6752257: Use NOT instead of XOR -1 on x86
Summary: add match rule for xor -1
Reviewed-by: never, kvn
//
// Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
// CA 95054 USA or visit www.sun.com if you need additional information or
// have any questions.
//
//
// X86 Architecture Description File
//----------REGISTER DEFINITION BLOCK------------------------------------------
// This information is used by the matcher and the register allocator to
// describe individual registers and classes of registers within the target
// archtecture.
register %{
//----------Architecture Description Register Definitions----------------------
// General Registers
// "reg_def" name ( register save type, C convention save type,
// ideal register type, encoding );
// Register Save Types:
//
// NS = No-Save: The register allocator assumes that these registers
// can be used without saving upon entry to the method, &
// that they do not need to be saved at call sites.
//
// SOC = Save-On-Call: The register allocator assumes that these registers
// can be used without saving upon entry to the method,
// but that they must be saved at call sites.
//
// SOE = Save-On-Entry: The register allocator assumes that these registers
// must be saved before using them upon entry to the
// method, but they do not need to be saved at call
// sites.
//
// AS = Always-Save: The register allocator assumes that these registers
// must be saved before using them upon entry to the
// method, & that they must be saved at call sites.
//
// Ideal Register Type is used to determine how to save & restore a
// register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
// spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
//
// The encoding number is the actual bit-pattern placed into the opcodes.
// General Registers
// Previously set EBX, ESI, and EDI as save-on-entry for java code
// Turn off SOE in java-code due to frequent use of uncommon-traps.
// Now that allocator is better, turn on ESI and EDI as SOE registers.
reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
// now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
reg_def ESP( NS, NS, Op_RegI, 4, rsp->as_VMReg());
// Special Registers
reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
// Float registers. We treat TOS/FPR0 special. It is invisible to the
// allocator, and only shows up in the encodings.
reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
// Ok so here's the trick FPR1 is really st(0) except in the midst
// of emission of assembly for a machnode. During the emission the fpu stack
// is pushed making FPR1 == st(1) temporarily. However at any safepoint
// the stack will not have this element so FPR1 == st(0) from the
// oopMap viewpoint. This same weirdness with numbering causes
// instruction encoding to have to play games with the register
// encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
// where it does flt->flt moves to see an example
//
reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
// XMM registers. 128-bit registers or 4 words each, labeled a-d.
// Word a in each register holds a Float, words ab hold a Double.
// We currently do not use the SIMD capabilities, so registers cd
// are unused at the moment.
reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
// Specify priority of register selection within phases of register
// allocation. Highest priority is first. A useful heuristic is to
// give registers a low priority when they are required by machine
// instructions, like EAX and EDX. Registers which are used as
// pairs must fall on an even boundry (witness the FPR#L's in this list).
// For the Intel integer registers, the equivalent Long pairs are
// EDX:EAX, EBX:ECX, and EDI:EBP.
alloc_class chunk0( ECX, EBX, EBP, EDI, EAX, EDX, ESI, ESP,
FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
FPR6L, FPR6H, FPR7L, FPR7H );
alloc_class chunk1( XMM0a, XMM0b,
XMM1a, XMM1b,
XMM2a, XMM2b,
XMM3a, XMM3b,
XMM4a, XMM4b,
XMM5a, XMM5b,
XMM6a, XMM6b,
XMM7a, XMM7b, EFLAGS);
//----------Architecture Description Register Classes--------------------------
// Several register classes are automatically defined based upon information in
// this architecture description.
// 1) reg_class inline_cache_reg ( /* as def'd in frame section */ )
// 2) reg_class compiler_method_oop_reg ( /* as def'd in frame section */ )
// 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
//
// Class for all registers
reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
// Class for general registers
reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
// Class for general registers which may be used for implicit null checks on win95
// Also safe for use by tailjump. We don't want to allocate in rbp,
reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
// Class of "X" registers
reg_class x_reg(EBX, ECX, EDX, EAX);
// Class of registers that can appear in an address with no offset.
// EBP and ESP require an extra instruction byte for zero offset.
// Used in fast-unlock
reg_class p_reg(EDX, EDI, ESI, EBX);
// Class for general registers not including ECX
reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
// Class for general registers not including EAX
reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
// Class for general registers not including EAX or EBX.
reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
// Class of EAX (for multiply and divide operations)
reg_class eax_reg(EAX);
// Class of EBX (for atomic add)
reg_class ebx_reg(EBX);
// Class of ECX (for shift and JCXZ operations and cmpLTMask)
reg_class ecx_reg(ECX);
// Class of EDX (for multiply and divide operations)
reg_class edx_reg(EDX);
// Class of EDI (for synchronization)
reg_class edi_reg(EDI);
// Class of ESI (for synchronization)
reg_class esi_reg(ESI);
// Singleton class for interpreter's stack pointer
reg_class ebp_reg(EBP);
// Singleton class for stack pointer
reg_class sp_reg(ESP);
// Singleton class for instruction pointer
// reg_class ip_reg(EIP);
// Singleton class for condition codes
reg_class int_flags(EFLAGS);
// Class of integer register pairs
reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
// Class of integer register pairs that aligns with calling convention
reg_class eadx_reg( EAX,EDX );
reg_class ebcx_reg( ECX,EBX );
// Not AX or DX, used in divides
reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
// Floating point registers. Notice FPR0 is not a choice.
// FPR0 is not ever allocated; we use clever encodings to fake
// a 2-address instructions out of Intels FP stack.
reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
// make a register class for SSE registers
reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
// make a double register class for SSE2 registers
reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
FPR7L,FPR7H );
reg_class flt_reg0( FPR1L );
reg_class dbl_reg0( FPR1L,FPR1H );
reg_class dbl_reg1( FPR2L,FPR2H );
reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
// XMM6 and XMM7 could be used as temporary registers for long, float and
// double values for SSE2.
reg_class xdb_reg6( XMM6a,XMM6b );
reg_class xdb_reg7( XMM7a,XMM7b );
%}
//----------SOURCE BLOCK-------------------------------------------------------
// This is a block of C++ code which provides values, functions, and
// definitions necessary in the rest of the architecture description
source %{
#define RELOC_IMM32 Assembler::imm_operand
#define RELOC_DISP32 Assembler::disp32_operand
#define __ _masm.
// How to find the high register of a Long pair, given the low register
#define HIGH_FROM_LOW(x) ((x)+2)
// These masks are used to provide 128-bit aligned bitmasks to the XMM
// instructions, to allow sign-masking or sign-bit flipping. They allow
// fast versions of NegF/NegD and AbsF/AbsD.
// Note: 'double' and 'long long' have 32-bits alignment on x86.
static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
// Use the expression (adr)&(~0xF) to provide 128-bits aligned address
// of 128-bits operands for SSE instructions.
jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
// Store the value to a 128-bits operand.
operand[0] = lo;
operand[1] = hi;
return operand;
}
// Buffer for 128-bits masks used by SSE instructions.
static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
// Static initialization during VM startup.
static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
// !!!!! Special hack to get all type of calls to specify the byte offset
// from the start of the call to the point where the return address
// will point.
int MachCallStaticJavaNode::ret_addr_offset() {
return 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0); // 5 bytes from start of call to where return address points
}
int MachCallDynamicJavaNode::ret_addr_offset() {
return 10 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0); // 10 bytes from start of call to where return address points
}
static int sizeof_FFree_Float_Stack_All = -1;
int MachCallRuntimeNode::ret_addr_offset() {
assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
return sizeof_FFree_Float_Stack_All + 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);
}
// Indicate if the safepoint node needs the polling page as an input.
// Since x86 does have absolute addressing, it doesn't.
bool SafePointNode::needs_polling_address_input() {
return false;
}
//
// Compute padding required for nodes which need alignment
//
// The address of the call instruction needs to be 4-byte aligned to
// ensure that it does not span a cache line so that it can be patched.
int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
if (Compile::current()->in_24_bit_fp_mode())
current_offset += 6; // skip fldcw in pre_call_FPU, if any
current_offset += 1; // skip call opcode byte
return round_to(current_offset, alignment_required()) - current_offset;
}
// The address of the call instruction needs to be 4-byte aligned to
// ensure that it does not span a cache line so that it can be patched.
