the JNI critical
// if a GC was suppressed while in the critical native.
// transition back to thread_in_Java
// return to caller
//
nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
const methodHandle& method,
int compile_id,
BasicType *in_sig_bt,
VMRegPair *in_regs,
BasicType ret_type,
address critical_entry) {
#ifdef COMPILER2
if (method->is_method_handle_intrinsic()) {
vmIntrinsics::ID iid = method->intrinsic_id();
intptr_t start = (intptr_t)__ pc();
int vep_offset = ((intptr_t)__ pc()) - start;
gen_special_dispatch(masm,
method,
in_sig_bt,
in_regs);
int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
__ flush();
int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
return nmethod::new_native_nmethod(method,
compile_id,
masm->code(),
vep_offset,
frame_complete,
stack_slots / VMRegImpl::slots_per_word,
in_ByteSize(-1),
in_ByteSize(-1),
(OopMapSet*)NULL);
}
bool is_critical_native = true;
address native_func = critical_entry;
if (native_func == NULL) {
native_func = method->native_function();
is_critical_native = false;
}
assert(native_func != NULL, "must have function");
// First, create signature for outgoing C call
// --------------------------------------------------------------------------
int total_in_args = method->size_of_parameters();
// We have received a description of where all the java args are located
// on entry to the wrapper. We need to convert these args to where
// the jni function will expect them. To figure out where they go
// we convert the java signature to a C signature by inserting
// the hidden arguments as arg[0] and possibly arg[1] (static method)
// Calculate the total number of C arguments and create arrays for the
// signature and the outgoing registers.
// On ppc64, we have two arrays for the outgoing registers, because
// some floating-point arguments must be passed in registers _and_
// in stack locations.
bool method_is_static = method->is_static();
int total_c_args = total_in_args;
if (!is_critical_native) {
int n_hidden_args = method_is_static ? 2 : 1;
total_c_args += n_hidden_args;
} else {
// No JNIEnv*, no this*, but unpacked arrays (base+length).
for (int i = 0; i < total_in_args; i++) {
if (in_sig_bt[i] == T_ARRAY) {
total_c_args++;
}
}
}
BasicType *out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
VMRegPair *out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
VMRegPair *out_regs2 = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
BasicType* in_elem_bt = NULL;
// Create the signature for the C call:
// 1) add the JNIEnv*
// 2) add the class if the method is static
// 3) copy the rest of the incoming signature (shifted by the number of
// hidden arguments).
int argc = 0;
if (!is_critical_native) {
out_sig_bt[argc++] = T_ADDRESS;
if (method->is_static()) {
out_sig_bt[argc++] = T_OBJECT;
}
for (int i = 0; i < total_in_args ; i++ ) {
out_sig_bt[argc++] = in_sig_bt[i];
}
} else {
in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
SignatureStream ss(method->signature());
int o = 0;
for (int i = 0; i < total_in_args ; i++, o++) {
if (in_sig_bt[i] == T_ARRAY) {
// Arrays are passed as int, elem* pair
Symbol* atype = ss.as_symbol();
const char* at = atype->as_C_string();
if (strlen(at) == 2) {
assert(at[0] == '[', "must be");
switch (at[1]) {
case 'B': in_elem_bt[o] = T_BYTE; break;
case 'C': in_elem_bt[o] = T_CHAR; break;
case 'D': in_elem_bt[o] = T_DOUBLE; break;
case 'F': in_elem_bt[o] = T_FLOAT; break;
case 'I': in_elem_bt[o] = T_INT; break;
case 'J': in_elem_bt[o] = T_LONG; break;
case 'S': in_elem_bt[o] = T_SHORT; break;
case 'Z': in_elem_bt[o] = T_BOOLEAN; break;
default: ShouldNotReachHere();
}
}
} else {
in_elem_bt[o] = T_VOID;
}
if (in_sig_bt[i] != T_VOID) {
assert(in_sig_bt[i] == ss.type(), "must match");
ss.next();
}
}
for (int i = 0; i < total_in_args ; i++ ) {
if (in_sig_bt[i] == T_ARRAY) {
// Arrays are passed as int, elem* pair.
out_sig_bt[argc++] = T_INT;
out_sig_bt[argc++] = T_ADDRESS;
} else {
out_sig_bt[argc++] = in_sig_bt[i];
}
}
}
// Compute the wrapper's frame size.
// --------------------------------------------------------------------------
// Now figure out where the args must be stored and how much stack space
// they require.
//
// Compute framesize for the wrapper. We need to handlize all oops in
// incoming registers.
//
// Calculate the total number of stack slots we will need:
// 1) abi requirements
// 2) outgoing arguments
// 3) space for inbound oop handle area
// 4) space for handlizing a klass if static method
// 5) space for a lock if synchronized method
// 6) workspace for saving return values, int <-> float reg moves, etc.
// 7) alignment
//
// Layout of the native wrapper frame:
// (stack grows upwards, memory grows downwards)
//
// NW [ABI_REG_ARGS] <-- 1) R1_SP
// [outgoing arguments] <-- 2) R1_SP + out_arg_slot_offset
// [oopHandle area] <-- 3) R1_SP + oop_handle_offset (save area for critical natives)
// klass <-- 4) R1_SP + klass_offset
// lock <-- 5) R1_SP + lock_offset
// [workspace] <-- 6) R1_SP + workspace_offset
// [alignment] (optional) <-- 7)
// caller [JIT_TOP_ABI_48] <-- r_callers_sp
//
// - *_slot_offset Indicates offset from SP in number of stack slots.
// - *_offset Indicates offset from SP in bytes.
int stack_slots = c_calling_convention(out_sig_bt, out_regs, out_regs2, total_c_args) + // 1+2)
SharedRuntime::out_preserve_stack_slots(); // See c_calling_convention.
// Now the space for the inbound oop handle area.
int total_save_slots = num_java_iarg_registers * VMRegImpl::slots_per_word;
if (is_critical_native) {
// Critical natives may have to call out so they need a save area
// for register arguments.
int double_slots = 0;
int single_slots = 0;
for (int i = 0; i < total_in_args; i++) {
if (in_regs[i].first()->is_Register()) {
const Register reg = in_regs[i].first()->as_Register();
switch (in_sig_bt[i]) {
case T_BOOLEAN:
case T_BYTE:
case T_SHORT:
case T_CHAR:
case T_INT:
// Fall through.
case T_ARRAY:
case T_LONG: double_slots++; break;
default: ShouldNotReachHere();
}
} else if (in_regs[i].first()->is_FloatRegister()) {
switch (in_sig_bt[i]) {
case T_FLOAT: single_slots++; break;
case T_DOUBLE: double_slots++; break;
default: ShouldNotReachHere();
}
}
}
total_save_slots = double_slots * 2 + align_up(single_slots, 2); // round to even
}
int oop_handle_slot_offset = stack_slots;
stack_slots += total_save_slots; // 3)
int klass_slot_offset = 0;
int klass_offset = -1;
if (method_is_static && !is_critical_native) { // 4)
klass_slot_offset = stack_slots;
klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
stack_slots += VMRegImpl::slots_per_word;
}
int lock_slot_offset = 0;
int lock_offset = -1;
if (method->is_synchronized()) { // 5)
lock_slot_offset = stack_slots;
lock_offset = lock_slot_offset * VMRegImpl::stack_slot_size;
stack_slots += VMRegImpl::slots_per_word;
}
int workspace_slot_offset = stack_slots; // 6)
stack_slots += 2;
// Now compute actual number of stack words we need.
