5103339: Strengthen NoSafepointVerifier
Summary: Add NSV check at possible safepoint transition or places that could take out locks. Consolidate with clearing unhandled oops.
Reviewed-by: dholmes, rehn
/*
* Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2018 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interp_masm_ppc.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/sharedRuntime.hpp"
// Implementation of InterpreterMacroAssembler.
// This file specializes the assembler with interpreter-specific macros.
#ifdef PRODUCT
#define BLOCK_COMMENT(str) // nothing
#else
#define BLOCK_COMMENT(str) block_comment(str)
#endif
void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) {
address exception_entry = Interpreter::throw_NullPointerException_entry();
MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry);
}
void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) {
assert(entry, "Entry must have been generated by now");
if (is_within_range_of_b(entry, pc())) {
b(entry);
} else {
load_const_optimized(Rscratch, entry, R0);
mtctr(Rscratch);
bctr();
}
}
void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) {
Register bytecode = R12_scratch2;
if (bcp_incr != 0) {
lbzu(bytecode, bcp_incr, R14_bcp);
} else {
lbz(bytecode, 0, R14_bcp);
}
dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state), generate_poll);
}
void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
// Load current bytecode.
Register bytecode = R12_scratch2;
lbz(bytecode, 0, R14_bcp);
dispatch_Lbyte_code(state, bytecode, table);
}
// Dispatch code executed in the prolog of a bytecode which does not do it's
// own dispatch. The dispatch address is computed and placed in R24_dispatch_addr.
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
Register bytecode = R12_scratch2;
lbz(bytecode, bcp_incr, R14_bcp);
load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state));
sldi(bytecode, bytecode, LogBytesPerWord);
ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode);
}
// Dispatch code executed in the epilog of a bytecode which does not do it's
// own dispatch. The dispatch address in R24_dispatch_addr is used for the
// dispatch.
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
if (bcp_incr) { addi(R14_bcp, R14_bcp, bcp_incr); }
mtctr(R24_dispatch_addr);
bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable);
}
void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
assert(scratch_reg != R0, "can't use R0 as scratch_reg here");
if (JvmtiExport::can_pop_frame()) {
Label L;
// Check the "pending popframe condition" flag in the current thread.
lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
// Initiate popframe handling only if it is not already being
// processed. If the flag has the popframe_processing bit set, it
// means that this code is called *during* popframe handling - we
// don't want to reenter.
andi_(R0, scratch_reg, JavaThread::popframe_pending_bit);
beq(CCR0, L);
andi_(R0, scratch_reg, JavaThread::popframe_processing_bit);
bne(CCR0, L);
// Call the Interpreter::remove_activation_preserving_args_entry()
// func to get the address of the same-named entrypoint in the
// generated interpreter code.
#if defined(ABI_ELFv2)
call_c(CAST_FROM_FN_PTR(address,
Interpreter::remove_activation_preserving_args_entry),
relocInfo::none);
#else
call_c(CAST_FROM_FN_PTR(FunctionDescriptor*,
Interpreter::remove_activation_preserving_args_entry),
relocInfo::none);
#endif
// Jump to Interpreter::_remove_activation_preserving_args_entry.
mtctr(R3_RET);
bctr();
align(32, 12);
bind(L);
}
}
void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
const Register Rthr_state_addr = scratch_reg;
if (JvmtiExport::can_force_early_return()) {
Label Lno_early_ret;
ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
cmpdi(CCR0, Rthr_state_addr, 0);
beq(CCR0, Lno_early_ret);
lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr);
cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending);
bne(CCR0, Lno_early_ret);
// Jump to Interpreter::_earlyret_entry.
lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr);
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry));
mtlr(R3_RET);
blr();
align(32, 12);
bind(Lno_early_ret);
}
}
void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) {
const Register RjvmtiState = Rscratch1;
const Register Rscratch2 = R0;
ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
li(Rscratch2, 0);
switch (state) {
case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
break;
case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
break;
case btos: // fall through
case ztos: // fall through
case ctos: // fall through
case stos: // fall through
case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
break;
case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
break;
case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
break;
case vtos: break;
default : ShouldNotReachHere();
}
// Clean up tos value in the jvmti thread state.
std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
// Set tos state field to illegal value.
li(Rscratch2, ilgl);
stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState);
}
// Common code to dispatch and dispatch_only.
// Dispatch value in Lbyte_code and increment Lbcp.
void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) {
address table_base = (address)Interpreter::dispatch_table((TosState)0);
intptr_t table_offs = (intptr_t)table - (intptr_t)table_base;
if (is_simm16(table_offs)) {
addi(dst, R25_templateTableBase, (int)table_offs);
} else {
load_const_optimized(dst, table, R0);
}
}
void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode,
address* table, bool generate_poll) {
assert_different_registers(bytecode, R11_scratch1);
// Calc dispatch table address.
load_dispatch_table(R11_scratch1, table);
if (SafepointMechanism::uses_thread_local_poll() && generate_poll) {
address *sfpt_tbl = Interpreter::safept_table(state);
if (table != sfpt_tbl) {
Label dispatch;
ld(R0, in_bytes(Thread::polling_page_offset()), R16_thread);
// Armed page has poll_bit set, if poll bit is cleared just continue.
andi_(R0, R0, SafepointMechanism::poll_bit());
beq(CCR0, dispatch);
load_dispatch_table(R11_scratch1, sfpt_tbl);
align(32, 16);
bind(dispatch);
}
}
sldi(R12_scratch2, bytecode, LogBytesPerWord);
ldx(R11_scratch1, R11_scratch1, R12_scratch2);
// Jump off!
mtctr(R11_scratch1);
bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable);
}
void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) {
sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize);
ldx(Rrecv_dst, Rrecv_dst, R15_esp);
}
// helpers for expression stack
void InterpreterMacroAssembler::pop_i(Register r) {
lwzu(r, Interpreter::stackElementSize, R15_esp);
}
void InterpreterMacroAssembler::pop_ptr(Register r) {
ldu(r, Interpreter::stackElementSize, R15_esp);
}
void InterpreterMacroAssembler::pop_l(Register r) {
ld(r, Interpreter::stackElementSize, R15_esp);
addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
}
void InterpreterMacroAssembler::pop_f(FloatRegister f) {
lfsu(f, Interpreter::stackElementSize, R15_esp);
}
void InterpreterMacroAssembler::pop_d(FloatRegister f) {
lfd(f, Interpreter::stackElementSize, R15_esp);
addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
}
void InterpreterMacroAssembler::push_i(Register r) {
stw(r, 0, R15_esp);
addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
}
void InterpreterMacroAssembler::push_ptr(Register r) {
std(r, 0, R15_esp);
addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
}
void InterpreterMacroAssembler::push_l(Register r) {
// Clear unused slot.
load_const_optimized(R0, 0L);
std(R0, 0, R15_esp);
std(r, - Interpreter::stackElementSize, R15_esp);
addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
}
void InterpreterMacroAssembler::push_f(FloatRegister f) {
stfs(f, 0, R15_esp);
addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
}
void InterpreterMacroAssembler::push_d(FloatRegister f) {
stfd(f, - Interpreter::stackElementSize, R15_esp);
addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
}
void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) {
std(first, 0, R15_esp);
std(second, -Interpreter::stackElementSize, R15_esp);
addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
}
void InterpreterMacroAssembler::move_l_to_d(Register l, FloatRegister d) {
if (VM_Version::has_mtfprd()) {
mtfprd(d, l);
} else {
std(l, 0, R15_esp);
lfd(d, 0, R15_esp);
}
}
void InterpreterMacroAssembler::move_d_to_l(FloatRegister d, Register l) {
if (VM_Version::has_mtfprd()) {
mffprd(l, d);
} else {
stfd(d, 0, R15_esp);
ld(l, 0, R15_esp);
}
}
void InterpreterMacroAssembler::push(TosState state) {
switch (state) {
case atos: push_ptr(); break;
case btos:
case ztos:
case ctos:
case stos:
case itos: push_i(); break;
case ltos: push_l(); break;
case ftos: push_f(); break;
case dtos: push_d(); break;
case vtos: /* nothing to do */ break;
default : ShouldNotReachHere();
}
}
void InterpreterMacroAssembler::pop(TosState state) {
switch (state) {
case atos: pop_ptr(); break;
case btos:
case ztos:
case ctos:
case stos:
case itos: pop_i(); break;
case ltos: pop_l(); break;
case ftos: pop_f(); break;
case dtos: pop_d(); break;
case vtos: /* nothing to do */ break;
default : ShouldNotReachHere();
}
verify_oop(R17_tos, state);
}
void InterpreterMacroAssembler::empty_expression_stack() {
addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
}
void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int bcp_offset,
Register Rdst,
signedOrNot is_signed) {
#if defined(VM_LITTLE_ENDIAN)
if (bcp_offset) {
load_const_optimized(Rdst, bcp_offset);
lhbrx(Rdst, R14_bcp, Rdst);
} else {
lhbrx(Rdst, R14_bcp);
}
if (is_signed == Signed) {
extsh(Rdst, Rdst);
}
#else
// Read Java big endian format.