int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
if (Compile::current()->in_24_bit_fp_mode())
current_offset += 6; // skip fldcw in pre_call_FPU, if any
current_offset += 5; // skip MOV instruction
current_offset += 1; // skip call opcode byte
return round_to(current_offset, alignment_required()) - current_offset;
}
#ifndef PRODUCT
void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
st->print("INT3");
}
#endif
// EMIT_RM()
void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
*(cbuf.code_end()) = c;
cbuf.set_code_end(cbuf.code_end() + 1);
}
// EMIT_CC()
void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
unsigned char c = (unsigned char)( f1 | f2 );
*(cbuf.code_end()) = c;
cbuf.set_code_end(cbuf.code_end() + 1);
}
// EMIT_OPCODE()
void emit_opcode(CodeBuffer &cbuf, int code) {
*(cbuf.code_end()) = (unsigned char)code;
cbuf.set_code_end(cbuf.code_end() + 1);
}
// EMIT_OPCODE() w/ relocation information
void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
cbuf.relocate(cbuf.inst_mark() + offset, reloc);
emit_opcode(cbuf, code);
}
// EMIT_D8()
void emit_d8(CodeBuffer &cbuf, int d8) {
*(cbuf.code_end()) = (unsigned char)d8;
cbuf.set_code_end(cbuf.code_end() + 1);
}
// EMIT_D16()
void emit_d16(CodeBuffer &cbuf, int d16) {
*((short *)(cbuf.code_end())) = d16;
cbuf.set_code_end(cbuf.code_end() + 2);
}
// EMIT_D32()
void emit_d32(CodeBuffer &cbuf, int d32) {
*((int *)(cbuf.code_end())) = d32;
cbuf.set_code_end(cbuf.code_end() + 4);
}
// emit 32 bit value and construct relocation entry from relocInfo::relocType
void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
int format) {
cbuf.relocate(cbuf.inst_mark(), reloc, format);
*((int *)(cbuf.code_end())) = d32;
cbuf.set_code_end(cbuf.code_end() + 4);
}
// emit 32 bit value and construct relocation entry from RelocationHolder
void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
int format) {
#ifdef ASSERT
if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
assert(oop(d32)->is_oop() && oop(d32)->is_perm(), "cannot embed non-perm oops in code");
}
#endif
cbuf.relocate(cbuf.inst_mark(), rspec, format);
*((int *)(cbuf.code_end())) = d32;
cbuf.set_code_end(cbuf.code_end() + 4);
}
// Access stack slot for load or store
void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
emit_opcode( cbuf, opcode ); // (e.g., FILD [ESP+src])
if( -128 <= disp && disp <= 127 ) {
emit_rm( cbuf, 0x01, rm_field, ESP_enc ); // R/M byte
emit_rm( cbuf, 0x00, ESP_enc, ESP_enc); // SIB byte
emit_d8 (cbuf, disp); // Displacement // R/M byte
} else {
emit_rm( cbuf, 0x02, rm_field, ESP_enc ); // R/M byte
emit_rm( cbuf, 0x00, ESP_enc, ESP_enc); // SIB byte
emit_d32(cbuf, disp); // Displacement // R/M byte
}
}
// eRegI ereg, memory mem) %{ // emit_reg_mem
void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
// There is no index & no scale, use form without SIB byte
if ((index == 0x4) &&
(scale == 0) && (base != ESP_enc)) {
// If no displacement, mode is 0x0; unless base is [EBP]
if ( (displace == 0) && (base != EBP_enc) ) {
emit_rm(cbuf, 0x0, reg_encoding, base);
}
else { // If 8-bit displacement, mode 0x1
if ((displace >= -128) && (displace <= 127)
&& !(displace_is_oop) ) {
emit_rm(cbuf, 0x1, reg_encoding, base);
emit_d8(cbuf, displace);
}
else { // If 32-bit displacement
if (base == -1) { // Special flag for absolute address
emit_rm(cbuf, 0x0, reg_encoding, 0x5);
// (manual lies; no SIB needed here)
if ( displace_is_oop ) {
emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
} else {
emit_d32 (cbuf, displace);
}
}
else { // Normal base + offset
emit_rm(cbuf, 0x2, reg_encoding, base);
if ( displace_is_oop ) {
emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
} else {
emit_d32 (cbuf, displace);
}
}
}
}
}
else { // Else, encode with the SIB byte
// If no displacement, mode is 0x0; unless base is [EBP]
if (displace == 0 && (base != EBP_enc)) { // If no displacement
emit_rm(cbuf, 0x0, reg_encoding, 0x4);
emit_rm(cbuf, scale, index, base);
}
else { // If 8-bit displacement, mode 0x1
if ((displace >= -128) && (displace <= 127)
&& !(displace_is_oop) ) {
emit_rm(cbuf, 0x1, reg_encoding, 0x4);
emit_rm(cbuf, scale, index, base);
emit_d8(cbuf, displace);
}
else { // If 32-bit displacement
if (base == 0x04 ) {
emit_rm(cbuf, 0x2, reg_encoding, 0x4);
emit_rm(cbuf, scale, index, 0x04);
} else {
emit_rm(cbuf, 0x2, reg_encoding, 0x4);
emit_rm(cbuf, scale, index, base);
}
if ( displace_is_oop ) {
emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
} else {
emit_d32 (cbuf, displace);
}
}
}
}
}
void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
if( dst_encoding == src_encoding ) {
// reg-reg copy, use an empty encoding
} else {
emit_opcode( cbuf, 0x8B );
emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
}
}
void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
if( dst_encoding == src_encoding ) {
// reg-reg copy, use an empty encoding
} else {
MacroAssembler _masm(&cbuf);
__ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
}
}
//=============================================================================
#ifndef PRODUCT
void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
Compile* C = ra_->C;
if( C->in_24_bit_fp_mode() ) {
tty->print("FLDCW 24 bit fpu control word");
tty->print_cr(""); tty->print("\t");
}
int framesize = C->frame_slots() << LogBytesPerInt;
assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
// Remove two words for return addr and rbp,
framesize -= 2*wordSize;
// Calls to C2R adapters often do not accept exceptional returns.
// We require that their callers must bang for them. But be careful, because
// some VM calls (such as call site linkage) can use several kilobytes of
// stack. But the stack safety zone should account for that.
// See bugs 4446381, 4468289, 4497237.
if (C->need_stack_bang(framesize)) {
tty->print_cr("# stack bang"); tty->print("\t");
}
tty->print_cr("PUSHL EBP"); tty->print("\t");
if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
tty->print("PUSH 0xBADB100D\t# Majik cookie for stack depth check");
tty->print_cr(""); tty->print("\t");
framesize -= wordSize;
}
if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
if (framesize) {
tty->print("SUB ESP,%d\t# Create frame",framesize);
}
} else {
tty->print("SUB ESP,%d\t# Create frame",framesize);
}
}
#endif
void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
Compile* C = ra_->C;
if (UseSSE >= 2 && VerifyFPU) {
MacroAssembler masm(&cbuf);
masm.verify_FPU(0, "FPU stack must be clean on entry");
}
// WARNING: Initial instruction MUST be 5 bytes or longer so that
// NativeJump::patch_verified_entry will be able to patch out the entry
// code safely. The fldcw is ok at 6 bytes, the push to verify stack
// depth is ok at 5 bytes, the frame allocation can be either 3 or
// 6 bytes. So if we don't do the fldcw or the push then we must
// use the 6 byte frame allocation even if we have no frame. :-(
// If method sets FPU control word do it now
if( C->in_24_bit_fp_mode() ) {
MacroAssembler masm(&cbuf);
masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
}
int framesize = C->frame_slots() << LogBytesPerInt;
assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
// Remove two words for return addr and rbp,
framesize -= 2*wordSize;
// Calls to C2R adapters often do not accept exceptional returns.
// We require that their callers must bang for them. But be careful, because
// some VM calls (such as call site linkage) can use several kilobytes of
// stack. But the stack safety zone should account for that.
// See bugs 4446381, 4468289, 4497237.
if (C->need_stack_bang(framesize)) {
MacroAssembler masm(&cbuf);
masm.generate_stack_overflow_check(framesize);
}
// We always push rbp, so that on return to interpreter rbp, will be
// restored correctly and we can correct the stack.
emit_opcode(cbuf, 0x50 | EBP_enc);
if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
emit_opcode(cbuf, 0x68); // push 0xbadb100d
emit_d32(cbuf, 0xbadb100d);
framesize -= wordSize;
}
if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
if (framesize) {
emit_opcode(cbuf, 0x83); // sub SP,#framesize
emit_rm(cbuf, 0x3, 0x05, ESP_enc);
emit_d8(cbuf, framesize);
}
} else {
emit_opcode(cbuf, 0x81); // sub SP,#framesize
emit_rm(cbuf, 0x3, 0x05, ESP_enc);
emit_d32(cbuf, framesize);
}
C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
#ifdef ASSERT
if (VerifyStackAtCalls) {
Label L;
MacroAssembler masm(&cbuf);
masm.push(rax);
masm.mov(rax, rsp);
masm.andptr(rax, StackAlignmentInBytes-1);
masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
masm.pop(rax);
masm.jcc(Assembler::equal, L);
masm.stop("Stack is not properly aligned!");
masm.bind(L);
}
#endif
}
uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
return MachNode::size(ra_); // too many variables; just compute it the hard way
}
int MachPrologNode::reloc() const {
return 0; // a large enough number
}
//=============================================================================
#ifndef PRODUCT
void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
Compile *C = ra_->C;
int framesize = C->frame_slots() << LogBytesPerInt;
assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
// Remove two words for return addr and rbp,
framesize -= 2*wordSize;
if( C->in_24_bit_fp_mode() ) {
st->print("FLDCW standard control word");
st->cr(); st->print("\t");
}
if( framesize ) {
st->print("ADD ESP,%d\t# Destroy frame",framesize);
st->cr(); st->print("\t");
}
st->print_cr("POPL EBP"); st->print("\t");
if( do_polling() && C->is_method_compilation() ) {
st->print("TEST PollPage,EAX\t! Poll Safepoint");
st->cr(); st->print("\t");
}
}
#endif
void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
Compile *C = ra_->C;
// If method set FPU control word, restore to standard control word
if( C->in_24_bit_fp_mode() ) {
MacroAssembler masm(&cbuf);
masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
}
int framesize = C->frame_slots() << LogBytesPerInt;
assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
// Remove two words for return addr and rbp,
framesize -= 2*wordSize;
// Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
if( framesize >= 128 ) {
emit_opcode(cbuf, 0x81); // add SP, #framesize
emit_rm(cbuf, 0x3, 0x00, ESP_enc);
emit_d32(cbuf, framesize);
}
else if( framesize ) {
emit_opcode(cbuf, 0x83); // add SP, #framesize
emit_rm(cbuf, 0x3, 0x00, ESP_enc);
emit_d8(cbuf, framesize);
}
emit_opcode(cbuf, 0x58 | EBP_enc);
if( do_polling() && C->is_method_compilation() ) {
cbuf.relocate(cbuf.code_end(), relocInfo::poll_return_type, 0);
emit_opcode(cbuf,0x85);
emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
emit_d32(cbuf, (intptr_t)os::get_polling_page());
}
}
uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
Compile *C = ra_->C;
// If method set FPU control word, restore to standard control word
int size = C->in_24_bit_fp_mode() ? 6 : 0;
if( do_polling() && C->is_method_compilation() ) size += 6;
int framesize = C->frame_slots() << LogBytesPerInt;
assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
// Remove two words for return addr and rbp,
framesize -= 2*wordSize;
size++; // popl rbp,
if( framesize >= 128 ) {
size += 6;
} else {
size += framesize ? 3 : 0;
}
return size;
}
int MachEpilogNode::reloc() const {
return 0; // a large enough number
}
const Pipeline * MachEpilogNode::pipeline() const {
return MachNode::pipeline_class();
}
int MachEpilogNode::safepoint_offset() const { return 0; }
//=============================================================================
enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
static enum RC rc_class( OptoReg::Name reg ) {
if( !OptoReg::is_valid(reg) ) return rc_bad;
if (OptoReg::is_stack(reg)) return rc_stack;
VMReg r = OptoReg::as_VMReg(reg);
if (r->is_Register()) return rc_int;
if (r->is_FloatRegister()) {
assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
return rc_float;
}
assert(r->is_XMMRegister(), "must be");
return rc_xmm;
}
static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size ) {
if( cbuf ) {
emit_opcode (*cbuf, opcode );
encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
#ifndef PRODUCT
} else if( !do_size ) {
if( size != 0 ) tty->print("\n\t");
if( opcode == 0x8B || opcode == 0x89 ) { // MOV
if( is_load ) tty->print("%s %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
else tty->print("%s [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
} else { // FLD, FST, PUSH, POP
tty->print("%s [ESP + #%d]",op_str,offset);
}
#endif
}
int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
return size+3+offset_size;
}
// Helper for XMM registers. Extra opcode bits, limited syntax.