// Rounding to make stack properly aligned.
stack_slots = align_up(stack_slots, // 7)
frame::alignment_in_bytes / VMRegImpl::stack_slot_size);
int frame_size_in_bytes = stack_slots * VMRegImpl::stack_slot_size;
// Now we can start generating code.
// --------------------------------------------------------------------------
intptr_t start_pc = (intptr_t)__ pc();
intptr_t vep_start_pc;
intptr_t frame_done_pc;
intptr_t oopmap_pc;
Label ic_miss;
Label handle_pending_exception;
Register r_callers_sp = R21;
Register r_temp_1 = R22;
Register r_temp_2 = R23;
Register r_temp_3 = R24;
Register r_temp_4 = R25;
Register r_temp_5 = R26;
Register r_temp_6 = R27;
Register r_return_pc = R28;
Register r_carg1_jnienv = noreg;
Register r_carg2_classorobject = noreg;
if (!is_critical_native) {
r_carg1_jnienv = out_regs[0].first()->as_Register();
r_carg2_classorobject = out_regs[1].first()->as_Register();
}
// Generate the Unverified Entry Point (UEP).
// --------------------------------------------------------------------------
assert(start_pc == (intptr_t)__ pc(), "uep must be at start");
// Check ic: object class == cached class?
if (!method_is_static) {
Register ic = as_Register(Matcher::inline_cache_reg_encode());
Register receiver_klass = r_temp_1;
__ cmpdi(CCR0, R3_ARG1, 0);
__ beq(CCR0, ic_miss);
__ verify_oop(R3_ARG1);
__ load_klass(receiver_klass, R3_ARG1);
__ cmpd(CCR0, receiver_klass, ic);
__ bne(CCR0, ic_miss);
}
// Generate the Verified Entry Point (VEP).
// --------------------------------------------------------------------------
vep_start_pc = (intptr_t)__ pc();
if (UseRTMLocking) {
// Abort RTM transaction before calling JNI
// because critical section can be large and
// abort anyway. Also nmethod can be deoptimized.
__ tabort_();
}
if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
Label L_skip_barrier;
Register klass = r_temp_1;
// Notify OOP recorder (don't need the relocation)
AddressLiteral md = __ constant_metadata_address(method->method_holder());
__ load_const_optimized(klass, md.value(), R0);
__ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/);
__ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0);
__ mtctr(klass);
__ bctr();
__ bind(L_skip_barrier);
}
__ save_LR_CR(r_temp_1);
__ generate_stack_overflow_check(frame_size_in_bytes); // Check before creating frame.
__ mr(r_callers_sp, R1_SP); // Remember frame pointer.
__ push_frame(frame_size_in_bytes, r_temp_1); // Push the c2n adapter's frame.
frame_done_pc = (intptr_t)__ pc();
__ verify_thread();
// Native nmethod wrappers never take possesion of the oop arguments.
// So the caller will gc the arguments.
// The only thing we need an oopMap for is if the call is static.
//
// An OopMap for lock (and class if static), and one for the VM call itself.
OopMapSet *oop_maps = new OopMapSet();
OopMap *oop_map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
if (is_critical_native) {
check_needs_gc_for_critical_native(masm, stack_slots, total_in_args, oop_handle_slot_offset,
oop_maps, in_regs, in_sig_bt, r_temp_1);
}
// Move arguments from register/stack to register/stack.
// --------------------------------------------------------------------------
//
// We immediately shuffle the arguments so that for any vm call we have
// to make from here on out (sync slow path, jvmti, etc.) we will have
// captured the oops from our caller and have a valid oopMap for them.
//
// Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
// (derived from JavaThread* which is in R16_thread) and, if static,
// the class mirror instead of a receiver. This pretty much guarantees that
// register layout will not match. We ignore these extra arguments during
// the shuffle. The shuffle is described by the two calling convention
// vectors we have in our possession. We simply walk the java vector to
// get the source locations and the c vector to get the destinations.
// Record sp-based slot for receiver on stack for non-static methods.
int receiver_offset = -1;
// We move the arguments backward because the floating point registers
// destination will always be to a register with a greater or equal
// register number or the stack.
// in is the index of the incoming Java arguments
// out is the index of the outgoing C arguments
#ifdef ASSERT
bool reg_destroyed[RegisterImpl::number_of_registers];
bool freg_destroyed[FloatRegisterImpl::number_of_registers];
for (int r = 0 ; r < RegisterImpl::number_of_registers ; r++) {
reg_destroyed[r] = false;
}
for (int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++) {
freg_destroyed[f] = false;
}
#endif // ASSERT
for (int in = total_in_args - 1, out = total_c_args - 1; in >= 0 ; in--, out--) {
#ifdef ASSERT
if (in_regs[in].first()->is_Register()) {
assert(!reg_destroyed[in_regs[in].first()->as_Register()->encoding()], "ack!");
} else if (in_regs[in].first()->is_FloatRegister()) {
assert(!freg_destroyed[in_regs[in].first()->as_FloatRegister()->encoding()], "ack!");
}
if (out_regs[out].first()->is_Register()) {
reg_destroyed[out_regs[out].first()->as_Register()->encoding()] = true;
} else if (out_regs[out].first()->is_FloatRegister()) {
freg_destroyed[out_regs[out].first()->as_FloatRegister()->encoding()] = true;
}
if (out_regs2[out].first()->is_Register()) {
reg_destroyed[out_regs2[out].first()->as_Register()->encoding()] = true;
} else if (out_regs2[out].first()->is_FloatRegister()) {
freg_destroyed[out_regs2[out].first()->as_FloatRegister()->encoding()] = true;
}
#endif // ASSERT
switch (in_sig_bt[in]) {
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
// Move int and do sign extension.
int_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
break;
case T_LONG:
long_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
break;
case T_ARRAY:
if (is_critical_native) {
int body_arg = out;
out -= 1; // Point to length arg.
unpack_array_argument(masm, in_regs[in], in_elem_bt[in], out_regs[body_arg], out_regs[out],
r_callers_sp, r_temp_1, r_temp_2);
break;
}
case T_OBJECT:
assert(!is_critical_native, "no oop arguments");
object_move(masm, stack_slots,
oop_map, oop_handle_slot_offset,
((in == 0) && (!method_is_static)), &receiver_offset,
in_regs[in], out_regs[out],
r_callers_sp, r_temp_1, r_temp_2);
break;
case T_VOID:
break;
case T_FLOAT:
float_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
if (out_regs2[out].first()->is_valid()) {
float_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
}
break;
case T_DOUBLE:
double_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
if (out_regs2[out].first()->is_valid()) {
double_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
}
break;
case T_ADDRESS:
fatal("found type (T_ADDRESS) in java args");
break;
default:
ShouldNotReachHere();
break;
}
}
// Pre-load a static method's oop into ARG2.
