8143911: Reintegrate JEP 259: Stack-Walking API
Reviewed-by: coleenp, dfuchs, bchristi, psandoz, sspitsyn
Contributed-by: Mandy Chung <mandy.chung@oracle.com>, Brent Christian <brent.christian@oracle.com>, Daniel Fuchs <daniel.fuchs@oracle.com>, Hamlin Li <huaming.li@oracle.com>
/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/javaClasses.hpp"
#include "memory/metaspaceShared.hpp"
#include "prims/jvm.h"
#include "utilities/numberSeq.hpp"
#include <sys/stat.h>
/////////////////////////////////////////////////////
//
// The compact hash table writer implementations
//
CompactHashtableWriter::CompactHashtableWriter(int table_type,
int num_entries,
CompactHashtableStats* stats) {
assert(DumpSharedSpaces, "dump-time only");
_type = table_type;
_num_entries = num_entries;
_num_buckets = number_of_buckets(_num_entries);
_buckets = NEW_C_HEAP_ARRAY(Entry*, _num_buckets, mtSymbol);
memset(_buckets, 0, sizeof(Entry*) * _num_buckets);
/* bucket sizes table */
_bucket_sizes = NEW_C_HEAP_ARRAY(juint, _num_buckets, mtSymbol);
memset(_bucket_sizes, 0, sizeof(juint) * _num_buckets);
stats->hashentry_count = _num_entries;
// Compact buckets' entries will have only the 4-byte offset, but
// we don't know how many there will be at this point. So use a
// conservative estimate here. The size is adjusted later when we
// write out the buckets.
stats->hashentry_bytes = _num_entries * 8;
stats->bucket_count = _num_buckets;
stats->bucket_bytes = (_num_buckets + 1) * (sizeof(juint));
_stats = stats;
// See compactHashtable.hpp for table layout
_required_bytes = sizeof(juint) * 2; // _base_address, written as 2 juints
_required_bytes+= sizeof(juint) + // num_entries
sizeof(juint) + // num_buckets
stats->hashentry_bytes +
stats->bucket_bytes;
}
CompactHashtableWriter::~CompactHashtableWriter() {
for (int index = 0; index < _num_buckets; index++) {
Entry* next = NULL;
for (Entry* tent = _buckets[index]; tent; tent = next) {
next = tent->next();
delete tent;
}
}
FREE_C_HEAP_ARRAY(juint, _bucket_sizes);
FREE_C_HEAP_ARRAY(Entry*, _buckets);
}
// Calculate the number of buckets in the temporary hash table
int CompactHashtableWriter::number_of_buckets(int num_entries) {
const int buksize = (int)SharedSymbolTableBucketSize;
int num_buckets = (num_entries + buksize - 1) / buksize;
num_buckets = (num_buckets + 1) & (~0x01);
return num_buckets;
}
// Add a symbol entry to the temporary hash table
void CompactHashtableWriter::add(unsigned int hash, Entry* entry) {
int index = hash % _num_buckets;
entry->set_next(_buckets[index]);
_buckets[index] = entry;
_bucket_sizes[index] ++;
}
// Write the compact table's bucket infos
juint* CompactHashtableWriter::dump_table(juint* p, juint** first_bucket,
NumberSeq* summary) {
int index;
juint* compact_table = p;
// Compute the start of the buckets, include the compact_bucket_infos table
// and the table end offset.