static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
int offset, int reg_lo, int reg_hi, int size ) {
if( cbuf ) {
if( reg_lo+1 == reg_hi ) { // double move?
if( is_load && !UseXmmLoadAndClearUpper )
emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
else
emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
} else {
emit_opcode(*cbuf, 0xF3 );
}
emit_opcode(*cbuf, 0x0F );
if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
emit_opcode(*cbuf, 0x12 ); // use 'movlpd' for load
else
emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
#ifndef PRODUCT
} else if( !do_size ) {
if( size != 0 ) tty->print("\n\t");
if( reg_lo+1 == reg_hi ) { // double move?
if( is_load ) tty->print("%s %s,[ESP + #%d]",
UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
Matcher::regName[reg_lo], offset);
else tty->print("MOVSD [ESP + #%d],%s",
offset, Matcher::regName[reg_lo]);
} else {
if( is_load ) tty->print("MOVSS %s,[ESP + #%d]",
Matcher::regName[reg_lo], offset);
else tty->print("MOVSS [ESP + #%d],%s",
offset, Matcher::regName[reg_lo]);
}
#endif
}
int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
return size+5+offset_size;
}
static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
int src_hi, int dst_hi, int size ) {
if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
if( cbuf ) {
if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
emit_opcode(*cbuf, 0x66 );
}
emit_opcode(*cbuf, 0x0F );
emit_opcode(*cbuf, 0x28 );
emit_rm (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
#ifndef PRODUCT
} else if( !do_size ) {
if( size != 0 ) tty->print("\n\t");
if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
tty->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
} else {
tty->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
}
#endif
}
return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
} else {
if( cbuf ) {
emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
emit_opcode(*cbuf, 0x0F );
emit_opcode(*cbuf, 0x10 );
emit_rm (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
#ifndef PRODUCT
} else if( !do_size ) {
if( size != 0 ) tty->print("\n\t");
if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
tty->print("MOVSD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
} else {
tty->print("MOVSS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
}
#endif
}
return size+4;
}
}
static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size ) {
if( cbuf ) {
emit_opcode(*cbuf, 0x8B );
emit_rm (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
#ifndef PRODUCT
} else if( !do_size ) {
if( size != 0 ) tty->print("\n\t");
tty->print("MOV %s,%s",Matcher::regName[dst],Matcher::regName[src]);
#endif
}
return size+2;
}
static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi, int offset, int size ) {
if( src_lo != FPR1L_num ) { // Move value to top of FP stack, if not already there
if( cbuf ) {
emit_opcode( *cbuf, 0xD9 ); // FLD (i.e., push it)
emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
#ifndef PRODUCT
} else if( !do_size ) {
if( size != 0 ) tty->print("\n\t");
tty->print("FLD %s",Matcher::regName[src_lo]);
#endif
}
size += 2;
}
int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
const char *op_str;
int op;
if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
op = 0xDD;
} else { // 32-bit store
op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
op = 0xD9;
assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
}
return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size);
}
uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
// Get registers to move
OptoReg::Name src_second = ra_->get_reg_second(in(1));
OptoReg::Name src_first = ra_->get_reg_first(in(1));
OptoReg::Name dst_second = ra_->get_reg_second(this );
OptoReg::Name dst_first = ra_->get_reg_first(this );
enum RC src_second_rc = rc_class(src_second);
enum RC src_first_rc = rc_class(src_first);
enum RC dst_second_rc = rc_class(dst_second);
enum RC dst_first_rc = rc_class(dst_first);
assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
// Generate spill code!
int size = 0;
if( src_first == dst_first && src_second == dst_second )
return size; // Self copy, no move
// --------------------------------------
// Check for mem-mem move. push/pop to move.
if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
if( src_second == dst_first ) { // overlapping stack copy ranges
assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH ",size);
size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP ",size);
src_second_rc = dst_second_rc = rc_bad; // flag as already moved the second bits
}
// move low bits
size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH ",size);
size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP ",size);
if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH ",size);
size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP ",size);
}
return size;
}
// --------------------------------------
// Check for integer reg-reg copy
if( src_first_rc == rc_int && dst_first_rc == rc_int )
size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size);
// Check for integer store
if( src_first_rc == rc_int && dst_first_rc == rc_stack )
size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size);
// Check for integer load
if( dst_first_rc == rc_int && src_first_rc == rc_stack )
size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size);
// --------------------------------------
// Check for float reg-reg copy
if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
(src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
if( cbuf ) {
// Note the mucking with the register encode to compensate for the 0/1
// indexing issue mentioned in a comment in the reg_def sections
// for FPR registers many lines above here.
if( src_first != FPR1L_num ) {
emit_opcode (*cbuf, 0xD9 ); // FLD ST(i)
emit_d8 (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
emit_opcode (*cbuf, 0xDD ); // FSTP ST(i)
emit_d8 (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
} else {
emit_opcode (*cbuf, 0xDD ); // FST ST(i)
emit_d8 (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
}
#ifndef PRODUCT
} else if( !do_size ) {
if( size != 0 ) st->print("\n\t");
if( src_first != FPR1L_num ) st->print("FLD %s\n\tFSTP %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
else st->print( "FST %s", Matcher::regName[dst_first]);
#endif
}
return size + ((src_first != FPR1L_num) ? 2+2 : 2);
}
// Check for float store
if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size);
}
// Check for float load
if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
int offset = ra_->reg2offset(src_first);
const char *op_str;
int op;
if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
op_str = "FLD_D";
op = 0xDD;
} else { // 32-bit load
op_str = "FLD_S";
op = 0xD9;
assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
}
if( cbuf ) {
emit_opcode (*cbuf, op );
encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
emit_opcode (*cbuf, 0xDD ); // FSTP ST(i)
emit_d8 (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
#ifndef PRODUCT
} else if( !do_size ) {
if( size != 0 ) st->print("\n\t");
st->print("%s ST,[ESP + #%d]\n\tFSTP %s",op_str, offset,Matcher::regName[dst_first]);
#endif
}
int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
return size + 3+offset_size+2;
}
// Check for xmm reg-reg copy
if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
(src_first+1 == src_second && dst_first+1 == dst_second),
"no non-adjacent float-moves" );
return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size);
}
// Check for xmm store
if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size);
}
// Check for float xmm load
if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size);
}
// Copy from float reg to xmm reg
if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
// copy to the top of stack from floating point reg
// and use LEA to preserve flags
if( cbuf ) {
emit_opcode(*cbuf,0x8D); // LEA ESP,[ESP-8]
emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
emit_d8(*cbuf,0xF8);
#ifndef PRODUCT
} else if( !do_size ) {
if( size != 0 ) st->print("\n\t");
st->print("LEA ESP,[ESP-8]");
#endif
}
size += 4;
size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size);
// Copy from the temp memory to the xmm reg.
size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size);
if( cbuf ) {
emit_opcode(*cbuf,0x8D); // LEA ESP,[ESP+8]
emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
emit_d8(*cbuf,0x08);
#ifndef PRODUCT
} else if( !do_size ) {
if( size != 0 ) st->print("\n\t");
st->print("LEA ESP,[ESP+8]");
#endif
}
size += 4;
return size;
}
assert( size > 0, "missed a case" );
// --------------------------------------------------------------------
// Check for second bits still needing moving.
if( src_second == dst_second )
return size; // Self copy; no move
assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
// Check for second word int-int move
if( src_second_rc == rc_int && dst_second_rc == rc_int )
return impl_mov_helper(cbuf,do_size,src_second,dst_second,size);
// Check for second word integer store
if( src_second_rc == rc_int && dst_second_rc == rc_stack )
return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size);
// Check for second word integer load
if( dst_second_rc == rc_int && src_second_rc == rc_stack )
return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size);
Unimplemented();
}
#ifndef PRODUCT
void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
implementation( NULL, ra_, false, st );
}
#endif
void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
implementation( &cbuf, ra_, false, NULL );
}
uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
return implementation( NULL, ra_, true, NULL );
}
//=============================================================================
#ifndef PRODUCT
void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
st->print("NOP \t# %d bytes pad for loops and calls", _count);
}
#endif
void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
MacroAssembler _masm(&cbuf);
__ nop(_count);
}
uint MachNopNode::size(PhaseRegAlloc *) const {
return _count;
}
//=============================================================================
#ifndef PRODUCT
void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
int reg = ra_->get_reg_first(this);
st->print("LEA %s,[ESP + #%d]",Matcher::regName[reg],offset);
}
#endif
void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
int reg = ra_->get_encode(this);
if( offset >= 128 ) {
emit_opcode(cbuf, 0x8D); // LEA reg,[SP+offset]
emit_rm(cbuf, 0x2, reg, 0x04);
emit_rm(cbuf, 0x0, 0x04, ESP_enc);
emit_d32(cbuf, offset);
}
else {
emit_opcode(cbuf, 0x8D); // LEA reg,[SP+offset]
emit_rm(cbuf, 0x1, reg, 0x04);
emit_rm(cbuf, 0x0, 0x04, ESP_enc);
emit_d8(cbuf, offset);
}
}
uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
if( offset >= 128 ) {
return 7;
}
else {
return 4;
}
}
//=============================================================================
// emit call stub, compiled java to interpreter
void emit_java_to_interp(CodeBuffer &cbuf ) {
// Stub is fixed up when the corresponding call is converted from calling
// compiled code to calling interpreted code.