// Used both by locking code and the normal JNI call code.
if (method_is_static && !is_critical_native) {
__ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()),
r_carg2_classorobject);
// Now handlize the static class mirror in carg2. It's known not-null.
__ std(r_carg2_classorobject, klass_offset, R1_SP);
oop_map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
__ addi(r_carg2_classorobject, R1_SP, klass_offset);
}
// Get JNIEnv* which is first argument to native.
if (!is_critical_native) {
__ addi(r_carg1_jnienv, R16_thread, in_bytes(JavaThread::jni_environment_offset()));
}
// NOTE:
//
// We have all of the arguments setup at this point.
// We MUST NOT touch any outgoing regs from this point on.
// So if we must call out we must push a new frame.
// Get current pc for oopmap, and load it patchable relative to global toc.
oopmap_pc = (intptr_t) __ pc();
__ calculate_address_from_global_toc(r_return_pc, (address)oopmap_pc, true, true, true, true);
// We use the same pc/oopMap repeatedly when we call out.
oop_maps->add_gc_map(oopmap_pc - start_pc, oop_map);
// r_return_pc now has the pc loaded that we will use when we finally call
// to native.
// Make sure that thread is non-volatile; it crosses a bunch of VM calls below.
assert(R16_thread->is_nonvolatile(), "thread must be in non-volatile register");
# if 0
// DTrace method entry
# endif
// Lock a synchronized method.
// --------------------------------------------------------------------------
if (method->is_synchronized()) {
assert(!is_critical_native, "unhandled");
ConditionRegister r_flag = CCR1;
Register r_oop = r_temp_4;
const Register r_box = r_temp_5;
Label done, locked;
// Load the oop for the object or class. r_carg2_classorobject contains
// either the handlized oop from the incoming arguments or the handlized
// class mirror (if the method is static).
__ ld(r_oop, 0, r_carg2_classorobject);
// Get the lock box slot's address.
__ addi(r_box, R1_SP, lock_offset);
# ifdef ASSERT
if (UseBiasedLocking) {
// Making the box point to itself will make it clear it went unused
// but also be obviously invalid.
__ std(r_box, 0, r_box);
}
# endif // ASSERT
// Try fastpath for locking.
// fast_lock kills r_temp_1, r_temp_2, r_temp_3.
__ compiler_fast_lock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
__ beq(r_flag, locked);
// None of the above fast optimizations worked so we have to get into the
// slow case of monitor enter. Inline a special case of call_VM that
// disallows any pending_exception.
// Save argument registers and leave room for C-compatible ABI_REG_ARGS.
int frame_size = frame::abi_reg_args_size + align_up(total_c_args * wordSize, frame::alignment_in_bytes);
__ mr(R11_scratch1, R1_SP);
RegisterSaver::push_frame_and_save_argument_registers(masm, R12_scratch2, frame_size, total_c_args, out_regs, out_regs2);
// Do the call.
__ set_last_Java_frame(R11_scratch1, r_return_pc);
assert(r_return_pc->is_nonvolatile(), "expecting return pc to be in non-volatile register");
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), r_oop, r_box, R16_thread);
__ reset_last_Java_frame();
RegisterSaver::restore_argument_registers_and_pop_frame(masm, frame_size, total_c_args, out_regs, out_regs2);
__ asm_assert_mem8_is_zero(thread_(pending_exception),
"no pending exception allowed on exit from SharedRuntime::complete_monitor_locking_C", 0);
__ bind(locked);
}
// Publish thread state
// --------------------------------------------------------------------------
// Use that pc we placed in r_return_pc a while back as the current frame anchor.
__ set_last_Java_frame(R1_SP, r_return_pc);
// Transition from _thread_in_Java to _thread_in_native.
__ li(R0, _thread_in_native);
__ release();
// TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
__ stw(R0, thread_(thread_state));
// The JNI call
// --------------------------------------------------------------------------
#if defined(ABI_ELFv2)
__ call_c(native_func, relocInfo::runtime_call_type);
#else
FunctionDescriptor* fd_native_method = (FunctionDescriptor*) native_func;
__ call_c(fd_native_method, relocInfo::runtime_call_type);
#endif
// Now, we are back from the native code.
// Unpack the native result.
// --------------------------------------------------------------------------
// For int-types, we do any needed sign-extension required.
// Care must be taken that the return values (R3_RET and F1_RET)
// will survive any VM calls for blocking or unlocking.
// An OOP result (handle) is done specially in the slow-path code.
switch (ret_type) {
case T_VOID: break; // Nothing to do!
case T_FLOAT: break; // Got it where we want it (unless slow-path).
case T_DOUBLE: break; // Got it where we want it (unless slow-path).
case T_LONG: break; // Got it where we want it (unless slow-path).
case T_OBJECT: break; // Really a handle.
// Cannot de-handlize until after reclaiming jvm_lock.
case T_ARRAY: break;
case T_BOOLEAN: { // 0 -> false(0); !0 -> true(1)
Label skip_modify;
__ cmpwi(CCR0, R3_RET, 0);
__ beq(CCR0, skip_modify);
__ li(R3_RET, 1);
__ bind(skip_modify);
break;
}
case T_BYTE: { // sign extension
__ extsb(R3_RET, R3_RET);
break;
}
case T_CHAR: { // unsigned result
__ andi(R3_RET, R3_RET, 0xffff);
break;
}
case T_SHORT: { // sign extension
__ extsh(R3_RET, R3_RET);
break;
}
case T_INT: // nothing to do
break;
default:
ShouldNotReachHere();
break;
}
// Publish thread state
// --------------------------------------------------------------------------
// Switch thread to "native transition" state before reading the
// synchronization state. This additional state is necessary because reading
// and testing the synchronization state is not atomic w.r.t. GC, as this
// scenario demonstrates:
// - Java thread A, in _thread_in_native state, loads _not_synchronized
// and is preempted.
// - VM thread changes sync state to synchronizing and suspends threads
// for GC.
// - Thread A is resumed to finish this native method, but doesn't block
// here since it didn't see any synchronization in progress, and escapes.
// Transition from _thread_in_native to _thread_in_native_trans.
__ li(R0, _thread_in_native_trans);
__ release();
// TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
__ stw(R0, thread_(thread_state));
// Must we block?
// --------------------------------------------------------------------------
// Block, if necessary, before resuming in _thread_in_Java state.
// In order for GC to work, don't clear the last_Java_sp until after blocking.
Label after_transition;
{
Label no_block, sync;
// Force this write out before the read below.
__ fence();
Register sync_state_addr = r_temp_4;
Register sync_state = r_temp_5;
Register suspend_flags = r_temp_6;
// No synchronization in progress nor yet synchronized
// (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
__ safepoint_poll(sync, sync_state);
// Not suspended.
// TODO: PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
__ lwz(suspend_flags, thread_(suspend_flags));
__ cmpwi(CCR1, suspend_flags, 0);
__ beq(CCR1, no_block);
// Block. Save any potential method result value before the operation and
// use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
// lets us share the oopMap we used when we went native rather than create
// a distinct one for this pc.
