8040245: G1: VM hangs during shutdown
Summary: temporarily disable the shutdown of the concurrent GC threads introduced in JDK-8037112
Reviewed-by: brutisso, tschatzl, jmasa
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// no precompiled headers
#include "assembler_ppc.inline.hpp"
#include "classfile/classLoader.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "interpreter/interpreter.hpp"
#include "jvm_aix.h"
#include "memory/allocation.inline.hpp"
#include "mutex_aix.inline.hpp"
#include "nativeInst_ppc.hpp"
#include "os_share_aix.hpp"
#include "prims/jniFastGetField.hpp"
#include "prims/jvm.h"
#include "prims/jvm_misc.hpp"
#include "runtime/arguments.hpp"
#include "runtime/extendedPC.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/osThread.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/timer.hpp"
#include "utilities/events.hpp"
#include "utilities/vmError.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
// put OS-includes here
# include <ucontext.h>
address os::current_stack_pointer() {
address csp;
#if !defined(USE_XLC_BUILTINS)
// inline assembly for `mr regno(csp), R1_SP':
__asm__ __volatile__ ("mr %0, 1":"=r"(csp):);
#else
csp = (address) __builtin_frame_address(0);
#endif
return csp;
}
char* os::non_memory_address_word() {
// Must never look like an address returned by reserve_memory,
// even in its subfields (as defined by the CPU immediate fields,
// if the CPU splits constants across multiple instructions).
return (char*) -1;
}
// OS specific thread initialization
//
// Calculate and store the limits of the memory stack.
void os::initialize_thread(Thread *thread) { }
// Frame information (pc, sp, fp) retrieved via ucontext
// always looks like a C-frame according to the frame
// conventions in frame_ppc64.hpp.
address os::Aix::ucontext_get_pc(ucontext_t * uc) {
return (address)uc->uc_mcontext.jmp_context.iar;
}
intptr_t* os::Aix::ucontext_get_sp(ucontext_t * uc) {
// gpr1 holds the stack pointer on aix
return (intptr_t*)uc->uc_mcontext.jmp_context.gpr[1/*REG_SP*/];
}
intptr_t* os::Aix::ucontext_get_fp(ucontext_t * uc) {
return NULL;
}
void os::Aix::ucontext_set_pc(ucontext_t* uc, address new_pc) {
uc->uc_mcontext.jmp_context.iar = (uint64_t) new_pc;
}
ExtendedPC os::fetch_frame_from_context(void* ucVoid,
intptr_t** ret_sp, intptr_t** ret_fp) {
ExtendedPC epc;
ucontext_t* uc = (ucontext_t*)ucVoid;
if (uc != NULL) {
epc = ExtendedPC(os::Aix::ucontext_get_pc(uc));
if (ret_sp) *ret_sp = os::Aix::ucontext_get_sp(uc);
if (ret_fp) *ret_fp = os::Aix::ucontext_get_fp(uc);
} else {
// construct empty ExtendedPC for return value checking
epc = ExtendedPC(NULL);
if (ret_sp) *ret_sp = (intptr_t *)NULL;
if (ret_fp) *ret_fp = (intptr_t *)NULL;
}
return epc;
}
frame os::fetch_frame_from_context(void* ucVoid) {
intptr_t* sp;
intptr_t* fp;
ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
// Avoid crash during crash if pc broken.
if (epc.pc()) {
frame fr(sp, epc.pc());
return fr;
}
frame fr(sp);
return fr;
}
frame os::get_sender_for_C_frame(frame* fr) {
if (*fr->sp() == NULL) {
// fr is the last C frame
return frame(NULL, NULL);
}
return frame(fr->sender_sp(), fr->sender_pc());
}
frame os::current_frame() {
intptr_t* csp = (intptr_t*) *((intptr_t*) os::current_stack_pointer());
// hack.
frame topframe(csp, (address)0x8);
// return sender of current topframe which hopefully has pc != NULL.
return os::get_sender_for_C_frame(&topframe);
}
// Utility functions
extern "C" JNIEXPORT int
JVM_handle_aix_signal(int sig, siginfo_t* info, void* ucVoid, int abort_if_unrecognized) {
ucontext_t* uc = (ucontext_t*) ucVoid;
Thread* t = ThreadLocalStorage::get_thread_slow(); // slow & steady
SignalHandlerMark shm(t);
// Note: it's not uncommon that JNI code uses signal/sigset to install
// then restore certain signal handler (e.g. to temporarily block SIGPIPE,
// or have a SIGILL handler when detecting CPU type). When that happens,
// JVM_handle_aix_signal() might be invoked with junk info/ucVoid. To
// avoid unnecessary crash when libjsig is not preloaded, try handle signals
// that do not require siginfo/ucontext first.