// mov rbx,0
// jmp -1
address mark = cbuf.inst_mark(); // get mark within main instrs section
// Note that the code buffer's inst_mark is always relative to insts.
// That's why we must use the macroassembler to generate a stub.
MacroAssembler _masm(&cbuf);
address base =
__ start_a_stub(Compile::MAX_stubs_size);
if (base == NULL) return; // CodeBuffer::expand failed
// static stub relocation stores the instruction address of the call
__ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
// static stub relocation also tags the methodOop in the code-stream.
__ movoop(rbx, (jobject)NULL); // method is zapped till fixup time
// This is recognized as unresolved by relocs/nativeInst/ic code
__ jump(RuntimeAddress(__ pc()));
__ end_a_stub();
// Update current stubs pointer and restore code_end.
}
// size of call stub, compiled java to interpretor
uint size_java_to_interp() {
return 10; // movl; jmp
}
// relocation entries for call stub, compiled java to interpretor
uint reloc_java_to_interp() {
return 4; // 3 in emit_java_to_interp + 1 in Java_Static_Call
}
//=============================================================================
#ifndef PRODUCT
void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
st->print_cr( "CMP EAX,[ECX+4]\t# Inline cache check");
st->print_cr("\tJNE SharedRuntime::handle_ic_miss_stub");
st->print_cr("\tNOP");
st->print_cr("\tNOP");
if( !OptoBreakpoint )
st->print_cr("\tNOP");
}
#endif
void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
MacroAssembler masm(&cbuf);
#ifdef ASSERT
uint code_size = cbuf.code_size();
#endif
masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
masm.jump_cc(Assembler::notEqual,
RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
/* WARNING these NOPs are critical so that verified entry point is properly
aligned for patching by NativeJump::patch_verified_entry() */
int nops_cnt = 2;
if( !OptoBreakpoint ) // Leave space for int3
nops_cnt += 1;
masm.nop(nops_cnt);
assert(cbuf.code_size() - code_size == size(ra_), "checking code size of inline cache node");
}
uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
return OptoBreakpoint ? 11 : 12;
}
//=============================================================================
uint size_exception_handler() {
// NativeCall instruction size is the same as NativeJump.
// exception handler starts out as jump and can be patched to
// a call be deoptimization. (4932387)
// Note that this value is also credited (in output.cpp) to
// the size of the code section.
return NativeJump::instruction_size;
}
// Emit exception handler code. Stuff framesize into a register
// and call a VM stub routine.
int emit_exception_handler(CodeBuffer& cbuf) {
// Note that the code buffer's inst_mark is always relative to insts.
// That's why we must use the macroassembler to generate a handler.
MacroAssembler _masm(&cbuf);
address base =
__ start_a_stub(size_exception_handler());
if (base == NULL) return 0; // CodeBuffer::expand failed
int offset = __ offset();
__ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
__ end_a_stub();
return offset;
}
uint size_deopt_handler() {
// NativeCall instruction size is the same as NativeJump.
// exception handler starts out as jump and can be patched to
// a call be deoptimization. (4932387)
// Note that this value is also credited (in output.cpp) to
// the size of the code section.
return 5 + NativeJump::instruction_size; // pushl(); jmp;
}
// Emit deopt handler code.
int emit_deopt_handler(CodeBuffer& cbuf) {
// Note that the code buffer's inst_mark is always relative to insts.
// That's why we must use the macroassembler to generate a handler.
MacroAssembler _masm(&cbuf);
address base =
__ start_a_stub(size_exception_handler());
if (base == NULL) return 0; // CodeBuffer::expand failed
int offset = __ offset();
InternalAddress here(__ pc());
__ pushptr(here.addr());
__ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
__ end_a_stub();
return offset;
}
static void emit_double_constant(CodeBuffer& cbuf, double x) {
int mark = cbuf.insts()->mark_off();
MacroAssembler _masm(&cbuf);
address double_address = __ double_constant(x);
cbuf.insts()->set_mark_off(mark); // preserve mark across masm shift
emit_d32_reloc(cbuf,
(int)double_address,
internal_word_Relocation::spec(double_address),
RELOC_DISP32);
}
static void emit_float_constant(CodeBuffer& cbuf, float x) {
int mark = cbuf.insts()->mark_off();
MacroAssembler _masm(&cbuf);
address float_address = __ float_constant(x);
cbuf.insts()->set_mark_off(mark); // preserve mark across masm shift
emit_d32_reloc(cbuf,
(int)float_address,
internal_word_Relocation::spec(float_address),
RELOC_DISP32);
}
int Matcher::regnum_to_fpu_offset(int regnum) {
return regnum - 32; // The FP registers are in the second chunk
}
bool is_positive_zero_float(jfloat f) {
return jint_cast(f) == jint_cast(0.0F);
}
bool is_positive_one_float(jfloat f) {
return jint_cast(f) == jint_cast(1.0F);
}
bool is_positive_zero_double(jdouble d) {
return jlong_cast(d) == jlong_cast(0.0);
}
bool is_positive_one_double(jdouble d) {
return jlong_cast(d) == jlong_cast(1.0);
}
// This is UltraSparc specific, true just means we have fast l2f conversion
const bool Matcher::convL2FSupported(void) {
return true;
}
// Vector width in bytes
const uint Matcher::vector_width_in_bytes(void) {
return UseSSE >= 2 ? 8 : 0;
}
// Vector ideal reg
const uint Matcher::vector_ideal_reg(void) {
return Op_RegD;
}
// Is this branch offset short enough that a short branch can be used?
//
// NOTE: If the platform does not provide any short branch variants, then
// this method should return false for offset 0.
bool Matcher::is_short_branch_offset(int offset) {
return (-128 <= offset && offset <= 127);
}
const bool Matcher::isSimpleConstant64(jlong value) {
// Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
return false;
}
// The ecx parameter to rep stos for the ClearArray node is in dwords.
const bool Matcher::init_array_count_is_in_bytes = false;
// Threshold size for cleararray.
const int Matcher::init_array_short_size = 8 * BytesPerLong;
// Should the Matcher clone shifts on addressing modes, expecting them to
// be subsumed into complex addressing expressions or compute them into
// registers? True for Intel but false for most RISCs
const bool Matcher::clone_shift_expressions = true;
// Is it better to copy float constants, or load them directly from memory?
// Intel can load a float constant from a direct address, requiring no
// extra registers. Most RISCs will have to materialize an address into a
// register first, so they would do better to copy the constant from stack.
const bool Matcher::rematerialize_float_constants = true;
// If CPU can load and store mis-aligned doubles directly then no fixup is
// needed. Else we split the double into 2 integer pieces and move it
// piece-by-piece. Only happens when passing doubles into C code as the
// Java calling convention forces doubles to be aligned.
const bool Matcher::misaligned_doubles_ok = true;
void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
// Get the memory operand from the node
uint numopnds = node->num_opnds(); // Virtual call for number of operands
uint skipped = node->oper_input_base(); // Sum of leaves skipped so far
assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
uint opcnt = 1; // First operand
uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
while( idx >= skipped+num_edges ) {
skipped += num_edges;
opcnt++; // Bump operand count
assert( opcnt < numopnds, "Accessing non-existent operand" );
num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
}
MachOper *memory = node->_opnds[opcnt];
MachOper *new_memory = NULL;
switch (memory->opcode()) {
case DIRECT:
case INDOFFSET32X:
// No transformation necessary.
return;
case INDIRECT:
new_memory = new (C) indirect_win95_safeOper( );
break;
case INDOFFSET8:
new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
break;
case INDOFFSET32:
new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
break;
case INDINDEXOFFSET:
new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
break;
case INDINDEXSCALE:
new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
break;
case INDINDEXSCALEOFFSET:
new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
break;
case LOAD_LONG_INDIRECT:
case LOAD_LONG_INDOFFSET32:
// Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
return;
default:
assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
return;
}
node->_opnds[opcnt] = new_memory;
}
// Advertise here if the CPU requires explicit rounding operations
// to implement the UseStrictFP mode.
const bool Matcher::strict_fp_requires_explicit_rounding = true;
// Do floats take an entire double register or just half?
const bool Matcher::float_in_double = true;
// Do ints take an entire long register or just half?
const bool Matcher::int_in_long = false;
// Return whether or not this register is ever used as an argument. This
// function is used on startup to build the trampoline stubs in generateOptoStub.
// Registers not mentioned will be killed by the VM call in the trampoline, and
// arguments in those registers not be available to the callee.
bool Matcher::can_be_java_arg( int reg ) {
if( reg == ECX_num || reg == EDX_num ) return true;
if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
return false;
}
bool Matcher::is_spillable_arg( int reg ) {
return can_be_java_arg(reg);
}
// Register for DIVI projection of divmodI
RegMask Matcher::divI_proj_mask() {
return EAX_REG_mask;
}
// Register for MODI projection of divmodI
RegMask Matcher::modI_proj_mask() {
return EDX_REG_mask;
}
// Register for DIVL projection of divmodL
RegMask Matcher::divL_proj_mask() {
ShouldNotReachHere();
return RegMask();
}
// Register for MODL projection of divmodL
RegMask Matcher::modL_proj_mask() {
ShouldNotReachHere();
return RegMask();
}
%}
//----------ENCODING BLOCK-----------------------------------------------------
// This block specifies the encoding classes used by the compiler to output
// byte streams. Encoding classes generate functions which are called by
// Machine Instruction Nodes in order to generate the bit encoding of the
// instruction. Operands specify their base encoding interface with the
// interface keyword. There are currently supported four interfaces,
// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
// operand to generate a function which returns its register number when
// queried. CONST_INTER causes an operand to generate a function which
// returns the value of the constant when queried. MEMORY_INTER causes an
// operand to generate four functions which return the Base Register, the
// Index Register, the Scale Value, and the Offset Value of the operand when
// queried. COND_INTER causes an operand to generate six functions which
// return the encoding code (ie - encoding bits for the instruction)
// associated with each basic boolean condition for a conditional instruction.