__ bind(sync);
__ isync();
address entry_point = is_critical_native
? CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)
: CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans);
save_native_result(masm, ret_type, workspace_slot_offset);
__ call_VM_leaf(entry_point, R16_thread);
restore_native_result(masm, ret_type, workspace_slot_offset);
if (is_critical_native) {
__ b(after_transition); // No thread state transition here.
}
__ bind(no_block);
}
// Publish thread state.
// --------------------------------------------------------------------------
// Thread state is thread_in_native_trans. Any safepoint blocking has
// already happened so we can now change state to _thread_in_Java.
// Transition from _thread_in_native_trans to _thread_in_Java.
__ li(R0, _thread_in_Java);
__ lwsync(); // Acquire safepoint and suspend state, release thread state.
// TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
__ stw(R0, thread_(thread_state));
__ bind(after_transition);
// Reguard any pages if necessary.
// --------------------------------------------------------------------------
Label no_reguard;
__ lwz(r_temp_1, thread_(stack_guard_state));
__ cmpwi(CCR0, r_temp_1, JavaThread::stack_guard_yellow_reserved_disabled);
__ bne(CCR0, no_reguard);
save_native_result(masm, ret_type, workspace_slot_offset);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
restore_native_result(masm, ret_type, workspace_slot_offset);
__ bind(no_reguard);
// Unlock
// --------------------------------------------------------------------------
if (method->is_synchronized()) {
ConditionRegister r_flag = CCR1;
const Register r_oop = r_temp_4;
const Register r_box = r_temp_5;
const Register r_exception = r_temp_6;
Label done;
// Get oop and address of lock object box.
if (method_is_static) {
assert(klass_offset != -1, "");
__ ld(r_oop, klass_offset, R1_SP);
} else {
assert(receiver_offset != -1, "");
__ ld(r_oop, receiver_offset, R1_SP);
}
__ addi(r_box, R1_SP, lock_offset);
// Try fastpath for unlocking.
__ compiler_fast_unlock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
__ beq(r_flag, done);
// Save and restore any potential method result value around the unlocking operation.
save_native_result(masm, ret_type, workspace_slot_offset);
// Must save pending exception around the slow-path VM call. Since it's a
// leaf call, the pending exception (if any) can be kept in a register.
__ ld(r_exception, thread_(pending_exception));
assert(r_exception->is_nonvolatile(), "exception register must be non-volatile");
__ li(R0, 0);
__ std(R0, thread_(pending_exception));
// Slow case of monitor enter.
// Inline a special case of call_VM that disallows any pending_exception.
// Arguments are (oop obj, BasicLock* lock, JavaThread* thread).
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), r_oop, r_box, R16_thread);
__ asm_assert_mem8_is_zero(thread_(pending_exception),
"no pending exception allowed on exit from SharedRuntime::complete_monitor_unlocking_C", 0);
restore_native_result(masm, ret_type, workspace_slot_offset);
// Check_forward_pending_exception jump to forward_exception if any pending
// exception is set. The forward_exception routine expects to see the
// exception in pending_exception and not in a register. Kind of clumsy,
// since all folks who branch to forward_exception must have tested
// pending_exception first and hence have it in a register already.
__ std(r_exception, thread_(pending_exception));
__ bind(done);
}
# if 0
// DTrace method exit
# endif
// Clear "last Java frame" SP and PC.
// --------------------------------------------------------------------------
__ reset_last_Java_frame();
// Unbox oop result, e.g. JNIHandles::resolve value.
// --------------------------------------------------------------------------
if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
__ resolve_jobject(R3_RET, r_temp_1, r_temp_2, /* needs_frame */ false);
}
if (CheckJNICalls) {
// clear_pending_jni_exception_check
__ load_const_optimized(R0, 0L);
__ st_ptr(R0, JavaThread::pending_jni_exception_check_fn_offset(), R16_thread);
}
// Reset handle block.
// --------------------------------------------------------------------------
if (!is_critical_native) {
__ ld(r_temp_1, thread_(active_handles));
// TODO: PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
__ li(r_temp_2, 0);
__ stw(r_temp_2, JNIHandleBlock::top_offset_in_bytes(), r_temp_1);
// Check for pending exceptions.
// --------------------------------------------------------------------------
__ ld(r_temp_2, thread_(pending_exception));
__ cmpdi(CCR0, r_temp_2, 0);
__ bne(CCR0, handle_pending_exception);
}
// Return
// --------------------------------------------------------------------------
__ pop_frame();
__ restore_LR_CR(R11);
__ blr();
// Handler for pending exceptions (out-of-line).
// --------------------------------------------------------------------------
// Since this is a native call, we know the proper exception handler
// is the empty function. We just pop this frame and then jump to
// forward_exception_entry.
if (!is_critical_native) {
__ align(InteriorEntryAlignment);
__ bind(handle_pending_exception);
__ pop_frame();
__ restore_LR_CR(R11);
__ b64_patchable((address)StubRoutines::forward_exception_entry(),
relocInfo::runtime_call_type);
}
// Handler for a cache miss (out-of-line).
// --------------------------------------------------------------------------
if (!method_is_static) {
__ align(InteriorEntryAlignment);
__ bind(ic_miss);
__ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
relocInfo::runtime_call_type);
}
// Done.
// --------------------------------------------------------------------------
__ flush();
nmethod *nm = nmethod::new_native_nmethod(method,
compile_id,
masm->code(),
vep_start_pc-start_pc,
frame_done_pc-start_pc,
stack_slots / VMRegImpl::slots_per_word,
(method_is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
in_ByteSize(lock_offset),
oop_maps);
if (is_critical_native) {
nm->set_lazy_critical_native(true);
}
return nm;
#else
ShouldNotReachHere();
return NULL;
#endif // COMPILER2
}
// This function returns the adjust size (in number of words) to a c2i adapter
// activation for use during deoptimization.
int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
return align_up((callee_locals - callee_parameters) * Interpreter::stackElementWords, frame::alignment_in_bytes);
}
uint SharedRuntime::out_preserve_stack_slots() {
#if defined(COMPILER1) || defined(COMPILER2)
return frame::jit_out_preserve_size / VMRegImpl::stack_slot_size;
#else
return 0;
#endif
}
#if defined(COMPILER1) || defined(COMPILER2)
// Frame generation for deopt and uncommon trap blobs.
static void push_skeleton_frame(MacroAssembler* masm, bool deopt,
/* Read */
Register unroll_block_reg,
/* Update */
Register frame_sizes_reg,
Register number_of_frames_reg,
Register pcs_reg,
/* Invalidate */
Register frame_size_reg,
Register pc_reg) {
__ ld(pc_reg, 0, pcs_reg);
__ ld(frame_size_reg, 0, frame_sizes_reg);
__ std(pc_reg, _abi(lr), R1_SP);
__ push_frame(frame_size_reg, R0/*tmp*/);
__ std(R1_SP, _ijava_state_neg(sender_sp), R1_SP);
__ addi(number_of_frames_reg, number_of_frames_reg, -1);
__ addi(frame_sizes_reg, frame_sizes_reg, wordSize);
__ addi(pcs_reg, pcs_reg, wordSize);
}
// Loop through the UnrollBlock info and create new frames.
static void push_skeleton_frames(MacroAssembler* masm, bool deopt,
/* read */
Register unroll_block_reg,
/* invalidate */
Register frame_sizes_reg,
Register number_of_frames_reg,
Register pcs_reg,
Register frame_size_reg,
Register pc_reg) {
Label loop;
// _number_of_frames is of type int (deoptimization.hpp)
__ lwa(number_of_frames_reg,
Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(),
unroll_block_reg);
__ ld(pcs_reg,
Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(),
unroll_block_reg);
__ ld(frame_sizes_reg,
Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(),
unroll_block_reg);
// stack: (caller_of_deoptee, ...).