if (is_signed == Signed) {
lha(Rdst, bcp_offset, R14_bcp);
} else {
lhz(Rdst, bcp_offset, R14_bcp);
}
#endif
}
void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int bcp_offset,
Register Rdst,
signedOrNot is_signed) {
#if defined(VM_LITTLE_ENDIAN)
if (bcp_offset) {
load_const_optimized(Rdst, bcp_offset);
lwbrx(Rdst, R14_bcp, Rdst);
} else {
lwbrx(Rdst, R14_bcp);
}
if (is_signed == Signed) {
extsw(Rdst, Rdst);
}
#else
// Read Java big endian format.
if (bcp_offset & 3) { // Offset unaligned?
load_const_optimized(Rdst, bcp_offset);
if (is_signed == Signed) {
lwax(Rdst, R14_bcp, Rdst);
} else {
lwzx(Rdst, R14_bcp, Rdst);
}
} else {
if (is_signed == Signed) {
lwa(Rdst, bcp_offset, R14_bcp);
} else {
lwz(Rdst, bcp_offset, R14_bcp);
}
}
#endif
}
// Load the constant pool cache index from the bytecode stream.
//
// Kills / writes:
// - Rdst, Rscratch
void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset,
size_t index_size) {
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
// Cache index is always in the native format, courtesy of Rewriter.
if (index_size == sizeof(u2)) {
lhz(Rdst, bcp_offset, R14_bcp);
} else if (index_size == sizeof(u4)) {
if (bcp_offset & 3) {
load_const_optimized(Rdst, bcp_offset);
lwax(Rdst, R14_bcp, Rdst);
} else {
lwa(Rdst, bcp_offset, R14_bcp);
}
assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
nand(Rdst, Rdst, Rdst); // convert to plain index
} else if (index_size == sizeof(u1)) {
lbz(Rdst, bcp_offset, R14_bcp);
} else {
ShouldNotReachHere();
}
// Rdst now contains cp cache index.
}
void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, int bcp_offset,
size_t index_size) {
get_cache_index_at_bcp(cache, bcp_offset, index_size);
sldi(cache, cache, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord));
add(cache, R27_constPoolCache, cache);
}
// Load 4-byte signed or unsigned integer in Java format (that is, big-endian format)
// from (Rsrc)+offset.
void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset,
signedOrNot is_signed) {
#if defined(VM_LITTLE_ENDIAN)
if (offset) {
load_const_optimized(Rdst, offset);
lwbrx(Rdst, Rdst, Rsrc);
} else {
lwbrx(Rdst, Rsrc);
}
if (is_signed == Signed) {
extsw(Rdst, Rdst);
}
#else
if (is_signed == Signed) {
lwa(Rdst, offset, Rsrc);
} else {
lwz(Rdst, offset, Rsrc);
}
#endif
}
// Load object from cpool->resolved_references(index).
void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index, Label *L_handle_null) {
assert_different_registers(result, index);
get_constant_pool(result);
// Convert from field index to resolved_references() index and from
// word index to byte offset. Since this is a java object, it can be compressed.
Register tmp = index; // reuse
sldi(tmp, index, LogBytesPerHeapOop);
// Load pointer for resolved_references[] objArray.
ld(result, ConstantPool::cache_offset_in_bytes(), result);
ld(result, ConstantPoolCache::resolved_references_offset_in_bytes(), result);
resolve_oop_handle(result);
#ifdef ASSERT
Label index_ok;
lwa(R0, arrayOopDesc::length_offset_in_bytes(), result);
sldi(R0, R0, LogBytesPerHeapOop);
cmpd(CCR0, tmp, R0);
blt(CCR0, index_ok);
stop("resolved reference index out of bounds", 0x09256);
bind(index_ok);
#endif
// Add in the index.
add(result, tmp, result);
load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, tmp, R0, false, 0, L_handle_null);
}
// load cpool->resolved_klass_at(index)
void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register Rcpool, Register Roffset, Register Rklass) {
// int value = *(Rcpool->int_at_addr(which));
// int resolved_klass_index = extract_low_short_from_int(value);
add(Roffset, Rcpool, Roffset);
#if defined(VM_LITTLE_ENDIAN)
lhz(Roffset, sizeof(ConstantPool), Roffset); // Roffset = resolved_klass_index
#else
lhz(Roffset, sizeof(ConstantPool) + 2, Roffset); // Roffset = resolved_klass_index
#endif
ld(Rklass, ConstantPool::resolved_klasses_offset_in_bytes(), Rcpool); // Rklass = Rcpool->_resolved_klasses
sldi(Roffset, Roffset, LogBytesPerWord);
addi(Roffset, Roffset, Array<Klass*>::base_offset_in_bytes());
isync(); // Order load of instance Klass wrt. tags.
ldx(Rklass, Rklass, Roffset);
}
void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no,
Register cache,
Register method) {
const int method_offset = in_bytes(
ConstantPoolCache::base_offset() +
((byte_no == TemplateTable::f2_byte)
? ConstantPoolCacheEntry::f2_offset()
: ConstantPoolCacheEntry::f1_offset()));
ld(method, method_offset, cache); // get f1 Method*
}
// Generate a subtype check: branch to ok_is_subtype if sub_klass is
// a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2.
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1,
Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) {
// Profile the not-null value's klass.
profile_typecheck(Rsub_klass, Rtmp1, Rtmp2);
check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
profile_typecheck_failed(Rtmp1, Rtmp2);
}
// Separate these two to allow for delay slot in middle.
// These are used to do a test and full jump to exception-throwing code.
// Check that index is in range for array, then shift index by index_shift,
// and put arrayOop + shifted_index into res.
// Note: res is still shy of address by array offset into object.
void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex,
int index_shift, Register Rtmp, Register Rres) {
// Check that index is in range for array, then shift index by index_shift,
// and put arrayOop + shifted_index into res.
// Note: res is still shy of address by array offset into object.
// Kills:
// - Rindex
// Writes:
// - Rres: Address that corresponds to the array index if check was successful.
verify_oop(Rarray);
const Register Rlength = R0;
const Register RsxtIndex = Rtmp;
Label LisNull, LnotOOR;
// Array nullcheck
if (!ImplicitNullChecks) {
cmpdi(CCR0, Rarray, 0);
beq(CCR0, LisNull);
} else {
null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex);
}
// Rindex might contain garbage in upper bits (remember that we don't sign extend
// during integer arithmetic operations). So kill them and put value into same register
// where ArrayIndexOutOfBounds would expect the index in.
rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit
// Index check
lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray);
cmplw(CCR0, Rindex, Rlength);
sldi(RsxtIndex, RsxtIndex, index_shift);
blt(CCR0, LnotOOR);
// Index should be in R17_tos, array should be in R4_ARG2.
mr_if_needed(R17_tos, Rindex);
mr_if_needed(R4_ARG2, Rarray);
load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
mtctr(Rtmp);
bctr();
if (!ImplicitNullChecks) {
bind(LisNull);
load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry);
mtctr(Rtmp);
bctr();
}
align(32, 16);
bind(LnotOOR);
// Calc address
add(Rres, RsxtIndex, Rarray);
}
void InterpreterMacroAssembler::index_check(Register array, Register index,
int index_shift, Register tmp, Register res) {
// pop array
pop_ptr(array);
// check array
index_check_without_pop(array, index, index_shift, tmp, res);
}
void InterpreterMacroAssembler::get_const(Register Rdst) {
ld(Rdst, in_bytes(Method::const_offset()), R19_method);
}
void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
get_const(Rdst);
ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
}
void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
get_constant_pool(Rdst);
ld(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
}
void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
get_constant_pool(Rcpool);
ld(Rtags, ConstantPool::tags_offset_in_bytes(), Rcpool);
}
// Unlock if synchronized method.