if (sig == SIGPIPE) {
if (os::Aix::chained_handler(sig, info, ucVoid)) {
return 1;
} else {
if (PrintMiscellaneous && (WizardMode || Verbose)) {
warning("Ignoring SIGPIPE - see bug 4229104");
}
return 1;
}
}
JavaThread* thread = NULL;
VMThread* vmthread = NULL;
if (os::Aix::signal_handlers_are_installed) {
if (t != NULL) {
if(t->is_Java_thread()) {
thread = (JavaThread*)t;
}
else if(t->is_VM_thread()) {
vmthread = (VMThread *)t;
}
}
}
// Decide if this trap can be handled by a stub.
address stub = NULL;
// retrieve program counter
address const pc = uc ? os::Aix::ucontext_get_pc(uc) : NULL;
// retrieve crash address
address const addr = info ? (const address) info->si_addr : NULL;
// SafeFetch 32 handling:
// - make it work if _thread is null
// - make it use the standard os::...::ucontext_get/set_pc APIs
if (uc) {
address const pc = os::Aix::ucontext_get_pc(uc);
if (pc && StubRoutines::is_safefetch_fault(pc)) {
os::Aix::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
return true;
}
}
// Handle SIGDANGER right away. AIX would raise SIGDANGER whenever available swap
// space falls below 30%. This is only a chance for the process to gracefully abort.
// We can't hope to proceed after SIGDANGER since SIGKILL tailgates.
if (sig == SIGDANGER) {
goto report_and_die;
}
if (info == NULL || uc == NULL || thread == NULL && vmthread == NULL) {
goto run_chained_handler;
}
// If we are a java thread...
if (thread != NULL) {
// Handle ALL stack overflow variations here
if (sig == SIGSEGV && (addr < thread->stack_base() &&
addr >= thread->stack_base() - thread->stack_size())) {
// stack overflow
//
// If we are in a yellow zone and we are inside java, we disable the yellow zone and
// throw a stack overflow exception.
// If we are in native code or VM C code, we report-and-die. The original coding tried
// to continue with yellow zone disabled, but that doesn't buy us much and prevents
// hs_err_pid files.
if (thread->in_stack_yellow_zone(addr)) {
thread->disable_stack_yellow_zone();
if (thread->thread_state() == _thread_in_Java) {
// Throw a stack overflow exception.
// Guard pages will be reenabled while unwinding the stack.
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
goto run_stub;
} else {
// Thread was in the vm or native code. Return and try to finish.
return 1;
}
} else if (thread->in_stack_red_zone(addr)) {
// Fatal red zone violation. Disable the guard pages and fall through
// to handle_unexpected_exception way down below.
thread->disable_stack_red_zone();
tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
goto report_and_die;
} else {
// This means a segv happened inside our stack, but not in
// the guarded zone. I'd like to know when this happens,
tty->print_raw_cr("SIGSEGV happened inside stack but outside yellow and red zone.");
goto report_and_die;
}
} // end handle SIGSEGV inside stack boundaries
if (thread->thread_state() == _thread_in_Java) {
// Java thread running in Java code
// The following signals are used for communicating VM events:
//
// SIGILL: the compiler generates illegal opcodes
// at places where it wishes to interrupt the VM:
// Safepoints, Unreachable Code, Entry points of Zombie methods,
// This results in a SIGILL with (*pc) == inserted illegal instruction.
//
// (so, SIGILLs with a pc inside the zero page are real errors)
//
// SIGTRAP:
// The ppc trap instruction raises a SIGTRAP and is very efficient if it
// does not trap. It is used for conditional branches that are expected
// to be never taken. These are:
// - zombie methods
// - IC (inline cache) misses.
// - null checks leading to UncommonTraps.
// - range checks leading to Uncommon Traps.
// On Aix, these are especially null checks, as the ImplicitNullCheck
// optimization works only in rare cases, as the page at address 0 is only
// write protected. //
// Note: !UseSIGTRAP is used to prevent SIGTRAPS altogether, to facilitate debugging.
//
// SIGSEGV:
// used for safe point polling:
// To notify all threads that they have to reach a safe point, safe point polling is used:
// All threads poll a certain mapped memory page. Normally, this page has read access.
// If the VM wants to inform the threads about impending safe points, it puts this
// page to read only ("poisens" the page), and the threads then reach a safe point.