// At this point we either have an interpreter frame or a compiled
// frame on top of stack. If it is a compiled frame we push a new c2i
// adapter here
// Memorize top-frame stack-pointer.
__ mr(frame_size_reg/*old_sp*/, R1_SP);
// Resize interpreter top frame OR C2I adapter.
// At this moment, the top frame (which is the caller of the deoptee) is
// an interpreter frame or a newly pushed C2I adapter or an entry frame.
// The top frame has a TOP_IJAVA_FRAME_ABI and the frame contains the
// outgoing arguments.
//
// In order to push the interpreter frame for the deoptee, we need to
// resize the top frame such that we are able to place the deoptee's
// locals in the frame.
// Additionally, we have to turn the top frame's TOP_IJAVA_FRAME_ABI
// into a valid PARENT_IJAVA_FRAME_ABI.
__ lwa(R11_scratch1,
Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(),
unroll_block_reg);
__ neg(R11_scratch1, R11_scratch1);
// R11_scratch1 contains size of locals for frame resizing.
// R12_scratch2 contains top frame's lr.
// Resize frame by complete frame size prevents TOC from being
// overwritten by locals. A more stack space saving way would be
// to copy the TOC to its location in the new abi.
__ addi(R11_scratch1, R11_scratch1, - frame::parent_ijava_frame_abi_size);
// now, resize the frame
__ resize_frame(R11_scratch1, pc_reg/*tmp*/);
// In the case where we have resized a c2i frame above, the optional
// alignment below the locals has size 32 (why?).
__ std(R12_scratch2, _abi(lr), R1_SP);
// Initialize initial_caller_sp.
__ std(frame_size_reg, _ijava_state_neg(sender_sp), R1_SP);
#ifdef ASSERT
// Make sure that there is at least one entry in the array.
__ cmpdi(CCR0, number_of_frames_reg, 0);
__ asm_assert_ne("array_size must be > 0", 0x205);
#endif
// Now push the new interpreter frames.
//
__ bind(loop);
// Allocate a new frame, fill in the pc.
push_skeleton_frame(masm, deopt,
unroll_block_reg,
frame_sizes_reg,
number_of_frames_reg,
pcs_reg,
frame_size_reg,
pc_reg);
__ cmpdi(CCR0, number_of_frames_reg, 0);
__ bne(CCR0, loop);
// Get the return address pointing into the frame manager.
__ ld(R0, 0, pcs_reg);
// Store it in the top interpreter frame.
__ std(R0, _abi(lr), R1_SP);
// Initialize frame_manager_lr of interpreter top frame.
}
#endif
void SharedRuntime::generate_deopt_blob() {
// Allocate space for the code
ResourceMark rm;
// Setup code generation tools
CodeBuffer buffer("deopt_blob", 2048, 1024);
InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
Label exec_mode_initialized;
int frame_size_in_words;
OopMap* map = NULL;
OopMapSet *oop_maps = new OopMapSet();
// size of ABI112 plus spill slots for R3_RET and F1_RET.
const int frame_size_in_bytes = frame::abi_reg_args_spill_size;
const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
int first_frame_size_in_bytes = 0; // frame size of "unpack frame" for call to fetch_unroll_info.
const Register exec_mode_reg = R21_tmp1;
const address start = __ pc();
#if defined(COMPILER1) || defined(COMPILER2)
// --------------------------------------------------------------------------
// Prolog for non exception case!
// We have been called from the deopt handler of the deoptee.
//
// deoptee:
// ...
// call X
// ...
// deopt_handler: call_deopt_stub
// cur. return pc --> ...
//
// So currently SR_LR points behind the call in the deopt handler.
// We adjust it such that it points to the start of the deopt handler.
// The return_pc has been stored in the frame of the deoptee and
// will replace the address of the deopt_handler in the call
// to Deoptimization::fetch_unroll_info below.
// We can't grab a free register here, because all registers may
// contain live values, so let the RegisterSaver do the adjustment
// of the return pc.
const int return_pc_adjustment_no_exception = -HandlerImpl::size_deopt_handler();
// Push the "unpack frame"
// Save everything in sight.
map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
&first_frame_size_in_bytes,
/*generate_oop_map=*/ true,
return_pc_adjustment_no_exception,
RegisterSaver::return_pc_is_lr);
assert(map != NULL, "OopMap must have been created");
__ li(exec_mode_reg, Deoptimization::Unpack_deopt);
// Save exec mode for unpack_frames.
__ b(exec_mode_initialized);
// --------------------------------------------------------------------------
// Prolog for exception case
// An exception is pending.
// We have been called with a return (interpreter) or a jump (exception blob).
//
// - R3_ARG1: exception oop
// - R4_ARG2: exception pc
int exception_offset = __ pc() - start;
BLOCK_COMMENT("Prolog for exception case");
// Store exception oop and pc in thread (location known to GC).
// This is needed since the call to "fetch_unroll_info()" may safepoint.
__ std(R3_ARG1, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
__ std(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
__ std(R4_ARG2, _abi(lr), R1_SP);
// Vanilla deoptimization with an exception pending in exception_oop.
int exception_in_tls_offset = __ pc() - start;
// Push the "unpack frame".
// Save everything in sight.
RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
&first_frame_size_in_bytes,
/*generate_oop_map=*/ false,
/*return_pc_adjustment_exception=*/ 0,
RegisterSaver::return_pc_is_pre_saved);
// Deopt during an exception. Save exec mode for unpack_frames.
__ li(exec_mode_reg, Deoptimization::Unpack_exception);
// fall through
int reexecute_offset = 0;
#ifdef COMPILER1
__ b(exec_mode_initialized);
// Reexecute entry, similar to c2 uncommon trap
reexecute_offset = __ pc() - start;
RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
&first_frame_size_in_bytes,
/*generate_oop_map=*/ false,
/*return_pc_adjustment_reexecute=*/ 0,
RegisterSaver::return_pc_is_pre_saved);
__ li(exec_mode_reg, Deoptimization::Unpack_reexecute);
#endif
// --------------------------------------------------------------------------
__ BIND(exec_mode_initialized);
{
const Register unroll_block_reg = R22_tmp2;
// We need to set `last_Java_frame' because `fetch_unroll_info' will
// call `last_Java_frame()'. The value of the pc in the frame is not
// particularly important. It just needs to identify this blob.
__ set_last_Java_frame(R1_SP, noreg);
// With EscapeAnalysis turned on, this call may safepoint!
__ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), R16_thread, exec_mode_reg);
address calls_return_pc = __ last_calls_return_pc();
// Set an oopmap for the call site that describes all our saved registers.
oop_maps->add_gc_map(calls_return_pc - start, map);
__ reset_last_Java_frame();
// Save the return value.