//
// Unlock the receiver if this is a synchronized method.
// Unlock any Java monitors from synchronized blocks.
//
// If there are locked Java monitors
// If throw_monitor_exception
// throws IllegalMonitorStateException
// Else if install_monitor_exception
// installs IllegalMonitorStateException
// Else
// no error processing
void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
bool throw_monitor_exception,
bool install_monitor_exception) {
Label Lunlocked, Lno_unlock;
{
Register Rdo_not_unlock_flag = R11_scratch1;
Register Raccess_flags = R12_scratch2;
// Check if synchronized method or unlocking prevented by
// JavaThread::do_not_unlock_if_synchronized flag.
lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method);
li(R0, 0);
stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag
push(state);
// Skip if we don't have to unlock.
rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0.
beq(CCR0, Lunlocked);
cmpwi(CCR0, Rdo_not_unlock_flag, 0);
bne(CCR0, Lno_unlock);
}
// Unlock
{
Register Rmonitor_base = R11_scratch1;
Label Lunlock;
// If it's still locked, everything is ok, unlock it.
ld(Rmonitor_base, 0, R1_SP);
addi(Rmonitor_base, Rmonitor_base,
-(frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
ld(R0, BasicObjectLock::obj_offset_in_bytes(), Rmonitor_base);
cmpdi(CCR0, R0, 0);
bne(CCR0, Lunlock);
// If it's already unlocked, throw exception.
if (throw_monitor_exception) {
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
should_not_reach_here();
} else {
if (install_monitor_exception) {
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
b(Lunlocked);
}
}
bind(Lunlock);
unlock_object(Rmonitor_base);
}
// Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not.
bind(Lunlocked);
{
Label Lexception, Lrestart;
Register Rcurrent_obj_addr = R11_scratch1;
const int delta = frame::interpreter_frame_monitor_size_in_bytes();
assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords");
bind(Lrestart);
// Set up search loop: Calc num of iterations.
{
Register Riterations = R12_scratch2;
Register Rmonitor_base = Rcurrent_obj_addr;
ld(Rmonitor_base, 0, R1_SP);
addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size); // Monitor base
subf_(Riterations, R26_monitor, Rmonitor_base);
ble(CCR0, Lno_unlock);
addi(Rcurrent_obj_addr, Rmonitor_base,
BasicObjectLock::obj_offset_in_bytes() - frame::interpreter_frame_monitor_size_in_bytes());
// Check if any monitor is on stack, bail out if not
srdi(Riterations, Riterations, exact_log2(delta));
mtctr(Riterations);
}
// The search loop: Look for locked monitors.
{
const Register Rcurrent_obj = R0;
Label Lloop;
ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
bind(Lloop);
// Check if current entry is used.
cmpdi(CCR0, Rcurrent_obj, 0);
bne(CCR0, Lexception);
// Preload next iteration's compare value.
ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
bdnz(Lloop);
}
// Fell through: Everything's unlocked => finish.
b(Lno_unlock);
// An object is still locked => need to throw exception.
bind(Lexception);
if (throw_monitor_exception) {
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
should_not_reach_here();
} else {
// Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
// Unlock does not block, so don't have to worry about the frame.
Register Rmonitor_addr = R11_scratch1;
addi(Rmonitor_addr, Rcurrent_obj_addr, -BasicObjectLock::obj_offset_in_bytes() + delta);
unlock_object(Rmonitor_addr);
if (install_monitor_exception) {
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
}
b(Lrestart);
}
}
align(32, 12);
bind(Lno_unlock);
pop(state);
}
// Support function for remove_activation & Co.
void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc,
Register Rscratch1, Register Rscratch2) {
// Pop interpreter frame.
ld(Rscratch1, 0, R1_SP); // *SP
ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp
ld(Rscratch2, 0, Rscratch1); // **SP
if (return_pc!=noreg) {
ld(return_pc, _abi(lr), Rscratch1); // LR
}
// Merge top frames.
subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP
stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP
}
void InterpreterMacroAssembler::narrow(Register result) {
Register ret_type = R11_scratch1;
ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
lbz(ret_type, in_bytes(ConstMethod::result_type_offset()), R11_scratch1);
Label notBool, notByte, notChar, done;
// common case first
cmpwi(CCR0, ret_type, T_INT);
beq(CCR0, done);
cmpwi(CCR0, ret_type, T_BOOLEAN);
bne(CCR0, notBool);
andi(result, result, 0x1);
b(done);
bind(notBool);
cmpwi(CCR0, ret_type, T_BYTE);
bne(CCR0, notByte);
extsb(result, result);
b(done);
bind(notByte);
cmpwi(CCR0, ret_type, T_CHAR);
bne(CCR0, notChar);
andi(result, result, 0xffff);
b(done);
bind(notChar);
// cmpwi(CCR0, ret_type, T_SHORT); // all that's left
// bne(CCR0, done);
extsh(result, result);
// Nothing to do for T_INT
bind(done);
}
// Remove activation.
//
// Unlock the receiver if this is a synchronized method.
// Unlock any Java monitors from synchronized blocks.
// Remove the activation from the stack.
//
// If there are locked Java monitors
// If throw_monitor_exception
// throws IllegalMonitorStateException
// Else if install_monitor_exception
// installs IllegalMonitorStateException
// Else
// no error processing
void InterpreterMacroAssembler::remove_activation(TosState state,
bool throw_monitor_exception,
bool install_monitor_exception) {
BLOCK_COMMENT("remove_activation {");
unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
// Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
notify_method_exit(false, state, NotifyJVMTI, true);
BLOCK_COMMENT("reserved_stack_check:");
if (StackReservedPages > 0) {
// Test if reserved zone needs to be enabled.
Label no_reserved_zone_enabling;
// Compare frame pointers. There is no good stack pointer, as with stack
// frame compression we can get different SPs when we do calls. A subsequent
// call could have a smaller SP, so that this compare succeeds for an
// inner call of the method annotated with ReservedStack.
ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread);
ld_ptr(R11_scratch1, _abi(callers_sp), R1_SP); // Load frame pointer.
cmpld(CCR0, R11_scratch1, R0);
blt_predict_taken(CCR0, no_reserved_zone_enabling);
// Enable reserved zone again, throw stack overflow exception.
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError));
should_not_reach_here();
bind(no_reserved_zone_enabling);
}
verify_oop(R17_tos, state);
verify_thread();
merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
mtlr(R0);
BLOCK_COMMENT("} remove_activation");
}
// Lock object
//
// Registers alive
// monitor - Address of the BasicObjectLock to be used for locking,
// which must be initialized with the object to lock.
// object - Address of the object to be locked.
//
void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
if (UseHeavyMonitors) {
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
monitor, /*check_for_exceptions=*/true);
} else {
// template code:
//
// markOop displaced_header = obj->mark().set_unlocked();
// monitor->lock()->set_displaced_header(displaced_header);
// if (Atomic::cmpxchg(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
// // We stored the monitor address into the object's mark word.
// } else if (THREAD->is_lock_owned((address)displaced_header))
// // Simple recursive case.
// monitor->lock()->set_displaced_header(NULL);
// } else {
// // Slow path.
// InterpreterRuntime::monitorenter(THREAD, monitor);
// }
const Register displaced_header = R7_ARG5;
const Register object_mark_addr = R8_ARG6;
const Register current_header = R9_ARG7;
const Register tmp = R10_ARG8;
Label done;
Label cas_failed, slow_case;
assert_different_registers(displaced_header, object_mark_addr, current_header, tmp);
// markOop displaced_header = obj->mark().set_unlocked();
// Load markOop from object into displaced_header.
ld(displaced_header, oopDesc::mark_offset_in_bytes(), object);
if (UseBiasedLocking) {
biased_locking_enter(CCR0, object, displaced_header, tmp, current_header, done, &slow_case);
}
// Set displaced_header to be (markOop of object | UNLOCK_VALUE).
ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
// monitor->lock()->set_displaced_header(displaced_header);
// Initialize the box (Must happen before we update the object mark!).
std(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
BasicLock::displaced_header_offset_in_bytes(), monitor);
// if (Atomic::cmpxchg(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
// Store stack address of the BasicObjectLock (this is monitor) into object.
addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
// Must fence, otherwise, preceding store(s) may float below cmpxchg.
// CmpxchgX sets CCR0 to cmpX(current, displaced).
cmpxchgd(/*flag=*/CCR0,
/*current_value=*/current_header,
/*compare_value=*/displaced_header, /*exchange_value=*/monitor,
/*where=*/object_mark_addr,
MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
MacroAssembler::cmpxchgx_hint_acquire_lock(),
noreg,
&cas_failed,
/*check without membar and ldarx first*/true);
// If the compare-and-exchange succeeded, then we found an unlocked
// object and we have now locked it.
b(done);
bind(cas_failed);
// } else if (THREAD->is_lock_owned((address)displaced_header))
// // Simple recursive case.
// monitor->lock()->set_displaced_header(NULL);
// We did not see an unlocked object so try the fast recursive case.
// Check if owner is self by comparing the value in the markOop of object
// (current_header) with the stack pointer.
sub(current_header, current_header, R1_SP);
assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
load_const_optimized(tmp, ~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place);
and_(R0/*==0?*/, current_header, tmp);
// If condition is true we are done and hence we can store 0 in the displaced
// header indicating it is a recursive lock.
bne(CCR0, slow_case);
std(R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() +
BasicLock::displaced_header_offset_in_bytes(), monitor);
b(done);
// } else {
// // Slow path.
// InterpreterRuntime::monitorenter(THREAD, monitor);
// None of the above fast optimizations worked so we have to get into the
// slow case of monitor enter.
bind(slow_case);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
monitor, /*check_for_exceptions=*/true);
// }
align(32, 12);
bind(done);
}
}
// Unlocks an object. Used in monitorexit bytecode and remove_activation.
//
// Registers alive
// monitor - Address of the BasicObjectLock to be used for locking,
// which must be initialized with the object to lock.
//
// Throw IllegalMonitorException if object is not locked by current thread.
void InterpreterMacroAssembler::unlock_object(Register monitor, bool check_for_exceptions) {
if (UseHeavyMonitors) {
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
monitor, check_for_exceptions);
} else {
// template code:
//
// if ((displaced_header = monitor->displaced_header()) == NULL) {
// // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
// monitor->set_obj(NULL);
// } else if (Atomic::cmpxchg(displaced_header, obj->mark_addr(), monitor) == monitor) {
// // We swapped the unlocked mark in displaced_header into the object's mark word.
// monitor->set_obj(NULL);
// } else {
// // Slow path.
// InterpreterRuntime::monitorexit(THREAD, monitor);
// }
const Register object = R7_ARG5;
const Register displaced_header = R8_ARG6;
const Register object_mark_addr = R9_ARG7;
const Register current_header = R10_ARG8;
Label free_slot;
Label slow_case;
assert_different_registers(object, displaced_header, object_mark_addr, current_header);
if (UseBiasedLocking) {
// The object address from the monitor is in object.
ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor);
assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
biased_locking_exit(CCR0, object, displaced_header, free_slot);
}
// Test first if we are in the fast recursive case.
ld(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
BasicLock::displaced_header_offset_in_bytes(), monitor);
// If the displaced header is zero, we have a recursive unlock.
cmpdi(CCR0, displaced_header, 0);
beq(CCR0, free_slot); // recursive unlock
// } else if (Atomic::cmpxchg(displaced_header, obj->mark_addr(), monitor) == monitor) {
// // We swapped the unlocked mark in displaced_header into the object's mark word.
// monitor->set_obj(NULL);
// If we still have a lightweight lock, unlock the object and be done.
// The object address from the monitor is in object.
if (!UseBiasedLocking) { ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor); }
addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
// We have the displaced header in displaced_header. If the lock is still
// lightweight, it will contain the monitor address and we'll store the
// displaced header back into the object's mark word.
// CmpxchgX sets CCR0 to cmpX(current, monitor).
cmpxchgd(/*flag=*/CCR0,
/*current_value=*/current_header,
/*compare_value=*/monitor, /*exchange_value=*/displaced_header,
/*where=*/object_mark_addr,
MacroAssembler::MemBarRel,
MacroAssembler::cmpxchgx_hint_release_lock(),
noreg,
&slow_case);
b(free_slot);
// } else {
// // Slow path.
// InterpreterRuntime::monitorexit(THREAD, monitor);
// The lock has been converted into a heavy lock and hence
// we need to get into the slow case.
bind(slow_case);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
monitor, check_for_exceptions);
// }
Label done;
b(done); // Monitor register may be overwritten! Runtime has already freed the slot.
// Exchange worked, do monitor->set_obj(NULL);
align(32, 12);
bind(free_slot);
li(R0, 0);
std(R0, BasicObjectLock::obj_offset_in_bytes(), monitor);
bind(done);
}
}
// Load compiled (i2c) or interpreter entry when calling from interpreted and
// do the call. Centralized so that all interpreter calls will do the same actions.
// If jvmti single stepping is on for a thread we must not call compiled code.
//
// Input:
// - Rtarget_method: method to call
// - Rret_addr: return address
// - 2 scratch regs
//
void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr,
Register Rscratch1, Register Rscratch2) {
assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr);
// Assume we want to go compiled if available.
const Register Rtarget_addr = Rscratch1;
const Register Rinterp_only = Rscratch2;
ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method);
if (JvmtiExport::can_post_interpreter_events()) {
lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
// compiled code in threads for which the event is enabled. Check here for
// interp_only_mode if these events CAN be enabled.
Label done;
verify_thread();
cmpwi(CCR0, Rinterp_only, 0);
beq(CCR0, done);
ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method);
align(32, 12);
bind(done);
}
#ifdef ASSERT
{
Label Lok;
cmpdi(CCR0, Rtarget_addr, 0);
bne(CCR0, Lok);
stop("null entry point");
bind(Lok);
}
#endif // ASSERT
mr(R21_sender_SP, R1_SP);
// Calc a precise SP for the call. The SP value we calculated in
// generate_fixed_frame() is based on the max_stack() value, so we would waste stack space
// if esp is not max. Also, the i2c adapter extends the stack space without restoring
// our pre-calced value, so repeating calls via i2c would result in stack overflow.
// Since esp already points to an empty slot, we just have to sub 1 additional slot
// to meet the abi scratch requirements.
// The max_stack pointer will get restored by means of the GR_Lmax_stack local in
// the return entry of the interpreter.
addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::abi_reg_args_size);
clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address
resize_frame_absolute(Rscratch2, Rscratch2, R0);
mr_if_needed(R19_method, Rtarget_method);
mtctr(Rtarget_addr);
mtlr(Rret_addr);
save_interpreter_state(Rscratch2);
#ifdef ASSERT
ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp
cmpd(CCR0, R21_sender_SP, Rscratch1);
asm_assert_eq("top_frame_sp incorrect", 0x951);
#endif
bctr();
}
// Set the method data pointer for the current bcp.
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
assert(ProfileInterpreter, "must be profiling interpreter");
Label get_continue;
ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method);
test_method_data_pointer(get_continue);
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp);
addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
add(R28_mdx, R28_mdx, R3_RET);
bind(get_continue);
}
// Test ImethodDataPtr. If it is null, continue at the specified label.
void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
assert(ProfileInterpreter, "must be profiling interpreter");
cmpdi(CCR0, R28_mdx, 0);
beq(CCR0, zero_continue);
}
void InterpreterMacroAssembler::verify_method_data_pointer() {
assert(ProfileInterpreter, "must be profiling interpreter");
#ifdef ASSERT
Label verify_continue;
test_method_data_pointer(verify_continue);
// If the mdp is valid, it will point to a DataLayout header which is
// consistent with the bcp. The converse is highly probable also.
lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx);
ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method);
addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
add(R11_scratch1, R12_scratch2, R12_scratch2);
cmpd(CCR0, R11_scratch1, R14_bcp);
beq(CCR0, verify_continue);
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx);
bind(verify_continue);
#endif
}
void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
Register method_counters,
Register Rscratch,
Label &profile_continue) {
assert(ProfileInterpreter, "must be profiling interpreter");
// Control will flow to "profile_continue" if the counter is less than the
// limit or if we call profile_method().