// used for null checks:
// If the compiler finds a store it uses it for a null check. Unfortunately this
// happens rarely. In heap based and disjoint base compressd oop modes also loads
// are used for null checks.
// A VM-related SIGILL may only occur if we are not in the zero page.
// On AIX, we get a SIGILL if we jump to 0x0 or to somewhere else
// in the zero page, because it is filled with 0x0. We ignore
// explicit SIGILLs in the zero page.
if (sig == SIGILL && (pc < (address) 0x200)) {
if (TraceTraps) {
tty->print_raw_cr("SIGILL happened inside zero page.");
}
goto report_and_die;
}
// Handle signal from NativeJump::patch_verified_entry().
if (( TrapBasedNotEntrantChecks && sig == SIGTRAP && nativeInstruction_at(pc)->is_sigtrap_zombie_not_entrant()) ||
(!TrapBasedNotEntrantChecks && sig == SIGILL && nativeInstruction_at(pc)->is_sigill_zombie_not_entrant())) {
if (TraceTraps) {
tty->print_cr("trap: zombie_not_entrant (%s)", (sig == SIGTRAP) ? "SIGTRAP" : "SIGILL");
}
stub = SharedRuntime::get_handle_wrong_method_stub();
goto run_stub;
}
else if (sig == SIGSEGV && os::is_poll_address(addr)) {
if (TraceTraps) {
tty->print_cr("trap: safepoint_poll at " INTPTR_FORMAT " (SIGSEGV)", pc);
}
stub = SharedRuntime::get_poll_stub(pc);
goto run_stub;
}
// SIGTRAP-based ic miss check in compiled code.
else if (sig == SIGTRAP && TrapBasedICMissChecks &&
nativeInstruction_at(pc)->is_sigtrap_ic_miss_check()) {
if (TraceTraps) {
tty->print_cr("trap: ic_miss_check at " INTPTR_FORMAT " (SIGTRAP)", pc);
}
stub = SharedRuntime::get_ic_miss_stub();
goto run_stub;
}
// SIGTRAP-based implicit null check in compiled code.
else if (sig == SIGTRAP && TrapBasedNullChecks &&
nativeInstruction_at(pc)->is_sigtrap_null_check()) {
if (TraceTraps) {
tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGTRAP)", pc);
}
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
goto run_stub;
}
// SIGSEGV-based implicit null check in compiled code.
else if (sig == SIGSEGV && ImplicitNullChecks &&
CodeCache::contains((void*) pc) &&
!MacroAssembler::needs_explicit_null_check((intptr_t) info->si_addr)) {
if (TraceTraps) {
tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc);
}
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
}
#ifdef COMPILER2
// SIGTRAP-based implicit range check in compiled code.
else if (sig == SIGTRAP && TrapBasedRangeChecks &&
nativeInstruction_at(pc)->is_sigtrap_range_check()) {
if (TraceTraps) {
tty->print_cr("trap: range_check at " INTPTR_FORMAT " (SIGTRAP)", pc);
}
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
goto run_stub;
}
#endif
else if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
if (TraceTraps) {
tty->print_raw_cr("Fix SIGFPE handler, trying divide by zero handler.");
}
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
goto run_stub;
}
else if (sig == SIGBUS) {
// BugId 4454115: A read from a MappedByteBuffer can fault here if the
// underlying file has been truncated. Do not crash the VM in such a case.
CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
if (nm != NULL && nm->has_unsafe_access()) {
// We don't really need a stub here! Just set the pending exeption and
// continue at the next instruction after the faulting read. Returning
// garbage from this read is ok.
thread->set_pending_unsafe_access_error();
uc->uc_mcontext.jmp_context.iar = ((unsigned long)pc) + 4;
return 1;
}
}
}
else { // thread->thread_state() != _thread_in_Java
// Detect CPU features. This is only done at the very start of the VM. Later, the
// VM_Version::is_determine_features_test_running() flag should be false.
if (sig == SIGILL && VM_Version::is_determine_features_test_running()) {
// SIGILL must be caused by VM_Version::determine_features().
*(int *)pc = 0; // patch instruction to 0 to indicate that it causes a SIGILL,
// flushing of icache is not necessary.
stub = pc + 4; // continue with next instruction.
goto run_stub;
}
else if (thread->thread_state() == _thread_in_vm &&
sig == SIGBUS && thread->doing_unsafe_access()) {
// We don't really need a stub here! Just set the pending exeption and
// continue at the next instruction after the faulting read. Returning
// garbage from this read is ok.
thread->set_pending_unsafe_access_error();
uc->uc_mcontext.jmp_context.iar = ((unsigned long)pc) + 4;
return 1;
}
}
// Check to see if we caught the safepoint code in the
// process of write protecting the memory serialization page.