juint offset = _num_buckets + 1;
*first_bucket = compact_table + offset;
for (index = 0; index < _num_buckets; index++) {
int bucket_size = _bucket_sizes[index];
if (bucket_size == 1) {
// bucket with one entry is compacted and only has the symbol offset
compact_table[index] = BUCKET_INFO(offset, COMPACT_BUCKET_TYPE);
offset += bucket_size; // each entry contains symbol offset only
} else {
// regular bucket, each entry is a symbol (hash, offset) pair
compact_table[index] = BUCKET_INFO(offset, REGULAR_BUCKET_TYPE);
offset += bucket_size * 2; // each hash entry is 2 juints
}
if (offset & ~BUCKET_OFFSET_MASK) {
vm_exit_during_initialization("CompactHashtableWriter::dump_table: Overflow! "
"Too many symbols.");
}
summary->add(bucket_size);
}
// Mark the end of the table
compact_table[_num_buckets] = BUCKET_INFO(offset, TABLEEND_BUCKET_TYPE);
return compact_table;
}
// Write the compact table's entries
juint* CompactHashtableWriter::dump_buckets(juint* compact_table, juint* p,
NumberSeq* summary) {
uintx base_address = 0;
uintx max_delta = 0;
int num_compact_buckets = 0;
if (_type == CompactHashtable<Symbol*, char>::_symbol_table) {
base_address = uintx(MetaspaceShared::shared_rs()->base());
max_delta = uintx(MetaspaceShared::shared_rs()->size());
assert(max_delta <= MAX_SHARED_DELTA, "range check");
} else {
assert((_type == CompactHashtable<oop, char>::_string_table), "unknown table");
assert(UseCompressedOops, "UseCompressedOops is required");
}
assert(p != NULL, "sanity");
for (int index = 0; index < _num_buckets; index++) {
juint count = 0;
int bucket_size = _bucket_sizes[index];
int bucket_type = BUCKET_TYPE(compact_table[index]);
if (bucket_size == 1) {
assert(bucket_type == COMPACT_BUCKET_TYPE, "Bad bucket type");
num_compact_buckets ++;
}
for (Entry* tent = _buckets[index]; tent;
tent = tent->next()) {
if (bucket_type == REGULAR_BUCKET_TYPE) {
*p++ = juint(tent->hash()); // write entry hash
}
if (_type == CompactHashtable<Symbol*, char>::_symbol_table) {
uintx deltax = uintx(tent->value()) - base_address;
assert(deltax < max_delta, "range check");
juint delta = juint(deltax);
*p++ = delta; // write entry offset
} else {
*p++ = oopDesc::encode_heap_oop(tent->string());
}
count ++;
}
assert(count == _bucket_sizes[index], "sanity");
}
// Adjust the hashentry_bytes in CompactHashtableStats. Each compact
// bucket saves 4-byte.
_stats->hashentry_bytes -= num_compact_buckets * 4;
return p;
}
// Write the compact table
void CompactHashtableWriter::dump(char** top, char* end) {
NumberSeq summary;
char* old_top = *top;
juint* p = (juint*)(*top);
uintx base_address = uintx(MetaspaceShared::shared_rs()->base());
// Now write the following at the beginning of the table:
// base_address (uintx)
// num_entries (juint)
// num_buckets (juint)
*p++ = high(base_address);
*p++ = low (base_address); // base address
*p++ = _num_entries; // number of entries in the table
*p++ = _num_buckets; // number of buckets in the table
juint* first_bucket = NULL;
juint* compact_table = dump_table(p, &first_bucket, &summary);
juint* bucket_end = dump_buckets(compact_table, first_bucket, &summary);
assert(bucket_end <= (juint*)end, "cannot write past end");
*top = (char*)bucket_end;
if (PrintSharedSpaces) {
double avg_cost = 0.0;
if (_num_entries > 0) {
avg_cost = double(_required_bytes)/double(_num_entries);
}
tty->print_cr("Shared %s table stats -------- base: " PTR_FORMAT,
table_name(), (intptr_t)base_address);
tty->print_cr("Number of entries : %9d", _num_entries);
tty->print_cr("Total bytes used : %9d", (int)((*top) - old_top));
tty->print_cr("Average bytes per entry : %9.3f", avg_cost);
tty->print_cr("Average bucket size : %9.3f", summary.avg());
tty->print_cr("Variance of bucket size : %9.3f", summary.variance());