__ mr(unroll_block_reg, R3_RET);
// Restore only the result registers that have been saved
// by save_volatile_registers(...).
RegisterSaver::restore_result_registers(masm, first_frame_size_in_bytes);
// reload the exec mode from the UnrollBlock (it might have changed)
__ lwz(exec_mode_reg, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes(), unroll_block_reg);
// In excp_deopt_mode, restore and clear exception oop which we
// stored in the thread during exception entry above. The exception
// oop will be the return value of this stub.
Label skip_restore_excp;
__ cmpdi(CCR0, exec_mode_reg, Deoptimization::Unpack_exception);
__ bne(CCR0, skip_restore_excp);
__ ld(R3_RET, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
__ ld(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
__ li(R0, 0);
__ std(R0, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
__ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
__ BIND(skip_restore_excp);
__ pop_frame();
// stack: (deoptee, optional i2c, caller of deoptee, ...).
// pop the deoptee's frame
__ pop_frame();
// stack: (caller_of_deoptee, ...).
// Loop through the `UnrollBlock' info and create interpreter frames.
push_skeleton_frames(masm, true/*deopt*/,
unroll_block_reg,
R23_tmp3,
R24_tmp4,
R25_tmp5,
R26_tmp6,
R27_tmp7);
// stack: (skeletal interpreter frame, ..., optional skeletal
// interpreter frame, optional c2i, caller of deoptee, ...).
}
// push an `unpack_frame' taking care of float / int return values.
__ push_frame(frame_size_in_bytes, R0/*tmp*/);
// stack: (unpack frame, skeletal interpreter frame, ..., optional
// skeletal interpreter frame, optional c2i, caller of deoptee,
// ...).
// Spill live volatile registers since we'll do a call.
__ std( R3_RET, _abi_reg_args_spill(spill_ret), R1_SP);
__ stfd(F1_RET, _abi_reg_args_spill(spill_fret), R1_SP);
// Let the unpacker layout information in the skeletal frames just
// allocated.
__ get_PC_trash_LR(R3_RET);
__ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R3_RET);
// This is a call to a LEAF method, so no oop map is required.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
R16_thread/*thread*/, exec_mode_reg/*exec_mode*/);
__ reset_last_Java_frame();
// Restore the volatiles saved above.
__ ld( R3_RET, _abi_reg_args_spill(spill_ret), R1_SP);
__ lfd(F1_RET, _abi_reg_args_spill(spill_fret), R1_SP);
// Pop the unpack frame.
__ pop_frame();
__ restore_LR_CR(R0);
// stack: (top interpreter frame, ..., optional interpreter frame,
// optional c2i, caller of deoptee, ...).
// Initialize R14_state.
__ restore_interpreter_state(R11_scratch1);
__ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
// Return to the interpreter entry point.
__ blr();
__ flush();
#else // COMPILER2
__ unimplemented("deopt blob needed only with compiler");
int exception_offset = __ pc() - start;
#endif // COMPILER2
_deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset,
reexecute_offset, first_frame_size_in_bytes / wordSize);
_deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
}
#ifdef COMPILER2
void SharedRuntime::generate_uncommon_trap_blob() {
// Allocate space for the code.
ResourceMark rm;
// Setup code generation tools.
CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
address start = __ pc();
if (UseRTMLocking) {
// Abort RTM transaction before possible nmethod deoptimization.
__ tabort_();
}
Register unroll_block_reg = R21_tmp1;
Register klass_index_reg = R22_tmp2;
Register unc_trap_reg = R23_tmp3;
OopMapSet* oop_maps = new OopMapSet();
int frame_size_in_bytes = frame::abi_reg_args_size;
OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
// stack: (deoptee, optional i2c, caller_of_deoptee, ...).
// Push a dummy `unpack_frame' and call
// `Deoptimization::uncommon_trap' to pack the compiled frame into a
// vframe array and return the `UnrollBlock' information.
// Save LR to compiled frame.
__ save_LR_CR(R11_scratch1);
// Push an "uncommon_trap" frame.
__ push_frame_reg_args(0, R11_scratch1);
// stack: (unpack frame, deoptee, optional i2c, caller_of_deoptee, ...).
// Set the `unpack_frame' as last_Java_frame.
// `Deoptimization::uncommon_trap' expects it and considers its
// sender frame as the deoptee frame.
// Remember the offset of the instruction whose address will be
// moved to R11_scratch1.
address gc_map_pc = __ get_PC_trash_LR(R11_scratch1);
__ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
__ mr(klass_index_reg, R3);
__ li(R5_ARG3, Deoptimization::Unpack_uncommon_trap);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap),
R16_thread, klass_index_reg, R5_ARG3);
// Set an oopmap for the call site.
oop_maps->add_gc_map(gc_map_pc - start, map);
__ reset_last_Java_frame();
// Pop the `unpack frame'.
__ pop_frame();
// stack: (deoptee, optional i2c, caller_of_deoptee, ...).
// Save the return value.
__ mr(unroll_block_reg, R3_RET);
// Pop the uncommon_trap frame.
__ pop_frame();
// stack: (caller_of_deoptee, ...).
#ifdef ASSERT
__ lwz(R22_tmp2, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes(), unroll_block_reg);
__ cmpdi(CCR0, R22_tmp2, (unsigned)Deoptimization::Unpack_uncommon_trap);
__ asm_assert_eq("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap", 0);
#endif
// Allocate new interpreter frame(s) and possibly a c2i adapter
// frame.
push_skeleton_frames(masm, false/*deopt*/,
unroll_block_reg,
R22_tmp2,
R23_tmp3,
R24_tmp4,
R25_tmp5,
R26_tmp6);
// stack: (skeletal interpreter frame, ..., optional skeletal
// interpreter frame, optional c2i, caller of deoptee, ...).
// Push a dummy `unpack_frame' taking care of float return values.
// Call `Deoptimization::unpack_frames' to layout information in the
// interpreter frames just created.
// Push a simple "unpack frame" here.
__ push_frame_reg_args(0, R11_scratch1);
// stack: (unpack frame, skeletal interpreter frame, ..., optional
// skeletal interpreter frame, optional c2i, caller of deoptee,
// ...).
// Set the "unpack_frame" as last_Java_frame.
__ get_PC_trash_LR(R11_scratch1);
__ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
// Indicate it is the uncommon trap case.
__ li(unc_trap_reg, Deoptimization::Unpack_uncommon_trap);
// Let the unpacker layout information in the skeletal frames just
// allocated.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
R16_thread, unc_trap_reg);
__ reset_last_Java_frame();
// Pop the `unpack frame'.
__ pop_frame();
// Restore LR from top interpreter frame.
__ restore_LR_CR(R11_scratch1);
// stack: (top interpreter frame, ..., optional interpreter frame,
// optional c2i, caller of deoptee, ...).
__ restore_interpreter_state(R11_scratch1);
__ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
// Return to the interpreter entry point.
__ blr();
masm->flush();
_uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, frame_size_in_bytes/wordSize);
}
#endif // COMPILER2
// Generate a special Compile2Runtime blob that saves all registers, and setup oopmap.
SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
assert(StubRoutines::forward_exception_entry() != NULL,
"must be generated before");
ResourceMark rm;
OopMapSet *oop_maps = new OopMapSet();
OopMap* map;
// Allocate space for the code. Setup code generation tools.
CodeBuffer buffer("handler_blob", 2048, 1024);
MacroAssembler* masm = new MacroAssembler(&buffer);
address start = __ pc();
int frame_size_in_bytes = 0;
RegisterSaver::ReturnPCLocation return_pc_location;
bool cause_return = (poll_type == POLL_AT_RETURN);
if (cause_return) {
// Nothing to do here. The frame has already been popped in MachEpilogNode.
// Register LR already contains the return pc.
return_pc_location = RegisterSaver::return_pc_is_lr;
} else {
// Use thread()->saved_exception_pc() as return pc.
return_pc_location = RegisterSaver::return_pc_is_thread_saved_exception_pc;
}
if (UseRTMLocking) {
// Abort RTM transaction before calling runtime
// because critical section can be large and so
// will abort anyway. Also nmethod can be deoptimized.
__ tabort_();
}
bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
// Save registers, fpu state, and flags. Set R31 = return pc.
map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
&frame_size_in_bytes,
/*generate_oop_map=*/ true,
/*return_pc_adjustment=*/0,
return_pc_location, save_vectors);
// The following is basically a call_VM. However, we need the precise
// address of the call in order to generate an oopmap. Hence, we do all the
// work outselves.
__ set_last_Java_frame(/*sp=*/R1_SP, /*pc=*/noreg);
// The return address must always be correct so that the frame constructor
// never sees an invalid pc.
// Do the call
__ call_VM_leaf(call_ptr, R16_thread);
address calls_return_pc = __ last_calls_return_pc();
// Set an oopmap for the call site. This oopmap will map all
// oop-registers and debug-info registers as callee-saved. This
// will allow deoptimization at this safepoint to find all possible
// debug-info recordings, as well as let GC find all oops.
oop_maps->add_gc_map(calls_return_pc - start, map);
Label noException;
// Clear the last Java frame.
__ reset_last_Java_frame();
BLOCK_COMMENT(" Check pending exception.");
const Register pending_exception = R0;
__ ld(pending_exception, thread_(pending_exception));
__ cmpdi(CCR0, pending_exception, 0);
__ beq(CCR0, noException);
// Exception pending
RegisterSaver::restore_live_registers_and_pop_frame(masm,
frame_size_in_bytes,
/*restore_ctr=*/true, save_vectors);
BLOCK_COMMENT(" Jump to forward_exception_entry.");
// Jump to forward_exception_entry, with the issuing PC in LR
// so it looks like the original nmethod called forward_exception_entry.
__ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
// No exception case.
__ BIND(noException);
if (SafepointMechanism::uses_thread_local_poll() && !cause_return) {
Label no_adjust;
// If our stashed return pc was modified by the runtime we avoid touching it
__ ld(R0, frame_size_in_bytes + _abi(lr), R1_SP);
__ cmpd(CCR0, R0, R31);
__ bne(CCR0, no_adjust);
// Adjust return pc forward to step over the safepoint poll instruction
__ addi(R31, R31, 4);
__ std(R31, frame_size_in_bytes + _abi(lr), R1_SP);
__ bind(no_adjust);
}
// Normal exit, restore registers and exit.
RegisterSaver::restore_live_registers_and_pop_frame(masm,
frame_size_in_bytes,
/*restore_ctr=*/true, save_vectors);
__ blr();
// Make sure all code is generated
masm->flush();
// Fill-out other meta info
// CodeBlob frame size is in words.
return SafepointBlob::create(&buffer, oop_maps, frame_size_in_bytes / wordSize);
}
// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss)
//
// Generate a stub that calls into the vm to find out the proper destination
// of a java call. All the argument registers are live at this point
// but since this is generic code we don't know what they are and the caller
// must do any gc of the args.
//
RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
// allocate space for the code
ResourceMark rm;
CodeBuffer buffer(name, 1000, 512);
MacroAssembler* masm = new MacroAssembler(&buffer);
int frame_size_in_bytes;
OopMapSet *oop_maps = new OopMapSet();
OopMap* map = NULL;
address start = __ pc();
map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
&frame_size_in_bytes,
/*generate_oop_map*/ true,
/*return_pc_adjustment*/ 0,
RegisterSaver::return_pc_is_lr);
// Use noreg as last_Java_pc, the return pc will be reconstructed
// from the physical frame.
__ set_last_Java_frame(/*sp*/R1_SP, noreg);
int frame_complete = __ offset();
// Pass R19_method as 2nd (optional) argument, used by
// counter_overflow_stub.
__ call_VM_leaf(destination, R16_thread, R19_method);
address calls_return_pc = __ last_calls_return_pc();
// Set an oopmap for the call site.
// We need this not only for callee-saved registers, but also for volatile
// registers that the compiler might be keeping live across a safepoint.
// Create the oopmap for the call's return pc.
oop_maps->add_gc_map(calls_return_pc - start, map);
// R3_RET contains the address we are going to jump to assuming no exception got installed.
// clear last_Java_sp
__ reset_last_Java_frame();
// Check for pending exceptions.
BLOCK_COMMENT("Check for pending exceptions.");
Label pending;
__ ld(R11_scratch1, thread_(pending_exception));
__ cmpdi(CCR0, R11_scratch1, 0);
__ bne(CCR0, pending);
__ mtctr(R3_RET); // Ctr will not be touched by restore_live_registers_and_pop_frame.
RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ false);
// Get the returned method.
__ get_vm_result_2(R19_method);
__ bctr();
// Pending exception after the safepoint.
__ BIND(pending);
RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ true);
// exception pending => remove activation and forward to exception handler
__ li(R11_scratch1, 0);
__ ld(R3_ARG1, thread_(pending_exception));
__ std(R11_scratch1, in_bytes(JavaThread::vm_result_offset()), R16_thread);
__ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
// -------------
// Make sure all code is generated.
masm->flush();
// return the blob
// frame_size_words or bytes??
return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_bytes/wordSize,
oop_maps, true);
}
//------------------------------Montgomery multiplication------------------------
//
// Subtract 0:b from carry:a. Return carry.
static unsigned long
sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
long i = 0;
unsigned long tmp, tmp2;
__asm__ __volatile__ (
"subfc %[tmp], %[tmp], %[tmp] \n" // pre-set CA
"mtctr %[len] \n"
"0: \n"
"ldx %[tmp], %[i], %[a] \n"
"ldx %[tmp2], %[i], %[b] \n"
"subfe %[tmp], %[tmp2], %[tmp] \n" // subtract extended
"stdx %[tmp], %[i], %[a] \n"
"addi %[i], %[i], 8 \n"
"bdnz 0b \n"
"addme %[tmp], %[carry] \n" // carry + CA - 1
: [i]"+b"(i), [tmp]"=&r"(tmp), [tmp2]"=&r"(tmp2)
: [a]"r"(a), [b]"r"(b), [carry]"r"(carry), [len]"r"(len)
: "ctr", "xer", "memory"
);
return tmp;
}
// Multiply (unsigned) Long A by Long B, accumulating the double-
// length result into the accumulator formed of T0, T1, and T2.