// Instructions specify two basic values for encoding. They use the
// ins_encode keyword to specify their encoding class (which must be one of
// the class names specified in the encoding block), and they use the
// opcode keyword to specify, in order, their primary, secondary, and
// tertiary opcode. Only the opcode sections which a particular instruction
// needs for encoding need to be specified.
encode %{
// Build emit functions for each basic byte or larger field in the intel
// encoding scheme (opcode, rm, sib, immediate), and call them from C++
// code in the enc_class source block. Emit functions will live in the
// main source block for now. In future, we can generalize this by
// adding a syntax that specifies the sizes of fields in an order,
// so that the adlc can build the emit functions automagically
enc_class OpcP %{ // Emit opcode
emit_opcode(cbuf,$primary);
%}
enc_class OpcS %{ // Emit opcode
emit_opcode(cbuf,$secondary);
%}
enc_class Opcode(immI d8 ) %{ // Emit opcode
emit_opcode(cbuf,$d8$$constant);
%}
enc_class SizePrefix %{
emit_opcode(cbuf,0x66);
%}
enc_class RegReg (eRegI dst, eRegI src) %{ // RegReg(Many)
emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
%}
enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{ // OpcRegReg(Many)
emit_opcode(cbuf,$opcode$$constant);
emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
%}
enc_class mov_r32_imm0( eRegI dst ) %{
emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd -- MOV r32 ,imm32
emit_d32 ( cbuf, 0x0 ); // imm32==0x0
%}
enc_class cdq_enc %{
// Full implementation of Java idiv and irem; checks for
// special case as described in JVM spec., p.243 & p.271.
//
// normal case special case
//
// input : rax,: dividend min_int
// reg: divisor -1
//
// output: rax,: quotient (= rax, idiv reg) min_int
// rdx: remainder (= rax, irem reg) 0
//
// Code sequnce:
//
// 81 F8 00 00 00 80 cmp rax,80000000h
// 0F 85 0B 00 00 00 jne normal_case
// 33 D2 xor rdx,edx
// 83 F9 FF cmp rcx,0FFh
// 0F 84 03 00 00 00 je done
// normal_case:
// 99 cdq
// F7 F9 idiv rax,ecx
// done:
//
emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80); // cmp rax,80000000h
emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00); // jne normal_case
emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2); // xor rdx,edx
emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00); // je done
// normal_case:
emit_opcode(cbuf,0x99); // cdq
// idiv (note: must be emitted by the user of this rule)
// normal:
%}
// Dense encoding for older common ops
enc_class Opc_plus(immI opcode, eRegI reg) %{
emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
%}
// Opcde enc_class for 8/32 bit immediate instructions with sign-extension
enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
// Check for 8-bit immediate, and set sign extend bit in opcode
if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
emit_opcode(cbuf, $primary | 0x02);
}
else { // If 32-bit immediate
emit_opcode(cbuf, $primary);
}
%}
enc_class OpcSErm (eRegI dst, immI imm) %{ // OpcSEr/m
// Emit primary opcode and set sign-extend bit
// Check for 8-bit immediate, and set sign extend bit in opcode
if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
emit_opcode(cbuf, $primary | 0x02); }
else { // If 32-bit immediate
emit_opcode(cbuf, $primary);
}
// Emit r/m byte with secondary opcode, after primary opcode.
emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
%}
enc_class Con8or32 (immI imm) %{ // Con8or32(storeImmI), 8 or 32 bits
// Check for 8-bit immediate, and set sign extend bit in opcode
if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
$$$emit8$imm$$constant;
}
else { // If 32-bit immediate
// Output immediate
$$$emit32$imm$$constant;
}
%}
enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
// Emit primary opcode and set sign-extend bit
// Check for 8-bit immediate, and set sign extend bit in opcode
int con = (int)$imm$$constant; // Throw away top bits
emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
// Emit r/m byte with secondary opcode, after primary opcode.
emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
else emit_d32(cbuf,con);
%}
enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
// Emit primary opcode and set sign-extend bit
// Check for 8-bit immediate, and set sign extend bit in opcode
int con = (int)($imm$$constant >> 32); // Throw away bottom bits
emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
// Emit r/m byte with tertiary opcode, after primary opcode.
emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
else emit_d32(cbuf,con);
%}
enc_class Lbl (label labl) %{ // JMP, CALL
Label *l = $labl$$label;
emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
%}
enc_class LblShort (label labl) %{ // JMP, CALL
Label *l = $labl$$label;
int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
emit_d8(cbuf, disp);
%}
enc_class OpcSReg (eRegI dst) %{ // BSWAP
emit_cc(cbuf, $secondary, $dst$$reg );
%}
enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
int destlo = $dst$$reg;
int desthi = HIGH_FROM_LOW(destlo);
// bswap lo
emit_opcode(cbuf, 0x0F);
emit_cc(cbuf, 0xC8, destlo);
// bswap hi
emit_opcode(cbuf, 0x0F);
emit_cc(cbuf, 0xC8, desthi);
// xchg lo and hi
emit_opcode(cbuf, 0x87);
emit_rm(cbuf, 0x3, destlo, desthi);
%}
enc_class RegOpc (eRegI div) %{ // IDIV, IMOD, JMP indirect, ...
emit_rm(cbuf, 0x3, $secondary, $div$$reg );
%}
enc_class Jcc (cmpOp cop, label labl) %{ // JCC
Label *l = $labl$$label;
$$$emit8$primary;
emit_cc(cbuf, $secondary, $cop$$cmpcode);
emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
%}
enc_class JccShort (cmpOp cop, label labl) %{ // JCC
Label *l = $labl$$label;
emit_cc(cbuf, $primary, $cop$$cmpcode);
int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
emit_d8(cbuf, disp);
%}
enc_class enc_cmov(cmpOp cop ) %{ // CMOV
$$$emit8$primary;
emit_cc(cbuf, $secondary, $cop$$cmpcode);
%}
enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
emit_d8(cbuf, op >> 8 );
emit_d8(cbuf, op & 255);
%}
// emulate a CMOV with a conditional branch around a MOV
enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
// Invert sense of branch from sense of CMOV
emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
emit_d8( cbuf, $brOffs$$constant );
%}
enc_class enc_PartialSubtypeCheck( ) %{
Register Redi = as_Register(EDI_enc); // result register
Register Reax = as_Register(EAX_enc); // super class
Register Recx = as_Register(ECX_enc); // killed
Register Resi = as_Register(ESI_enc); // sub class
Label hit, miss;
MacroAssembler _masm(&cbuf);
// Compare super with sub directly, since super is not in its own SSA.
// The compiler used to emit this test, but we fold it in here,
// to allow platform-specific tweaking on sparc.
__ cmpptr(Reax, Resi);
__ jcc(Assembler::equal, hit);
#ifndef PRODUCT
__ incrementl(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr));
#endif //PRODUCT
__ movptr(Redi,Address(Resi,sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes()));
__ movl(Recx,Address(Redi,arrayOopDesc::length_offset_in_bytes()));
__ addptr(Redi,arrayOopDesc::base_offset_in_bytes(T_OBJECT));
__ repne_scan();
__ jcc(Assembler::notEqual, miss);
__ movptr(Address(Resi,sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes()),Reax);
__ bind(hit);
if( $primary )
__ xorptr(Redi,Redi);
__ bind(miss);
%}
enc_class FFree_Float_Stack_All %{ // Free_Float_Stack_All
MacroAssembler masm(&cbuf);
int start = masm.offset();
if (UseSSE >= 2) {
if (VerifyFPU) {
masm.verify_FPU(0, "must be empty in SSE2+ mode");
}
} else {
// External c_calling_convention expects the FPU stack to be 'clean'.
// Compiled code leaves it dirty. Do cleanup now.
masm.empty_FPU_stack();
}
if (sizeof_FFree_Float_Stack_All == -1) {
sizeof_FFree_Float_Stack_All = masm.offset() - start;
} else {
assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
}
%}
enc_class Verify_FPU_For_Leaf %{
if( VerifyFPU ) {
MacroAssembler masm(&cbuf);
masm.verify_FPU( -3, "Returning from Runtime Leaf call");
}
%}
enc_class Java_To_Runtime (method meth) %{ // CALL Java_To_Runtime, Java_To_Runtime_Leaf
// This is the instruction starting address for relocation info.
cbuf.set_inst_mark();
$$$emit8$primary;
// CALL directly to the runtime
emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
runtime_call_Relocation::spec(), RELOC_IMM32 );
if (UseSSE >= 2) {
MacroAssembler _masm(&cbuf);
BasicType rt = tf()->return_type();
if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
// A C runtime call where the return value is unused. In SSE2+
// mode the result needs to be removed from the FPU stack. It's
// likely that this function call could be removed by the
// optimizer if the C function is a pure function.
__ ffree(0);
} else if (rt == T_FLOAT) {
__ lea(rsp, Address(rsp, -4));
__ fstp_s(Address(rsp, 0));
__ movflt(xmm0, Address(rsp, 0));
__ lea(rsp, Address(rsp, 4));
} else if (rt == T_DOUBLE) {
__ lea(rsp, Address(rsp, -8));
__ fstp_d(Address(rsp, 0));
__ movdbl(xmm0, Address(rsp, 0));
__ lea(rsp, Address(rsp, 8));
}
}
%}
enc_class pre_call_FPU %{
// If method sets FPU control word restore it here
if( Compile::current()->in_24_bit_fp_mode() ) {
MacroAssembler masm(&cbuf);
masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
}
%}
enc_class post_call_FPU %{
// If method sets FPU control word do it here also
if( Compile::current()->in_24_bit_fp_mode() ) {
MacroAssembler masm(&cbuf);
masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
}
%}
enc_class Java_Static_Call (method meth) %{ // JAVA STATIC CALL
// CALL to fixup routine. Fixup routine uses ScopeDesc info to determine
// who we intended to call.
cbuf.set_inst_mark();
$$$emit8$primary;
if ( !_method ) {
emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
runtime_call_Relocation::spec(), RELOC_IMM32 );
} else if(_optimized_virtual) {
emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
} else {
emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
static_call_Relocation::spec(), RELOC_IMM32 );
}
if( _method ) { // Emit stub for static call
emit_java_to_interp(cbuf);
}
%}
enc_class Java_Dynamic_Call (method meth) %{ // JAVA DYNAMIC CALL
// !!!!!