tty->print_cr("Std. dev. of bucket size: %9.3f", summary.sd());
tty->print_cr("Maximum bucket size : %9d", (int)summary.maximum());
}
}
const char* CompactHashtableWriter::table_name() {
switch (_type) {
case CompactHashtable<Symbol*, char>::_symbol_table: return "symbol";
case CompactHashtable<oop, char>::_string_table: return "string";
default:
;
}
return "unknown";
}
/////////////////////////////////////////////////////////////
//
// The CompactHashtable implementation
//
template <class T, class N> const char* CompactHashtable<T, N>::init(
CompactHashtableType type, const char* buffer) {
assert(!DumpSharedSpaces, "run-time only");
_type = type;
juint*p = (juint*)buffer;
juint upper = *p++;
juint lower = *p++;
_base_address = uintx(jlong_from(upper, lower));
_entry_count = *p++;
_bucket_count = *p++;
_buckets = p;
_table_end_offset = BUCKET_OFFSET(p[_bucket_count]); // located at the end of the bucket_info table
juint *end = _buckets + _table_end_offset;
return (const char*)end;
}
template <class T, class N> void CompactHashtable<T, N>::symbols_do(SymbolClosure *cl) {
assert(!DumpSharedSpaces, "run-time only");
for (juint i = 0; i < _bucket_count; i ++) {
juint bucket_info = _buckets[i];
juint bucket_offset = BUCKET_OFFSET(bucket_info);
int bucket_type = BUCKET_TYPE(bucket_info);
juint* bucket = _buckets + bucket_offset;
juint* bucket_end = _buckets;
Symbol* sym;
if (bucket_type == COMPACT_BUCKET_TYPE) {
sym = (Symbol*)((void*)(_base_address + bucket[0]));
cl->do_symbol(&sym);
} else {
bucket_end += BUCKET_OFFSET(_buckets[i + 1]);
while (bucket < bucket_end) {
sym = (Symbol*)((void*)(_base_address + bucket[1]));
cl->do_symbol(&sym);
bucket += 2;
}
}
}
}
template <class T, class N> void CompactHashtable<T, N>::oops_do(OopClosure* f) {
assert(!DumpSharedSpaces, "run-time only");
assert(_type == _string_table || _bucket_count == 0, "sanity");
for (juint i = 0; i < _bucket_count; i ++) {
juint bucket_info = _buckets[i];
juint bucket_offset = BUCKET_OFFSET(bucket_info);
int bucket_type = BUCKET_TYPE(bucket_info);
juint* bucket = _buckets + bucket_offset;
juint* bucket_end = _buckets;
narrowOop o;
if (bucket_type == COMPACT_BUCKET_TYPE) {
o = (narrowOop)bucket[0];
f->do_oop(&o);
} else {
bucket_end += BUCKET_OFFSET(_buckets[i + 1]);
while (bucket < bucket_end) {
o = (narrowOop)bucket[1];
f->do_oop(&o);
bucket += 2;
}
}
}
}
// Explicitly instantiate these types
template class CompactHashtable<Symbol*, char>;
template class CompactHashtable<oop, char>;
#ifndef O_BINARY // if defined (Win32) use binary files.
#define O_BINARY 0 // otherwise do nothing.
#endif
////////////////////////////////////////////////////////
//
// HashtableTextDump
//
HashtableTextDump::HashtableTextDump(const char* filename) : _fd(-1) {
struct stat st;
if (os::stat(filename, &st) != 0) {
quit("Unable to get hashtable dump file size", filename);
}
_size = st.st_size;
_fd = open(filename, O_RDONLY | O_BINARY, 0);
if (_fd < 0) {
quit("Unable to open hashtable dump file", filename);
}
_base = os::map_memory(_fd, filename, 0, NULL, _size, true, false);
if (_base == NULL) {
quit("Unable to map hashtable dump file", filename);
}
_p = _base;
_end = _base + st.st_size;
_filename = filename;
_prefix_type = Unknown;
_line_no = 1;
}
HashtableTextDump::~HashtableTextDump() {
os::unmap_memory((char*)_base, _size);
if (_fd >= 0) {
close(_fd);
}
}
void HashtableTextDump::quit(const char* err, const char* msg) {
vm_exit_during_initialization(err, msg);
}
void HashtableTextDump::corrupted(const char *p, const char* msg) {
char info[100];
jio_snprintf(info, sizeof(info),
"%s. Corrupted at line %d (file pos %d)",
msg, _line_no, (int)(p - _base));
quit(info, _filename);
}
bool HashtableTextDump::skip_newline() {
if (_p[0] == '\r' && _p[1] == '\n') {
_p += 2;