inline void MACC(unsigned long A, unsigned long B, unsigned long &T0, unsigned long &T1, unsigned long &T2) {
unsigned long hi, lo;
__asm__ __volatile__ (
"mulld %[lo], %[A], %[B] \n"
"mulhdu %[hi], %[A], %[B] \n"
"addc %[T0], %[T0], %[lo] \n"
"adde %[T1], %[T1], %[hi] \n"
"addze %[T2], %[T2] \n"
: [hi]"=&r"(hi), [lo]"=&r"(lo), [T0]"+r"(T0), [T1]"+r"(T1), [T2]"+r"(T2)
: [A]"r"(A), [B]"r"(B)
: "xer"
);
}
// As above, but add twice the double-length result into the
// accumulator.
inline void MACC2(unsigned long A, unsigned long B, unsigned long &T0, unsigned long &T1, unsigned long &T2) {
unsigned long hi, lo;
__asm__ __volatile__ (
"mulld %[lo], %[A], %[B] \n"
"mulhdu %[hi], %[A], %[B] \n"
"addc %[T0], %[T0], %[lo] \n"
"adde %[T1], %[T1], %[hi] \n"
"addze %[T2], %[T2] \n"
"addc %[T0], %[T0], %[lo] \n"
"adde %[T1], %[T1], %[hi] \n"
"addze %[T2], %[T2] \n"
: [hi]"=&r"(hi), [lo]"=&r"(lo), [T0]"+r"(T0), [T1]"+r"(T1), [T2]"+r"(T2)
: [A]"r"(A), [B]"r"(B)
: "xer"
);
}
// Fast Montgomery multiplication. The derivation of the algorithm is
// in "A Cryptographic Library for the Motorola DSP56000,
// Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237".
static void
montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
unsigned long m[], unsigned long inv, int len) {
unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
int i;
assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
for (i = 0; i < len; i++) {
int j;
for (j = 0; j < i; j++) {
MACC(a[j], b[i-j], t0, t1, t2);
MACC(m[j], n[i-j], t0, t1, t2);
}
MACC(a[i], b[0], t0, t1, t2);
m[i] = t0 * inv;
MACC(m[i], n[0], t0, t1, t2);
assert(t0 == 0, "broken Montgomery multiply");
t0 = t1; t1 = t2; t2 = 0;
}
for (i = len; i < 2*len; i++) {
int j;
for (j = i-len+1; j < len; j++) {
MACC(a[j], b[i-j], t0, t1, t2);
MACC(m[j], n[i-j], t0, t1, t2);
}
m[i-len] = t0;
t0 = t1; t1 = t2; t2 = 0;
}
while (t0) {
t0 = sub(m, n, t0, len);
}
}
// Fast Montgomery squaring. This uses asymptotically 25% fewer
// multiplies so it should be up to 25% faster than Montgomery
// multiplication. However, its loop control is more complex and it
// may actually run slower on some machines.
static void
montgomery_square(unsigned long a[], unsigned long n[],
unsigned long m[], unsigned long inv, int len) {
unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
int i;
assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
for (i = 0; i < len; i++) {
int j;
int end = (i+1)/2;
for (j = 0; j < end; j++) {
MACC2(a[j], a[i-j], t0, t1, t2);
MACC(m[j], n[i-j], t0, t1, t2);
}
if ((i & 1) == 0) {
MACC(a[j], a[j], t0, t1, t2);
}
for (; j < i; j++) {
MACC(m[j], n[i-j], t0, t1, t2);
}
m[i] = t0 * inv;
MACC(m[i], n[0], t0, t1, t2);
assert(t0 == 0, "broken Montgomery square");
t0 = t1; t1 = t2; t2 = 0;
}
for (i = len; i < 2*len; i++) {
int start = i-len+1;
int end = start + (len - start)/2;
int j;
for (j = start; j < end; j++) {
MACC2(a[j], a[i-j], t0, t1, t2);
MACC(m[j], n[i-j], t0, t1, t2);
}
if ((i & 1) == 0) {
MACC(a[j], a[j], t0, t1, t2);
}
for (; j < len; j++) {
MACC(m[j], n[i-j], t0, t1, t2);
}
m[i-len] = t0;
t0 = t1; t1 = t2; t2 = 0;
}
while (t0) {
t0 = sub(m, n, t0, len);
}
}
// The threshold at which squaring is advantageous was determined
// experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
// Doesn't seem to be relevant for Power8 so we use the same value.
#define MONTGOMERY_SQUARING_THRESHOLD 64
// Copy len longwords from s to d, word-swapping as we go. The
// destination array is reversed.
static void reverse_words(unsigned long *s, unsigned long *d, int len) {
d += len;
while(len-- > 0) {
d--;
unsigned long s_val = *s;
// Swap words in a longword on little endian machines.
#ifdef VM_LITTLE_ENDIAN
s_val = (s_val << 32) | (s_val >> 32);
#endif
*d = s_val;
s++;
}
}
void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
jint len, jlong inv,
jint *m_ints) {
len = len & 0x7fffFFFF; // C2 does not respect int to long conversion for stub calls.
assert(len % 2 == 0, "array length in montgomery_multiply must be even");
int longwords = len/2;
// Make very sure we don't use so much space that the stack might
// overflow. 512 jints corresponds to an 16384-bit integer and
// will use here a total of 8k bytes of stack space.
int total_allocation = longwords * sizeof (unsigned long) * 4;
guarantee(total_allocation <= 8192, "must be");
unsigned long *scratch = (unsigned long *)alloca(total_allocation);
// Local scratch arrays
unsigned long
*a = scratch + 0 * longwords,
*b = scratch + 1 * longwords,
*n = scratch + 2 * longwords,
*m = scratch + 3 * longwords;
reverse_words((unsigned long *)a_ints, a, longwords);
reverse_words((unsigned long *)b_ints, b, longwords);
reverse_words((unsigned long *)n_ints, n, longwords);
::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
reverse_words(m, (unsigned long *)m_ints, longwords);
}
void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
jint len, jlong inv,
jint *m_ints) {
len = len & 0x7fffFFFF; // C2 does not respect int to long conversion for stub calls.
assert(len % 2 == 0, "array length in montgomery_square must be even");
int longwords = len/2;
// Make very sure we don't use so much space that the stack might
// overflow. 512 jints corresponds to an 16384-bit integer and
// will use here a total of 6k bytes of stack space.
int total_allocation = longwords * sizeof (unsigned long) * 3;
guarantee(total_allocation <= 8192, "must be");
unsigned long *scratch = (unsigned long *)alloca(total_allocation);
// Local scratch arrays
unsigned long
*a = scratch + 0 * longwords,
*n = scratch + 1 * longwords,
*m = scratch + 2 * longwords;
reverse_words((unsigned long *)a_ints, a, longwords);
reverse_words((unsigned long *)n_ints, n, longwords);
if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
::montgomery_square(a, n, m, (unsigned long)inv, longwords);
} else {
::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
}
reverse_words(m, (unsigned long *)m_ints, longwords);
}