// It write enables the page immediately after protecting it
// so we can just return to retry the write.
if ((sig == SIGSEGV) &&
os::is_memory_serialize_page(thread, addr)) {
// Synchronization problem in the pseudo memory barrier code (bug id 6546278)
// Block current thread until the memory serialize page permission restored.
os::block_on_serialize_page_trap();
return true;
}
}
run_stub:
// One of the above code blocks ininitalized the stub, so we want to
// delegate control to that stub.
if (stub != NULL) {
// Save all thread context in case we need to restore it.
if (thread != NULL) thread->set_saved_exception_pc(pc);
uc->uc_mcontext.jmp_context.iar = (unsigned long)stub;
return 1;
}
run_chained_handler:
// signal-chaining
if (os::Aix::chained_handler(sig, info, ucVoid)) {
return 1;
}
if (!abort_if_unrecognized) {
// caller wants another chance, so give it to him
return 0;
}
report_and_die:
// Use sigthreadmask instead of sigprocmask on AIX and unmask current signal.
sigset_t newset;
sigemptyset(&newset);
sigaddset(&newset, sig);
sigthreadmask(SIG_UNBLOCK, &newset, NULL);
VMError err(t, sig, pc, info, ucVoid);
err.report_and_die();
ShouldNotReachHere();
return 0;
}
void os::Aix::init_thread_fpu_state(void) {
#if !defined(USE_XLC_BUILTINS)
// Disable FP exceptions.
__asm__ __volatile__ ("mtfsfi 6,0");
#else
__mtfsfi(6, 0);
#endif
}
////////////////////////////////////////////////////////////////////////////////
// thread stack
size_t os::Aix::min_stack_allowed = 768*K;
// Aix is always in floating stack mode. The stack size for a new
// thread can be set via pthread_attr_setstacksize().
bool os::Aix::supports_variable_stack_size() { return true; }
// return default stack size for thr_type
size_t os::Aix::default_stack_size(os::ThreadType thr_type) {
// default stack size (compiler thread needs larger stack)
// Notice that the setting for compiler threads here have no impact
// because of the strange 'fallback logic' in os::create_thread().
// Better set CompilerThreadStackSize in globals_<os_cpu>.hpp if you want to
// specify a different stack size for compiler threads!
size_t s = (thr_type == os::compiler_thread ? 4 * M : 1024 * K);
return s;
}
size_t os::Aix::default_guard_size(os::ThreadType thr_type) {
return 2 * page_size();
}
/////////////////////////////////////////////////////////////////////////////
// helper functions for fatal error handler
void os::print_context(outputStream *st, void *context) {
if (context == NULL) return;
ucontext_t* uc = (ucontext_t*)context;
st->print_cr("Registers:");
st->print("pc =" INTPTR_FORMAT " ", uc->uc_mcontext.jmp_context.iar);
st->print("lr =" INTPTR_FORMAT " ", uc->uc_mcontext.jmp_context.lr);
st->print("ctr=" INTPTR_FORMAT " ", uc->uc_mcontext.jmp_context.ctr);
st->cr();
for (int i = 0; i < 32; i++) {
st->print("r%-2d=" INTPTR_FORMAT " ", i, uc->uc_mcontext.jmp_context.gpr[i]);
if (i % 3 == 2) st->cr();
}
st->cr();
st->cr();
intptr_t *sp = (intptr_t *)os::Aix::ucontext_get_sp(uc);
st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
print_hex_dump(st, (address)sp, (address)(sp + 128), sizeof(intptr_t));
st->cr();
// Note: it may be unsafe to inspect memory near pc. For example, pc may
// point to garbage if entry point in an nmethod is corrupted. Leave
// this at the end, and hope for the best.
address pc = os::Aix::ucontext_get_pc(uc);
st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
print_hex_dump(st, pc - 64, pc + 64, /*instrsize=*/4);
st->cr();
// Try to decode the instructions.
st->print_cr("Decoded instructions: (pc=" PTR_FORMAT ")", pc);
st->print("<TODO: PPC port - print_context>");
// TODO: PPC port Disassembler::decode(pc, 16, 16, st);
st->cr();
}
void os::print_register_info(outputStream *st, void *context) {
if (context == NULL) return;
st->print("Not ported - print_register_info\n");
}
extern "C" {
int SpinPause() {
return 0;
}
}
#ifndef PRODUCT
void os::verify_stack_alignment() {
assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
}
#endif