} else if (_p[0] == '\n') {
_p += 1;
} else {
corrupted(_p, "Unexpected character");
}
_line_no ++;
return true;
}
int HashtableTextDump::skip(char must_be_char) {
corrupted_if(remain() < 1);
corrupted_if(*_p++ != must_be_char);
return 0;
}
void HashtableTextDump::skip_past(char c) {
for (;;) {
corrupted_if(remain() < 1);
if (*_p++ == c) {
return;
}
}
}
void HashtableTextDump::check_version(const char* ver) {
int len = (int)strlen(ver);
corrupted_if(remain() < len);
if (strncmp(_p, ver, len) != 0) {
quit("wrong version of hashtable dump file", _filename);
}
_p += len;
skip_newline();
}
void HashtableTextDump::scan_prefix_type() {
_p ++;
if (strncmp(_p, "SECTION: String", 15) == 0) {
_p += 15;
_prefix_type = StringPrefix;
} else if (strncmp(_p, "SECTION: Symbol", 15) == 0) {
_p += 15;
_prefix_type = SymbolPrefix;
} else {
_prefix_type = Unknown;
}
skip_newline();
}
int HashtableTextDump::scan_prefix(int* utf8_length) {
if (*_p == '@') {
scan_prefix_type();
}
switch (_prefix_type) {
case SymbolPrefix:
*utf8_length = scan_symbol_prefix(); break;
case StringPrefix:
*utf8_length = scan_string_prefix(); break;
default:
tty->print_cr("Shared input data type: Unknown.");
corrupted(_p, "Unknown data type");
}
return _prefix_type;
}
int HashtableTextDump::scan_string_prefix() {
// Expect /[0-9]+: /
int utf8_length = 0;
get_num(':', &utf8_length);
if (*_p != ' ') {
corrupted(_p, "Wrong prefix format for string");
}
_p++;
return utf8_length;
}
int HashtableTextDump::scan_symbol_prefix() {
// Expect /[0-9]+ (-|)[0-9]+: /
int utf8_length = 0;
get_num(' ', &utf8_length);
if (*_p == '-') {
_p++;
}
int ref_num;
get_num(':', &ref_num);
if (*_p != ' ') {
corrupted(_p, "Wrong prefix format for symbol");
}
_p++;
return utf8_length;
}
jchar HashtableTextDump::unescape(const char* from, const char* end, int count) {
jchar value = 0;
corrupted_if(from + count > end);
for (int i=0; i<count; i++) {
char c = *from++;
switch (c) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
value = (value << 4) + c - '0';
break;
case 'a': case 'b': case 'c':
case 'd': case 'e': case 'f':
value = (value << 4) + 10 + c - 'a';
break;
case 'A': case 'B': case 'C':
case 'D': case 'E': case 'F':
value = (value << 4) + 10 + c - 'A';
break;
default:
ShouldNotReachHere();
}
}
return value;
}
void HashtableTextDump::get_utf8(char* utf8_buffer, int utf8_length) {
// cache in local vars
const char* from = _p;
const char* end = _end;
char* to = utf8_buffer;
int n = utf8_length;
for (; n > 0 && from < end; n--) {
if (*from != '\\') {
*to++ = *from++;
} else {
corrupted_if(from + 2 > end);
char c = from[1];
from += 2;
switch (c) {
case 'x':
{
jchar value = unescape(from, end, 2);
from += 2;
assert(value <= 0xff, "sanity");
*to++ = (char)(value & 0xff);
}
break;
case 't': *to++ = '\t'; break;
case 'n': *to++ = '\n'; break;
case 'r': *to++ = '\r'; break;
case '\\': *to++ = '\\'; break;
default:
corrupted(_p, "Unsupported character");
}
}
}
corrupted_if(n > 0); // expected more chars but file has ended
_p = from;
skip_newline();
}
// NOTE: the content is NOT the same as
// UTF8::as_quoted_ascii(const char* utf8_str, int utf8_length, char* buf, int buflen).
// We want to escape \r\n\t so that output [1] is more readable; [2] can be more easily
// parsed by scripts; [3] quickly processed by HashtableTextDump::get_utf8()
void HashtableTextDump::put_utf8(outputStream* st, const char* utf8_string, int utf8_length) {
const char *c = utf8_string;
const char *end = c + utf8_length;
for (; c < end; c++) {
switch (*c) {
case '\t': st->print("\\t"); break;
case '\r': st->print("\\r"); break;
case '\n': st->print("\\n"); break;
case '\\': st->print("\\\\"); break;
default:
if (isprint(*c)) {
st->print("%c", *c);
} else {
st->print("\\x%02x", ((unsigned int)*c) & 0xff);
}
}
}
}