// Generate "Mov EAX,0x00", placeholder instruction to load oop-info
// emit_call_dynamic_prologue( cbuf );
cbuf.set_inst_mark();
emit_opcode(cbuf, 0xB8 + EAX_enc); // mov EAX,-1
emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
address virtual_call_oop_addr = cbuf.inst_mark();
// CALL to fixup routine. Fixup routine uses ScopeDesc info to determine
// who we intended to call.
cbuf.set_inst_mark();
$$$emit8$primary;
emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
%}
enc_class Java_Compiled_Call (method meth) %{ // JAVA COMPILED CALL
int disp = in_bytes(methodOopDesc::from_compiled_offset());
assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
// CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
cbuf.set_inst_mark();
$$$emit8$primary;
emit_rm(cbuf, 0x01, $secondary, EAX_enc ); // R/M byte
emit_d8(cbuf, disp); // Displacement
%}
enc_class Xor_Reg (eRegI dst) %{
emit_opcode(cbuf, 0x33);
emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
%}
// Following encoding is no longer used, but may be restored if calling
// convention changes significantly.
// Became: Xor_Reg(EBP), Java_To_Runtime( labl )
//
// enc_class Java_Interpreter_Call (label labl) %{ // JAVA INTERPRETER CALL
// // int ic_reg = Matcher::inline_cache_reg();
// // int ic_encode = Matcher::_regEncode[ic_reg];
// // int imo_reg = Matcher::interpreter_method_oop_reg();
// // int imo_encode = Matcher::_regEncode[imo_reg];
//
// // // Interpreter expects method_oop in EBX, currently a callee-saved register,
// // // so we load it immediately before the call
// // emit_opcode(cbuf, 0x8B); // MOV imo_reg,ic_reg # method_oop
// // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
//
// // xor rbp,ebp
// emit_opcode(cbuf, 0x33);
// emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
//
// // CALL to interpreter.
// cbuf.set_inst_mark();
// $$$emit8$primary;
// emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.code_end()) - 4),
// runtime_call_Relocation::spec(), RELOC_IMM32 );
// %}
enc_class RegOpcImm (eRegI dst, immI8 shift) %{ // SHL, SAR, SHR
$$$emit8$primary;
emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
$$$emit8$shift$$constant;
%}
enc_class LdImmI (eRegI dst, immI src) %{ // Load Immediate
// Load immediate does not have a zero or sign extended version
// for 8-bit immediates
emit_opcode(cbuf, 0xB8 + $dst$$reg);
$$$emit32$src$$constant;
%}
enc_class LdImmP (eRegI dst, immI src) %{ // Load Immediate
// Load immediate does not have a zero or sign extended version
// for 8-bit immediates
emit_opcode(cbuf, $primary + $dst$$reg);
$$$emit32$src$$constant;
%}
enc_class LdImmL_Lo( eRegL dst, immL src) %{ // Load Immediate
// Load immediate does not have a zero or sign extended version
// for 8-bit immediates
int dst_enc = $dst$$reg;
int src_con = $src$$constant & 0x0FFFFFFFFL;
if (src_con == 0) {
// xor dst, dst
emit_opcode(cbuf, 0x33);
emit_rm(cbuf, 0x3, dst_enc, dst_enc);
} else {
emit_opcode(cbuf, $primary + dst_enc);
emit_d32(cbuf, src_con);
}
%}
enc_class LdImmL_Hi( eRegL dst, immL src) %{ // Load Immediate
// Load immediate does not have a zero or sign extended version
// for 8-bit immediates
int dst_enc = $dst$$reg + 2;
int src_con = ((julong)($src$$constant)) >> 32;
if (src_con == 0) {
// xor dst, dst
emit_opcode(cbuf, 0x33);
emit_rm(cbuf, 0x3, dst_enc, dst_enc);
} else {
emit_opcode(cbuf, $primary + dst_enc);
emit_d32(cbuf, src_con);
}
%}
enc_class LdImmD (immD src) %{ // Load Immediate
if( is_positive_zero_double($src$$constant)) {
// FLDZ
emit_opcode(cbuf,0xD9);
emit_opcode(cbuf,0xEE);
} else if( is_positive_one_double($src$$constant)) {
// FLD1
emit_opcode(cbuf,0xD9);
emit_opcode(cbuf,0xE8);
} else {
emit_opcode(cbuf,0xDD);
emit_rm(cbuf, 0x0, 0x0, 0x5);
emit_double_constant(cbuf, $src$$constant);
}
%}
enc_class LdImmF (immF src) %{ // Load Immediate
if( is_positive_zero_float($src$$constant)) {
emit_opcode(cbuf,0xD9);
emit_opcode(cbuf,0xEE);
} else if( is_positive_one_float($src$$constant)) {
emit_opcode(cbuf,0xD9);
emit_opcode(cbuf,0xE8);
} else {
$$$emit8$primary;
// Load immediate does not have a zero or sign extended version
// for 8-bit immediates
// First load to TOS, then move to dst
emit_rm(cbuf, 0x0, 0x0, 0x5);
emit_float_constant(cbuf, $src$$constant);
}
%}
enc_class LdImmX (regX dst, immXF con) %{ // Load Immediate
emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
emit_float_constant(cbuf, $con$$constant);
%}
enc_class LdImmXD (regXD dst, immXD con) %{ // Load Immediate
emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
emit_double_constant(cbuf, $con$$constant);
%}
enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
// UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
emit_double_constant(cbuf, $con$$constant);
%}
enc_class Opc_MemImm_F(immF src) %{
cbuf.set_inst_mark();
$$$emit8$primary;
emit_rm(cbuf, 0x0, $secondary, 0x5);
emit_float_constant(cbuf, $src$$constant);
%}
enc_class MovI2X_reg(regX dst, eRegI src) %{
emit_opcode(cbuf, 0x66 ); // MOVD dst,src
emit_opcode(cbuf, 0x0F );
emit_opcode(cbuf, 0x6E );
emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
%}
enc_class MovX2I_reg(eRegI dst, regX src) %{
emit_opcode(cbuf, 0x66 ); // MOVD dst,src
emit_opcode(cbuf, 0x0F );
emit_opcode(cbuf, 0x7E );
emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
%}
enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
{ // MOVD $dst,$src.lo
emit_opcode(cbuf,0x66);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0x6E);
emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
}
{ // MOVD $tmp,$src.hi
emit_opcode(cbuf,0x66);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0x6E);
emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
}
{ // PUNPCKLDQ $dst,$tmp
emit_opcode(cbuf,0x66);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0x62);
emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
}
%}
enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
{ // MOVD $dst.lo,$src
emit_opcode(cbuf,0x66);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0x7E);
emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
}
{ // PSHUFLW $tmp,$src,0x4E (01001110b)
emit_opcode(cbuf,0xF2);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0x70);
emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
emit_d8(cbuf, 0x4E);
}
{ // MOVD $dst.hi,$tmp
emit_opcode(cbuf,0x66);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0x7E);
emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
}
%}
// Encode a reg-reg copy. If it is useless, then empty encoding.
enc_class enc_Copy( eRegI dst, eRegI src ) %{
encode_Copy( cbuf, $dst$$reg, $src$$reg );
%}
enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
encode_Copy( cbuf, $dst$$reg, $src$$reg );
%}
// Encode xmm reg-reg copy. If it is useless, then empty encoding.
enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
%}
enc_class RegReg (eRegI dst, eRegI src) %{ // RegReg(Many)
emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
%}
enc_class RegReg_Lo(eRegL dst, eRegL src) %{ // RegReg(Many)
$$$emit8$primary;
emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
%}
enc_class RegReg_Hi(eRegL dst, eRegL src) %{ // RegReg(Many)
$$$emit8$secondary;
emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
%}
enc_class RegReg_Lo2(eRegL dst, eRegL src) %{ // RegReg(Many)
emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
%}
enc_class RegReg_Hi2(eRegL dst, eRegL src) %{ // RegReg(Many)
emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
%}
enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
%}
enc_class Con32 (immI src) %{ // Con32(storeImmI)
// Output immediate
$$$emit32$src$$constant;
%}
enc_class Con32F_as_bits(immF src) %{ // storeF_imm
// Output Float immediate bits
jfloat jf = $src$$constant;
int jf_as_bits = jint_cast( jf );
emit_d32(cbuf, jf_as_bits);
%}
enc_class Con32XF_as_bits(immXF src) %{ // storeX_imm
// Output Float immediate bits
jfloat jf = $src$$constant;
int jf_as_bits = jint_cast( jf );
emit_d32(cbuf, jf_as_bits);
%}
enc_class Con16 (immI src) %{ // Con16(storeImmI)
// Output immediate
$$$emit16$src$$constant;
%}
enc_class Con_d32(immI src) %{
emit_d32(cbuf,$src$$constant);
%}
enc_class conmemref (eRegP t1) %{ // Con32(storeImmI)
// Output immediate memory reference
emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
emit_d32(cbuf, 0x00);
%}
enc_class lock_prefix( ) %{
if( os::is_MP() )
emit_opcode(cbuf,0xF0); // [Lock]
%}
// Cmp-xchg long value.