Label done;
// If no method data exists, and the counter is high enough, make one.
lwz(Rscratch, in_bytes(MethodCounters::interpreter_profile_limit_offset()), method_counters);
cmpdi(CCR0, R28_mdx, 0);
// Test to see if we should create a method data oop.
cmpd(CCR1, Rscratch, invocation_count);
bne(CCR0, done);
bge(CCR1, profile_continue);
// Build it now.
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
set_method_data_pointer_for_bcp();
b(profile_continue);
align(32, 12);
bind(done);
}
void InterpreterMacroAssembler::test_backedge_count_for_osr(Register backedge_count, Register method_counters,
Register target_bcp, Register disp, Register Rtmp) {
assert_different_registers(backedge_count, target_bcp, disp, Rtmp, R4_ARG2);
assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
Label did_not_overflow;
Label overflow_with_error;
lwz(Rtmp, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()), method_counters);
cmpw(CCR0, backedge_count, Rtmp);
blt(CCR0, did_not_overflow);
// When ProfileInterpreter is on, the backedge_count comes from the
// methodDataOop, which value does not get reset on the call to
// frequency_counter_overflow(). To avoid excessive calls to the overflow
// routine while the method is being compiled, add a second test to make sure
// the overflow function is called only once every overflow_frequency.
if (ProfileInterpreter) {
const int overflow_frequency = 1024;
andi_(Rtmp, backedge_count, overflow_frequency-1);
bne(CCR0, did_not_overflow);
}
// Overflow in loop, pass branch bytecode.
subf(R4_ARG2, disp, target_bcp); // Compute branch bytecode (previous bcp).
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
// Was an OSR adapter generated?
cmpdi(CCR0, R3_RET, 0);
beq(CCR0, overflow_with_error);
// Has the nmethod been invalidated already?
lbz(Rtmp, nmethod::state_offset(), R3_RET);
cmpwi(CCR0, Rtmp, nmethod::in_use);
bne(CCR0, overflow_with_error);
// Migrate the interpreter frame off of the stack.
// We can use all registers because we will not return to interpreter from this point.
// Save nmethod.
const Register osr_nmethod = R31;
mr(osr_nmethod, R3_RET);
set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
reset_last_Java_frame();
// OSR buffer is in ARG1
// Remove the interpreter frame.
merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
// Jump to the osr code.
ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
mtlr(R0);
mtctr(R11_scratch1);
bctr();
align(32, 12);
bind(overflow_with_error);
bind(did_not_overflow);
}
// Store a value at some constant offset from the method data pointer.
void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
assert(ProfileInterpreter, "must be profiling interpreter");
std(value, constant, R28_mdx);
}
// Increment the value at some constant offset from the method data pointer.
void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
Register counter_addr,
Register Rbumped_count,
bool decrement) {
// Locate the counter at a fixed offset from the mdp:
addi(counter_addr, R28_mdx, constant);
increment_mdp_data_at(counter_addr, Rbumped_count, decrement);
}
// Increment the value at some non-fixed (reg + constant) offset from
// the method data pointer.
void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
int constant,
Register scratch,
Register Rbumped_count,
bool decrement) {
// Add the constant to reg to get the offset.
add(scratch, R28_mdx, reg);
// Then calculate the counter address.
addi(scratch, scratch, constant);
increment_mdp_data_at(scratch, Rbumped_count, decrement);
}
void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr,
Register Rbumped_count,
bool decrement) {
assert(ProfileInterpreter, "must be profiling interpreter");
// Load the counter.
ld(Rbumped_count, 0, counter_addr);
if (decrement) {
// Decrement the register. Set condition codes.
addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment);
// Store the decremented counter, if it is still negative.
std(Rbumped_count, 0, counter_addr);
// Note: add/sub overflow check are not ported, since 64 bit
// calculation should never overflow.
} else {
// Increment the register. Set carry flag.
addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment);
// Store the incremented counter.
std(Rbumped_count, 0, counter_addr);
}
}
// Set a flag value at the current method data pointer position.
void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
Register scratch) {
assert(ProfileInterpreter, "must be profiling interpreter");
// Load the data header.
lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
// Set the flag.
ori(scratch, scratch, flag_constant);
// Store the modified header.
stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
}
// Test the location at some offset from the method data pointer.
// If it is not equal to value, branch to the not_equal_continue Label.
void InterpreterMacroAssembler::test_mdp_data_at(int offset,
Register value,
Label& not_equal_continue,
Register test_out) {
assert(ProfileInterpreter, "must be profiling interpreter");
ld(test_out, offset, R28_mdx);
cmpd(CCR0, value, test_out);
bne(CCR0, not_equal_continue);
}
// Update the method data pointer by the displacement located at some fixed
// offset from the method data pointer.
void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
Register scratch) {
assert(ProfileInterpreter, "must be profiling interpreter");
ld(scratch, offset_of_disp, R28_mdx);
add(R28_mdx, scratch, R28_mdx);
}
// Update the method data pointer by the displacement located at the
// offset (reg + offset_of_disp).
void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
int offset_of_disp,
Register scratch) {
assert(ProfileInterpreter, "must be profiling interpreter");
add(scratch, reg, R28_mdx);
ld(scratch, offset_of_disp, scratch);
add(R28_mdx, scratch, R28_mdx);
}
// Update the method data pointer by a simple constant displacement.
void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
assert(ProfileInterpreter, "must be profiling interpreter");
addi(R28_mdx, R28_mdx, constant);
}
// Update the method data pointer for a _ret bytecode whose target
// was not among our cached targets.
void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
Register return_bci) {
assert(ProfileInterpreter, "must be profiling interpreter");
push(state);
assert(return_bci->is_nonvolatile(), "need to protect return_bci");
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
pop(state);
}
// Increments the backedge counter.
// Returns backedge counter + invocation counter in Rdst.
void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst,
const Register Rtmp1, Register Rscratch) {
assert(UseCompiler, "incrementing must be useful");
assert_different_registers(Rdst, Rtmp1);
const Register invocation_counter = Rtmp1;
const Register counter = Rdst;
// TODO: PPC port: assert(4 == InvocationCounter::sz_counter(), "unexpected field size.");
// Load backedge counter.
lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
in_bytes(InvocationCounter::counter_offset()), Rcounters);
// Load invocation counter.
lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) +
in_bytes(InvocationCounter::counter_offset()), Rcounters);
// Add the delta to the backedge counter.
addi(counter, counter, InvocationCounter::count_increment);
// Mask the invocation counter.
andi(invocation_counter, invocation_counter, InvocationCounter::count_mask_value);
// Store new counter value.
stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
in_bytes(InvocationCounter::counter_offset()), Rcounters);
// Return invocation counter + backedge counter.
add(counter, counter, invocation_counter);
}
// Count a taken branch in the bytecodes.
void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
// We are taking a branch. Increment the taken count.
increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
bind (profile_continue);
}
}
// Count a not-taken branch in the bytecodes.
void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
// We are taking a branch. Increment the not taken count.
increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2);
// The method data pointer needs to be updated to correspond to the
// next bytecode.
update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
bind (profile_continue);
}
}
// Count a non-virtual call in the bytecodes.
void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
// We are making a call. Increment the count.
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
bind (profile_continue);
}
}
// Count a final call in the bytecodes.
void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
// We are making a call. Increment the count.
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
bind (profile_continue);
}
}
// Count a virtual call in the bytecodes.
void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver,
Register Rscratch1,
Register Rscratch2,
bool receiver_can_be_null) {
if (!ProfileInterpreter) { return; }
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
Label skip_receiver_profile;
if (receiver_can_be_null) {
Label not_null;
cmpdi(CCR0, Rreceiver, 0);
bne(CCR0, not_null);
// We are making a call. Increment the count for null receiver.
increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2);
b(skip_receiver_profile);
bind(not_null);
}
// Record the receiver type.
record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2, true);
bind(skip_receiver_profile);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
bind (profile_continue);
}
void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
int mdp_delta = in_bytes(BitData::bit_data_size());
if (TypeProfileCasts) {
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
// Record the object type.
record_klass_in_profile(Rklass, Rscratch1, Rscratch2, false);
}
// The method data pointer needs to be updated.
update_mdp_by_constant(mdp_delta);
bind (profile_continue);
}
}
void InterpreterMacroAssembler::profile_typecheck_failed(Register Rscratch1, Register Rscratch2) {
if (ProfileInterpreter && TypeProfileCasts) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
int count_offset = in_bytes(CounterData::count_offset());
// Back up the address, since we have already bumped the mdp.
count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
// *Decrement* the counter. We expect to see zero or small negatives.
increment_mdp_data_at(count_offset, Rscratch1, Rscratch2, true);
bind (profile_continue);
}
}
// Count a ret in the bytecodes.
void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci,
Register scratch1, Register scratch2) {
if (ProfileInterpreter) {
Label profile_continue;
uint row;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
// Update the total ret count.
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 );
for (row = 0; row < RetData::row_limit(); row++) {
Label next_test;
// See if return_bci is equal to bci[n]:
test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1);
// return_bci is equal to bci[n]. Increment the count.
increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1);
b(profile_continue);
bind(next_test);
}
update_mdp_for_ret(state, return_bci);
bind (profile_continue);
}
}
// Count the default case of a switch construct.
void InterpreterMacroAssembler::profile_switch_default(Register scratch1, Register scratch2) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
// Update the default case count
increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
scratch1, scratch2);
// The method data pointer needs to be updated.
update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()),
scratch1);
bind (profile_continue);
}
}
// Count the index'th case of a switch construct.
void InterpreterMacroAssembler::profile_switch_case(Register index,
Register scratch1,
Register scratch2,
Register scratch3) {
if (ProfileInterpreter) {
assert_different_registers(index, scratch1, scratch2, scratch3);
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
// Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes().
li(scratch3, in_bytes(MultiBranchData::case_array_offset()));
assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works");
sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
add(scratch1, scratch1, scratch3);
// Update the case count.
increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3);
// The method data pointer needs to be updated.
update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2);
bind (profile_continue);
}
}
void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) {
if (ProfileInterpreter) {
assert_different_registers(Rscratch1, Rscratch2);
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1);
// The method data pointer needs to be updated.
int mdp_delta = in_bytes(BitData::bit_data_size());
if (TypeProfileCasts) {
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
}
update_mdp_by_constant(mdp_delta);
bind (profile_continue);
}
}
void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver,
Register Rscratch1, Register Rscratch2,
bool is_virtual_call) {
assert(ProfileInterpreter, "must be profiling");
assert_different_registers(Rreceiver, Rscratch1, Rscratch2);
Label done;
record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done, is_virtual_call);
bind (done);
}
void InterpreterMacroAssembler::record_klass_in_profile_helper(
Register receiver, Register scratch1, Register scratch2,
int start_row, Label& done, bool is_virtual_call) {
if (TypeProfileWidth == 0) {
if (is_virtual_call) {
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
}
return;
}
int last_row = VirtualCallData::row_limit() - 1;
assert(start_row <= last_row, "must be work left to do");
// Test this row for both the receiver and for null.
// Take any of three different outcomes:
// 1. found receiver => increment count and goto done
// 2. found null => keep looking for case 1, maybe allocate this cell
// 3. found something else => keep looking for cases 1 and 2
// Case 3 is handled by a recursive call.
for (int row = start_row; row <= last_row; row++) {
Label next_test;
bool test_for_null_also = (row == start_row);
// See if the receiver is receiver[n].
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
test_mdp_data_at(recvr_offset, receiver, next_test, scratch1);
// delayed()->tst(scratch);
// The receiver is receiver[n]. Increment count[n].
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
increment_mdp_data_at(count_offset, scratch1, scratch2);
b(done);
bind(next_test);
if (test_for_null_also) {
Label found_null;
// Failed the equality check on receiver[n]... Test for null.
if (start_row == last_row) {
// The only thing left to do is handle the null case.
if (is_virtual_call) {
// Scratch1 contains test_out from test_mdp_data_at.
cmpdi(CCR0, scratch1, 0);
beq(CCR0, found_null);
// Receiver did not match any saved receiver and there is no empty row for it.
// Increment total counter to indicate polymorphic case.
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
b(done);
bind(found_null);
} else {
cmpdi(CCR0, scratch1, 0);
bne(CCR0, done);
}
break;
}
// Since null is rare, make it be the branch-taken case.
cmpdi(CCR0, scratch1, 0);
beq(CCR0, found_null);
// Put all the "Case 3" tests here.
record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done, is_virtual_call);
// Found a null. Keep searching for a matching receiver,
// but remember that this is an empty (unused) slot.
bind(found_null);
}
}
// In the fall-through case, we found no matching receiver, but we
// observed the receiver[start_row] is NULL.
// Fill in the receiver field and increment the count.
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
set_mdp_data_at(recvr_offset, receiver);
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
li(scratch1, DataLayout::counter_increment);
set_mdp_data_at(count_offset, scratch1);
if (start_row > 0) {
b(done);
}
}
// Argument and return type profilig.
// kills: tmp, tmp2, R0, CR0, CR1
void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base,
RegisterOrConstant mdo_addr_offs,
Register tmp, Register tmp2) {
Label do_nothing, do_update;
// tmp2 = obj is allowed
assert_different_registers(obj, mdo_addr_base, tmp, R0);
assert_different_registers(tmp2, mdo_addr_base, tmp, R0);
const Register klass = tmp2;
verify_oop(obj);
ld(tmp, mdo_addr_offs, mdo_addr_base);
// Set null_seen if obj is 0.
cmpdi(CCR0, obj, 0);
ori(R0, tmp, TypeEntries::null_seen);
beq(CCR0, do_update);
load_klass(klass, obj);
clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
// Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
cmpd(CCR1, R0, klass);
// Klass seen before, nothing to do (regardless of unknown bit).
//beq(CCR1, do_nothing);
andi_(R0, klass, TypeEntries::type_unknown);
// Already unknown. Nothing to do anymore.
//bne(CCR0, do_nothing);
crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne
beq(CCR0, do_nothing);
clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
beq(CCR0, do_update); // First time here. Set profile type.
// Different than before. Cannot keep accurate profile.
ori(R0, tmp, TypeEntries::type_unknown);
bind(do_update);
// update profile
std(R0, mdo_addr_offs, mdo_addr_base);
align(32, 12);
bind(do_nothing);
}
void InterpreterMacroAssembler::profile_arguments_type(Register callee,
Register tmp1, Register tmp2,
bool is_virtual) {
if (!ProfileInterpreter) {
return;
}
assert_different_registers(callee, tmp1, tmp2, R28_mdx);
if (MethodData::profile_arguments() || MethodData::profile_return()) {
Label profile_continue;
test_method_data_pointer(profile_continue);
int off_to_start = is_virtual ?
in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx);
cmpwi(CCR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
bne(CCR0, profile_continue);
if (MethodData::profile_arguments()) {
Label done;
int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
add(R28_mdx, off_to_args, R28_mdx);
for (int i = 0; i < TypeProfileArgsLimit; i++) {
if (i > 0 || MethodData::profile_return()) {
// If return value type is profiled we may have no argument to profile.
ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
cmpdi(CCR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count());
addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count());
blt(CCR0, done);
}
ld(tmp1, in_bytes(Method::const_offset()), callee);
lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1);
// Stack offset o (zero based) from the start of the argument
// list, for n arguments translates into offset n - o - 1 from
// the end of the argument list. But there's an extra slot at
// the top of the stack. So the offset is n - o from Lesp.
ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx);
subf(tmp1, tmp2, tmp1);
sldi(tmp1, tmp1, Interpreter::logStackElementSize);
ldx(tmp1, tmp1, R15_esp);
profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1);
int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
addi(R28_mdx, R28_mdx, to_add);
off_to_args += to_add;
}
if (MethodData::profile_return()) {
ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
}
bind(done);
if (MethodData::profile_return()) {
// We're right after the type profile for the last
// argument. tmp1 is the number of cells left in the
// CallTypeData/VirtualCallTypeData to reach its end. Non null
// if there's a return to profile.
assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(),
"can't move past ret type");
sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size));
add(R28_mdx, tmp1, R28_mdx);
}
} else {
assert(MethodData::profile_return(), "either profile call args or call ret");
update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
}
// Mdp points right after the end of the
// CallTypeData/VirtualCallTypeData, right after the cells for the
// return value type if there's one.
align(32, 12);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
assert_different_registers(ret, tmp1, tmp2);
if (ProfileInterpreter && MethodData::profile_return()) {
Label profile_continue;
test_method_data_pointer(profile_continue);
if (MethodData::profile_return_jsr292_only()) {
// If we don't profile all invoke bytecodes we must make sure
// it's a bytecode we indeed profile. We can't go back to the
// begining of the ProfileData we intend to update to check its
// type because we're right after it and we don't known its
// length.
lbz(tmp1, 0, R14_bcp);
lbz(tmp2, Method::intrinsic_id_offset_in_bytes(), R19_method);
cmpwi(CCR0, tmp1, Bytecodes::_invokedynamic);
cmpwi(CCR1, tmp1, Bytecodes::_invokehandle);
cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
cmpwi(CCR1, tmp2, vmIntrinsics::_compiledLambdaForm);
cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
bne(CCR0, profile_continue);
}
profile_obj_type(ret, R28_mdx, -in_bytes(ReturnTypeEntry::size()), tmp1, tmp2);
align(32, 12);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2,
Register tmp3, Register tmp4) {
if (ProfileInterpreter && MethodData::profile_parameters()) {
Label profile_continue, done;
test_method_data_pointer(profile_continue);
// Load the offset of the area within the MDO used for
// parameters. If it's negative we're not profiling any parameters.
lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx);
cmpwi(CCR0, tmp1, 0);
blt(CCR0, profile_continue);
// Compute a pointer to the area for parameters from the offset
// and move the pointer to the slot for the last
// parameters. Collect profiling from last parameter down.
// mdo start + parameters offset + array length - 1
// Pointer to the parameter area in the MDO.
const Register mdp = tmp1;
add(mdp, tmp1, R28_mdx);
// Offset of the current profile entry to update.
const Register entry_offset = tmp2;
// entry_offset = array len in number of cells
ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp);
int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
// entry_offset (number of cells) = array len - size of 1 entry + offset of the stack slot field
addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size));
// entry_offset in bytes
sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
Label loop;
align(32, 12);
bind(loop);
// Load offset on the stack from the slot for this parameter.
ld(tmp3, entry_offset, mdp);
sldi(tmp3, tmp3, Interpreter::logStackElementSize);
neg(tmp3, tmp3);
// Read the parameter from the local area.
ldx(tmp3, tmp3, R18_locals);
// Make entry_offset now point to the type field for this parameter.
int type_base = in_bytes(ParametersTypeData::type_offset(0));
assert(type_base > off_base, "unexpected");
addi(entry_offset, entry_offset, type_base - off_base);
// Profile the parameter.
profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3);
// Go to next parameter.
int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base);
cmpdi(CCR0, entry_offset, off_base + delta);
addi(entry_offset, entry_offset, -delta);
bge(CCR0, loop);
align(32, 12);
bind(profile_continue);
}
}
// Add a InterpMonitorElem to stack (see frame_sparc.hpp).
void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) {
// Very-local scratch registers.
const Register esp = Rtemp1;
const Register slot = Rtemp2;
// Extracted monitor_size.
int monitor_size = frame::interpreter_frame_monitor_size_in_bytes();
assert(Assembler::is_aligned((unsigned int)monitor_size,
(unsigned int)frame::alignment_in_bytes),
"size of a monitor must respect alignment of SP");
resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor
std(R1_SP, _ijava_state_neg(top_frame_sp), esp); // esp contains fp
// Shuffle expression stack down. Recall that stack_base points
// just above the new expression stack bottom. Old_tos and new_tos
// are used to scan thru the old and new expression stacks.
if (!stack_is_empty) {
Label copy_slot, copy_slot_finished;
const Register n_slots = slot;
addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack).
subf(n_slots, esp, R26_monitor);
srdi_(n_slots, n_slots, LogBytesPerWord); // Compute number of slots to copy.
assert(LogBytesPerWord == 3, "conflicts assembler instructions");
beq(CCR0, copy_slot_finished); // Nothing to copy.
mtctr(n_slots);
// loop
bind(copy_slot);
ld(slot, 0, esp); // Move expression stack down.
std(slot, -monitor_size, esp); // distance = monitor_size
addi(esp, esp, BytesPerWord);
bdnz(copy_slot);
bind(copy_slot_finished);
}
addi(R15_esp, R15_esp, -monitor_size);
addi(R26_monitor, R26_monitor, -monitor_size);
// Restart interpreter
}
// ============================================================================
// Java locals access
// Load a local variable at index in Rindex into register Rdst_value.
// Also puts address of local into Rdst_address as a service.
// Kills:
// - Rdst_value
// - Rdst_address
void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) {
sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
subf(Rdst_address, Rdst_address, R18_locals);
lwz(Rdst_value, 0, Rdst_address);
}
// Load a local variable at index in Rindex into register Rdst_value.
// Also puts address of local into Rdst_address as a service.
// Kills:
// - Rdst_value
// - Rdst_address
void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) {
sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
subf(Rdst_address, Rdst_address, R18_locals);
ld(Rdst_value, -8, Rdst_address);
}
// Load a local variable at index in Rindex into register Rdst_value.
// Also puts address of local into Rdst_address as a service.
// Input:
// - Rindex: slot nr of local variable
// Kills:
// - Rdst_value
// - Rdst_address
void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value,
Register Rdst_address,
Register Rindex) {
sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
subf(Rdst_address, Rdst_address, R18_locals);
ld(Rdst_value, 0, Rdst_address);
}
// Load a local variable at index in Rindex into register Rdst_value.
// Also puts address of local into Rdst_address as a service.
// Kills:
// - Rdst_value
// - Rdst_address
void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value,
Register Rdst_address,
Register Rindex) {
sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
subf(Rdst_address, Rdst_address, R18_locals);
lfs(Rdst_value, 0, Rdst_address);
}
// Load a local variable at index in Rindex into register Rdst_value.
// Also puts address of local into Rdst_address as a service.
// Kills:
// - Rdst_value
// - Rdst_address
void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value,
Register Rdst_address,
Register Rindex) {
sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
subf(Rdst_address, Rdst_address, R18_locals);
lfd(Rdst_value, -8, Rdst_address);
}
// Store an int value at local variable slot Rindex.
// Kills:
// - Rindex
void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) {
sldi(Rindex, Rindex, Interpreter::logStackElementSize);
subf(Rindex, Rindex, R18_locals);
stw(Rvalue, 0, Rindex);
}
// Store a long value at local variable slot Rindex.
// Kills:
// - Rindex
void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) {
sldi(Rindex, Rindex, Interpreter::logStackElementSize);
subf(Rindex, Rindex, R18_locals);
std(Rvalue, -8, Rindex);
}
// Store an oop value at local variable slot Rindex.
// Kills:
// - Rindex
void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) {
sldi(Rindex, Rindex, Interpreter::logStackElementSize);
subf(Rindex, Rindex, R18_locals);
std(Rvalue, 0, Rindex);
}
// Store an int value at local variable slot Rindex.
// Kills:
// - Rindex
void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) {
sldi(Rindex, Rindex, Interpreter::logStackElementSize);
subf(Rindex, Rindex, R18_locals);
stfs(Rvalue, 0, Rindex);
}
// Store an int value at local variable slot Rindex.
// Kills:
// - Rindex
void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) {
sldi(Rindex, Rindex, Interpreter::logStackElementSize);
subf(Rindex, Rindex, R18_locals);
stfd(Rvalue, -8, Rindex);
}
// Read pending exception from thread and jump to interpreter.
// Throw exception entry if one if pending. Fall through otherwise.
void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) {
assert_different_registers(Rscratch1, Rscratch2, R3);
Register Rexception = Rscratch1;
Register Rtmp = Rscratch2;
Label Ldone;
// Get pending exception oop.
ld(Rexception, thread_(pending_exception));
cmpdi(CCR0, Rexception, 0);
beq(CCR0, Ldone);
li(Rtmp, 0);
mr_if_needed(R3, Rexception);
std(Rtmp, thread_(pending_exception)); // Clear exception in thread
if (Interpreter::rethrow_exception_entry() != NULL) {
// Already got entry address.
load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry());
} else {
// Dynamically load entry address.
int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true);
ld(Rtmp, simm16_rest, Rtmp);
}
mtctr(Rtmp);
save_interpreter_state(Rtmp);
bctr();
align(32, 12);
bind(Ldone);
}
void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
save_interpreter_state(R11_scratch1);
MacroAssembler::call_VM(oop_result, entry_point, false);
restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
check_and_handle_popframe(R11_scratch1);
check_and_handle_earlyret(R11_scratch1);
// Now check exceptions manually.
if (check_exceptions) {
check_and_forward_exception(R11_scratch1, R12_scratch2);
}
}
void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
Register arg_1, bool check_exceptions) {
// ARG1 is reserved for the thread.
mr_if_needed(R4_ARG2, arg_1);
call_VM(oop_result, entry_point, check_exceptions);
}
void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
Register arg_1, Register arg_2,
bool check_exceptions) {
// ARG1 is reserved for the thread.
mr_if_needed(R4_ARG2, arg_1);
assert(arg_2 != R4_ARG2, "smashed argument");
mr_if_needed(R5_ARG3, arg_2);
call_VM(oop_result, entry_point, check_exceptions);
}
void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
Register arg_1, Register arg_2, Register arg_3,
bool check_exceptions) {
// ARG1 is reserved for the thread.
mr_if_needed(R4_ARG2, arg_1);
assert(arg_2 != R4_ARG2, "smashed argument");
mr_if_needed(R5_ARG3, arg_2);
assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument");
mr_if_needed(R6_ARG4, arg_3);
call_VM(oop_result, entry_point, check_exceptions);
}
void InterpreterMacroAssembler::save_interpreter_state(Register scratch) {
ld(scratch, 0, R1_SP);
std(R15_esp, _ijava_state_neg(esp), scratch);
std(R14_bcp, _ijava_state_neg(bcp), scratch);
std(R26_monitor, _ijava_state_neg(monitors), scratch);
if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); }
// Other entries should be unchanged.
}
void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only) {
ld(scratch, 0, R1_SP);
ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception).
if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code.
if (!bcp_and_mdx_only) {
// Following ones are Metadata.
ld(R19_method, _ijava_state_neg(method), scratch);
ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch);
// Following ones are stack addresses and don't require reload.
ld(R15_esp, _ijava_state_neg(esp), scratch);
ld(R18_locals, _ijava_state_neg(locals), scratch);
ld(R26_monitor, _ijava_state_neg(monitors), scratch);
}
#ifdef ASSERT
{
Label Lok;
subf(R0, R1_SP, scratch);
cmpdi(CCR0, R0, frame::abi_reg_args_size + frame::ijava_state_size);
bge(CCR0, Lok);
stop("frame too small (restore istate)", 0x5432);
bind(Lok);
}
#endif
}
void InterpreterMacroAssembler::get_method_counters(Register method,
Register Rcounters,
Label& skip) {
BLOCK_COMMENT("Load and ev. allocate counter object {");
Label has_counters;
ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
cmpdi(CCR0, Rcounters, 0);
bne(CCR0, has_counters);
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::build_method_counters), method, false);
ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
cmpdi(CCR0, Rcounters, 0);
beq(CCR0, skip); // No MethodCounters, OutOfMemory.
BLOCK_COMMENT("} Load and ev. allocate counter object");
bind(has_counters);
}
void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters,
Register iv_be_count,
Register Rtmp_r0) {
assert(UseCompiler || LogTouchedMethods, "incrementing must be useful");
Register invocation_count = iv_be_count;
Register backedge_count = Rtmp_r0;
int delta = InvocationCounter::count_increment;
// Load each counter in a register.
// ld(inv_counter, Rtmp);
// ld(be_counter, Rtmp2);
int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() +
InvocationCounter::counter_offset());
int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() +
InvocationCounter::counter_offset());
BLOCK_COMMENT("Increment profiling counters {");
// Load the backedge counter.
lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int
// Mask the backedge counter.
andi(backedge_count, backedge_count, InvocationCounter::count_mask_value);
// Load the invocation counter.
lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int
// Add the delta to the invocation counter and store the result.
addi(invocation_count, invocation_count, delta);
// Store value.
stw(invocation_count, inv_counter_offset, Rcounters);
// Add invocation counter + backedge counter.
add(iv_be_count, backedge_count, invocation_count);
// Note that this macro must leave the backedge_count + invocation_count in
// register iv_be_count!
BLOCK_COMMENT("} Increment profiling counters");
}
void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
if (state == atos) { MacroAssembler::verify_oop(reg); }
}
// Local helper function for the verify_oop_or_return_address macro.
static bool verify_return_address(Method* m, int bci) {
#ifndef PRODUCT
address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci;
// Assume it is a valid return address if it is inside m and is preceded by a jsr.
if (!m->contains(pc)) return false;
address jsr_pc;
jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true;
jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true;
#endif // PRODUCT
return false;
}
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
if (VerifyFPU) {
unimplemented("verfiyFPU");
}
}
void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
if (!VerifyOops) return;
// The VM documentation for the astore[_wide] bytecode allows
// the TOS to be not only an oop but also a return address.
Label test;
Label skip;
// See if it is an address (in the current method):
const int log2_bytecode_size_limit = 16;
srdi_(Rtmp, reg, log2_bytecode_size_limit);
bne(CCR0, test);
address fd = CAST_FROM_FN_PTR(address, verify_return_address);
const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
save_volatile_gprs(R1_SP, -nbytes_save); // except R0
save_LR_CR(Rtmp); // Save in old frame.
push_frame_reg_args(nbytes_save, Rtmp);
load_const_optimized(Rtmp, fd, R0);
mr_if_needed(R4_ARG2, reg);
mr(R3_ARG1, R19_method);
call_c(Rtmp); // call C
pop_frame();
restore_LR_CR(Rtmp);
restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
b(skip);
// Perform a more elaborate out-of-line call.
// Not an address; verify it:
bind(test);
verify_oop(reg);
bind(skip);
}
// Inline assembly for:
//
// if (thread is in interp_only_mode) {
// InterpreterRuntime::post_method_entry();
// }
// if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) ||
// *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2) ) {
// SharedRuntime::jvmpi_method_entry(method, receiver);
// }
void InterpreterMacroAssembler::notify_method_entry() {
// JVMTI
// Whenever JVMTI puts a thread in interp_only_mode, method
// entry/exit events are sent for that thread to track stack
// depth. If it is possible to enter interp_only_mode we add
// the code to check if the event should be sent.
if (JvmtiExport::can_post_interpreter_events()) {
Label jvmti_post_done;
lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
cmpwi(CCR0, R0, 0);
beq(CCR0, jvmti_post_done);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry),
/*check_exceptions=*/true);
bind(jvmti_post_done);
}
}
// Inline assembly for:
//
// if (thread is in interp_only_mode) {
// // save result
// InterpreterRuntime::post_method_exit();
// // restore result
// }
// if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) {
// // save result
// SharedRuntime::jvmpi_method_exit();
// // restore result
// }
//
// Native methods have their result stored in d_tmp and l_tmp.
// Java methods have their result stored in the expression stack.
void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state,
NotifyMethodExitMode mode, bool check_exceptions) {
// JVMTI
// Whenever JVMTI puts a thread in interp_only_mode, method
// entry/exit events are sent for that thread to track stack
// depth. If it is possible to enter interp_only_mode we add
// the code to check if the event should be sent.
if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
Label jvmti_post_done;
lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
cmpwi(CCR0, R0, 0);
beq(CCR0, jvmti_post_done);
if (!is_native_method) { push(state); } // Expose tos to GC.
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit),
/*check_exceptions=*/check_exceptions);
if (!is_native_method) { pop(state); }
align(32, 12);
bind(jvmti_post_done);
}
// Dtrace support not implemented.
}