// Note: we need to swap rbx, and rcx before and after the
// cmpxchg8 instruction because the instruction uses
// rcx as the high order word of the new value to store but
// our register encoding uses rbx,.
enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
// XCHG rbx,ecx
emit_opcode(cbuf,0x87);
emit_opcode(cbuf,0xD9);
// [Lock]
if( os::is_MP() )
emit_opcode(cbuf,0xF0);
// CMPXCHG8 [Eptr]
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0xC7);
emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
// XCHG rbx,ecx
emit_opcode(cbuf,0x87);
emit_opcode(cbuf,0xD9);
%}
enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
// [Lock]
if( os::is_MP() )
emit_opcode(cbuf,0xF0);
// CMPXCHG [Eptr]
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0xB1);
emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
%}
enc_class enc_flags_ne_to_boolean( iRegI res ) %{
int res_encoding = $res$$reg;
// MOV res,0
emit_opcode( cbuf, 0xB8 + res_encoding);
emit_d32( cbuf, 0 );
// JNE,s fail
emit_opcode(cbuf,0x75);
emit_d8(cbuf, 5 );
// MOV res,1
emit_opcode( cbuf, 0xB8 + res_encoding);
emit_d32( cbuf, 1 );
// fail:
%}
enc_class set_instruction_start( ) %{
cbuf.set_inst_mark(); // Mark start of opcode for reloc info in mem operand
%}
enc_class RegMem (eRegI ereg, memory mem) %{ // emit_reg_mem
int reg_encoding = $ereg$$reg;
int base = $mem$$base;
int index = $mem$$index;
int scale = $mem$$scale;
int displace = $mem$$disp;
bool disp_is_oop = $mem->disp_is_oop();
encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
%}
enc_class RegMem_Hi(eRegL ereg, memory mem) %{ // emit_reg_mem
int reg_encoding = HIGH_FROM_LOW($ereg$$reg); // Hi register of pair, computed from lo
int base = $mem$$base;
int index = $mem$$index;
int scale = $mem$$scale;
int displace = $mem$$disp + 4; // Offset is 4 further in memory
assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
%}
enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
int r1, r2;
if( $tertiary == 0xA4 ) { r1 = $dst$$reg; r2 = HIGH_FROM_LOW($dst$$reg); }
else { r2 = $dst$$reg; r1 = HIGH_FROM_LOW($dst$$reg); }
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,$tertiary);
emit_rm(cbuf, 0x3, r1, r2);
emit_d8(cbuf,$cnt$$constant);
emit_d8(cbuf,$primary);
emit_rm(cbuf, 0x3, $secondary, r1);
emit_d8(cbuf,$cnt$$constant);
%}
enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
emit_opcode( cbuf, 0x8B ); // Move
emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
emit_d8(cbuf,$primary);
emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
emit_d8(cbuf,$cnt$$constant-32);
emit_d8(cbuf,$primary);
emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
emit_d8(cbuf,31);
%}
enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
int r1, r2;
if( $secondary == 0x5 ) { r1 = $dst$$reg; r2 = HIGH_FROM_LOW($dst$$reg); }
else { r2 = $dst$$reg; r1 = HIGH_FROM_LOW($dst$$reg); }
emit_opcode( cbuf, 0x8B ); // Move r1,r2
emit_rm(cbuf, 0x3, r1, r2);
if( $cnt$$constant > 32 ) { // Shift, if not by zero
emit_opcode(cbuf,$primary);
emit_rm(cbuf, 0x3, $secondary, r1);
emit_d8(cbuf,$cnt$$constant-32);
}
emit_opcode(cbuf,0x33); // XOR r2,r2
emit_rm(cbuf, 0x3, r2, r2);
%}
// Clone of RegMem but accepts an extra parameter to access each
// half of a double in memory; it never needs relocation info.
enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
emit_opcode(cbuf,$opcode$$constant);
int reg_encoding = $rm_reg$$reg;
int base = $mem$$base;
int index = $mem$$index;
int scale = $mem$$scale;
int displace = $mem$$disp + $disp_for_half$$constant;
bool disp_is_oop = false;
encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
%}
// !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
//
// Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
// and it never needs relocation information.
// Frequently used to move data between FPU's Stack Top and memory.
enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
int rm_byte_opcode = $rm_opcode$$constant;
int base = $mem$$base;
int index = $mem$$index;
int scale = $mem$$scale;
int displace = $mem$$disp;
assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
%}
enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
int rm_byte_opcode = $rm_opcode$$constant;
int base = $mem$$base;
int index = $mem$$index;
int scale = $mem$$scale;
int displace = $mem$$disp;
bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
%}
enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{ // emit_reg_lea
int reg_encoding = $dst$$reg;
int base = $src0$$reg; // 0xFFFFFFFF indicates no base
int index = 0x04; // 0x04 indicates no index
int scale = 0x00; // 0x00 indicates no scale
int displace = $src1$$constant; // 0x00 indicates no displacement
bool disp_is_oop = false;
encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
%}
enc_class min_enc (eRegI dst, eRegI src) %{ // MIN
// Compare dst,src
emit_opcode(cbuf,0x3B);
emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
// jmp dst < src around move
emit_opcode(cbuf,0x7C);
emit_d8(cbuf,2);
// move dst,src
emit_opcode(cbuf,0x8B);
emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
%}
enc_class max_enc (eRegI dst, eRegI src) %{ // MAX
// Compare dst,src
emit_opcode(cbuf,0x3B);
emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
// jmp dst > src around move
emit_opcode(cbuf,0x7F);
emit_d8(cbuf,2);
// move dst,src
emit_opcode(cbuf,0x8B);
emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
%}
enc_class enc_FP_store(memory mem, regD src) %{
// If src is FPR1, we can just FST to store it.
// Else we need to FLD it to FPR1, then FSTP to store/pop it.
int reg_encoding = 0x2; // Just store
int base = $mem$$base;
int index = $mem$$index;
int scale = $mem$$scale;
int displace = $mem$$disp;
bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
if( $src$$reg != FPR1L_enc ) {
reg_encoding = 0x3; // Store & pop
emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
emit_d8( cbuf, 0xC0-1+$src$$reg );
}
cbuf.set_inst_mark(); // Mark start of opcode for reloc info in mem operand
emit_opcode(cbuf,$primary);
encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
%}
enc_class neg_reg(eRegI dst) %{
// NEG $dst
emit_opcode(cbuf,0xF7);
emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
%}
enc_class setLT_reg(eCXRegI dst) %{
// SETLT $dst
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0x9C);
emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
%}
enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{ // cadd_cmpLT
int tmpReg = $tmp$$reg;
// SUB $p,$q
emit_opcode(cbuf,0x2B);
emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
// SBB $tmp,$tmp
emit_opcode(cbuf,0x1B);
emit_rm(cbuf, 0x3, tmpReg, tmpReg);
// AND $tmp,$y
emit_opcode(cbuf,0x23);
emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
// ADD $p,$tmp
emit_opcode(cbuf,0x03);
emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
%}
enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{ // cadd_cmpLT
int tmpReg = $tmp$$reg;
// SUB $p,$q
emit_opcode(cbuf,0x2B);
emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
// SBB $tmp,$tmp
emit_opcode(cbuf,0x1B);
emit_rm(cbuf, 0x3, tmpReg, tmpReg);
// AND $tmp,$y
cbuf.set_inst_mark(); // Mark start of opcode for reloc info in mem operand
emit_opcode(cbuf,0x23);
int reg_encoding = tmpReg;
int base = $mem$$base;
int index = $mem$$index;
int scale = $mem$$scale;
int displace = $mem$$disp;
bool disp_is_oop = $mem->disp_is_oop();
encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
// ADD $p,$tmp
emit_opcode(cbuf,0x03);
emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
%}
enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
// TEST shift,32
emit_opcode(cbuf,0xF7);
emit_rm(cbuf, 0x3, 0, ECX_enc);
emit_d32(cbuf,0x20);
// JEQ,s small
emit_opcode(cbuf, 0x74);
emit_d8(cbuf, 0x04);
// MOV $dst.hi,$dst.lo
emit_opcode( cbuf, 0x8B );
emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
// CLR $dst.lo
emit_opcode(cbuf, 0x33);
emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
// small:
// SHLD $dst.hi,$dst.lo,$shift
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0xA5);
emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
// SHL $dst.lo,$shift"
emit_opcode(cbuf,0xD3);
emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
%}
enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
// TEST shift,32
emit_opcode(cbuf,0xF7);
emit_rm(cbuf, 0x3, 0, ECX_enc);
emit_d32(cbuf,0x20);
// JEQ,s small
emit_opcode(cbuf, 0x74);
emit_d8(cbuf, 0x04);
// MOV $dst.lo,$dst.hi
emit_opcode( cbuf, 0x8B );
emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
// CLR $dst.hi
emit_opcode(cbuf, 0x33);
emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
// small:
// SHRD $dst.lo,$dst.hi,$shift
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0xAD);
emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
// SHR $dst.hi,$shift"
emit_opcode(cbuf,0xD3);
emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
%}
enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
// TEST shift,32
emit_opcode(cbuf,0xF7);
emit_rm(cbuf, 0x3, 0, ECX_enc);
emit_d32(cbuf,0x20);
// JEQ,s small
emit_opcode(cbuf, 0x74);
emit_d8(cbuf, 0x05);
// MOV $dst.lo,$dst.hi
emit_opcode( cbuf, 0x8B );
emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
// SAR $dst.hi,31
emit_opcode(cbuf, 0xC1);
emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
emit_d8(cbuf, 0x1F );
// small:
// SHRD $dst.lo,$dst.hi,$shift
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0xAD);
emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
// SAR $dst.hi,$shift"
emit_opcode(cbuf,0xD3);
emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
%}
// ----------------- Encodings for floating point unit -----------------
// May leave result in FPU-TOS or FPU reg depending on opcodes
enc_class OpcReg_F (regF src) %{ // FMUL, FDIV
$$$emit8$primary;
emit_rm(cbuf, 0x3, $secondary, $src$$reg );
%}
// Pop argument in FPR0 with FSTP ST(0)
enc_class PopFPU() %{
emit_opcode( cbuf, 0xDD );
emit_d8( cbuf, 0xD8 );
%}
// !!!!! equivalent to Pop_Reg_F
enc_class Pop_Reg_D( regD dst ) %{
emit_opcode( cbuf, 0xDD ); // FSTP ST(i)
emit_d8( cbuf, 0xD8+$dst$$reg );
%}
enc_class Push_Reg_D( regD dst ) %{
emit_opcode( cbuf, 0xD9 );
emit_d8( cbuf, 0xC0-1+$dst$$reg ); // FLD ST(i-1)
%}
enc_class strictfp_bias1( regD dst ) %{
emit_opcode( cbuf, 0xDB ); // FLD m80real
emit_opcode( cbuf, 0x2D );
emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
emit_opcode( cbuf, 0xDE ); // FMULP ST(dst), ST0
emit_opcode( cbuf, 0xC8+$dst$$reg );
%}
enc_class strictfp_bias2( regD dst ) %{
emit_opcode( cbuf, 0xDB ); // FLD m80real
emit_opcode( cbuf, 0x2D );
emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
emit_opcode( cbuf, 0xDE ); // FMULP ST(dst), ST0
emit_opcode( cbuf, 0xC8+$dst$$reg );
%}
// Special case for moving an integer register to a stack slot.
enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
%}
// Special case for moving a register to a stack slot.
enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
// Opcode already emitted
emit_rm( cbuf, 0x02, $src$$reg, ESP_enc ); // R/M byte
emit_rm( cbuf, 0x00, ESP_enc, ESP_enc); // SIB byte
emit_d32(cbuf, $dst$$disp); // Displacement
%}
// Push the integer in stackSlot 'src' onto FP-stack
enc_class Push_Mem_I( memory src ) %{ // FILD [ESP+src]
store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
%}
// Push the float in stackSlot 'src' onto FP-stack
enc_class Push_Mem_F( memory src ) %{ // FLD_S [ESP+src]
store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
%}
// Push the double in stackSlot 'src' onto FP-stack
enc_class Push_Mem_D( memory src ) %{ // FLD_D [ESP+src]
store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
%}
// Push FPU's TOS float to a stack-slot, and pop FPU-stack
enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
%}
// Same as Pop_Mem_F except for opcode
// Push FPU's TOS double to a stack-slot, and pop FPU-stack
enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
%}
enc_class Pop_Reg_F( regF dst ) %{
emit_opcode( cbuf, 0xDD ); // FSTP ST(i)
emit_d8( cbuf, 0xD8+$dst$$reg );
%}
enc_class Push_Reg_F( regF dst ) %{
emit_opcode( cbuf, 0xD9 ); // FLD ST(i-1)
emit_d8( cbuf, 0xC0-1+$dst$$reg );
%}
// Push FPU's float to a stack-slot, and pop FPU-stack
enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
int pop = 0x02;
if ($src$$reg != FPR1L_enc) {
emit_opcode( cbuf, 0xD9 ); // FLD ST(i-1)
emit_d8( cbuf, 0xC0-1+$src$$reg );
pop = 0x03;
}
store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S [ESP+dst]
%}
// Push FPU's double to a stack-slot, and pop FPU-stack
enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
int pop = 0x02;
if ($src$$reg != FPR1L_enc) {
emit_opcode( cbuf, 0xD9 ); // FLD ST(i-1)
emit_d8( cbuf, 0xC0-1+$src$$reg );
pop = 0x03;
}
store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D [ESP+dst]
%}
// Push FPU's double to a FPU-stack-slot, and pop FPU-stack
enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
int pop = 0xD0 - 1; // -1 since we skip FLD
if ($src$$reg != FPR1L_enc) {
emit_opcode( cbuf, 0xD9 ); // FLD ST(src-1)
emit_d8( cbuf, 0xC0-1+$src$$reg );
pop = 0xD8;
}
emit_opcode( cbuf, 0xDD );
emit_d8( cbuf, pop+$dst$$reg ); // FST<P> ST(i)
%}
enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
MacroAssembler masm(&cbuf);
masm.fld_s( $src1$$reg-1); // nothing at TOS, load TOS from src1.reg
masm.fmul( $src2$$reg+0); // value at TOS
masm.fadd( $src$$reg+0); // value at TOS
masm.fstp_d( $dst$$reg+0); // value at TOS, popped off after store
%}
enc_class Push_Reg_Mod_D( regD dst, regD src) %{
// load dst in FPR0
emit_opcode( cbuf, 0xD9 );
emit_d8( cbuf, 0xC0-1+$dst$$reg );
if ($src$$reg != FPR1L_enc) {
// fincstp
emit_opcode (cbuf, 0xD9);
emit_opcode (cbuf, 0xF7);
// swap src with FPR1:
// FXCH FPR1 with src
emit_opcode(cbuf, 0xD9);
emit_d8(cbuf, 0xC8-1+$src$$reg );
// fdecstp
emit_opcode (cbuf, 0xD9);
emit_opcode (cbuf, 0xF6);
}
%}
enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
// Allocate a word
emit_opcode(cbuf,0x83); // SUB ESP,8
emit_opcode(cbuf,0xEC);
emit_d8(cbuf,0x08);
emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], src1
emit_opcode (cbuf, 0x0F );
emit_opcode (cbuf, 0x11 );
encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0xDD ); // FLD_D [ESP]
encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], src0
emit_opcode (cbuf, 0x0F );
emit_opcode (cbuf, 0x11 );
encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0xDD ); // FLD_D [ESP]
encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
%}
enc_class Push_ModX_encoding( regX src0, regX src1) %{
// Allocate a word
emit_opcode(cbuf,0x83); // SUB ESP,4
emit_opcode(cbuf,0xEC);
emit_d8(cbuf,0x04);
emit_opcode (cbuf, 0xF3 ); // MOVSS [ESP], src1
emit_opcode (cbuf, 0x0F );
emit_opcode (cbuf, 0x11 );
encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0xD9 ); // FLD [ESP]
encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
emit_opcode (cbuf, 0xF3 ); // MOVSS [ESP], src0
emit_opcode (cbuf, 0x0F );
emit_opcode (cbuf, 0x11 );
encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0xD9 ); // FLD [ESP]
encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
%}
enc_class Push_ResultXD(regXD dst) %{
store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
// UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
emit_opcode (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
emit_opcode (cbuf, 0x0F );
emit_opcode (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0x83); // ADD ESP,8
emit_opcode(cbuf,0xC4);
emit_d8(cbuf,0x08);
%}
enc_class Push_ResultX(regX dst, immI d8) %{
store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
emit_opcode (cbuf, 0xF3 ); // MOVSS dst(xmm), [ESP]
emit_opcode (cbuf, 0x0F );
emit_opcode (cbuf, 0x10 );
encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0x83); // ADD ESP,d8 (4 or 8)
emit_opcode(cbuf,0xC4);
emit_d8(cbuf,$d8$$constant);
%}
enc_class Push_SrcXD(regXD src) %{
// Allocate a word
emit_opcode(cbuf,0x83); // SUB ESP,8
emit_opcode(cbuf,0xEC);
emit_d8(cbuf,0x08);
emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], src
emit_opcode (cbuf, 0x0F );
emit_opcode (cbuf, 0x11 );
encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0xDD ); // FLD_D [ESP]
encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
%}
enc_class push_stack_temp_qword() %{
emit_opcode(cbuf,0x83); // SUB ESP,8
emit_opcode(cbuf,0xEC);
emit_d8 (cbuf,0x08);
%}
enc_class pop_stack_temp_qword() %{
emit_opcode(cbuf,0x83); // ADD ESP,8
emit_opcode(cbuf,0xC4);
emit_d8 (cbuf,0x08);
%}
enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], xmm_src
emit_opcode (cbuf, 0x0F );
emit_opcode (cbuf, 0x11 );
encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0xDD ); // FLD_D [ESP]
encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
%}
// Compute X^Y using Intel's fast hardware instructions, if possible.
// Otherwise return a NaN.
enc_class pow_exp_core_encoding %{
// FPR1 holds Y*ln2(X). Compute FPR1 = 2^(Y*ln2(X))
emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0); // fdup = fld st(0) Q Q
emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC); // frndint int(Q) Q
emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9); // fsub st(1) -= st(0); int(Q) frac(Q)
emit_opcode(cbuf,0xDB); // FISTP [ESP] frac(Q)
emit_opcode(cbuf,0x1C);
emit_d8(cbuf,0x24);
emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0); // f2xm1 2^frac(Q)-1
emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8); // fld1 1 2^frac(Q)-1
emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1); // faddp 2^frac(Q)
emit_opcode(cbuf,0x8B); // mov rax,[esp+0]=int(Q)
encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0xC7); // mov rcx,0xFFFFF800 - overflow mask
emit_rm(cbuf, 0x3, 0x0, ECX_enc);
emit_d32(cbuf,0xFFFFF800);
emit_opcode(cbuf,0x81); // add rax,1023 - the double exponent bias
emit_rm(cbuf, 0x3, 0x0, EAX_enc);
emit_d32(cbuf,1023);
emit_opcode(cbuf,0x8B); // mov rbx,eax
emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
emit_opcode(cbuf,0xC1); // shl rax,20 - Slide to exponent position
emit_rm(cbuf,0x3,0x4,EAX_enc);
emit_d8(cbuf,20);
emit_opcode(cbuf,0x85); // test rbx,ecx - check for overflow
emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45); // CMOVne rax,ecx - overflow; stuff NAN into EAX
emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
emit_opcode(cbuf,0x89); // mov [esp+4],eax - Store as part of double word
encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
emit_opcode(cbuf,0xC7); // mov [esp+0],0 - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
emit_d32(cbuf,0);
emit_opcode(cbuf,0xDC); // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
%}
// enc_class Pop_Reg_Mod_D( regD dst, regD src)
// was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
enc_class Push_Result_Mod_D( regD src) %{
if ($src$$reg != FPR1L_enc) {
// fincstp
emit_opcode (cbuf, 0xD9);
emit_opcode (cbuf, 0xF7);
// FXCH FPR1 with src
emit_opcode(cbuf, 0xD9);
emit_d8(cbuf, 0xC8-1+$src$$reg );
// fdecstp
emit_opcode (cbuf, 0xD9);
emit_opcode (cbuf, 0xF6);
}
// // following asm replaced with Pop_Reg_F or Pop_Mem_F
// // FSTP FPR$dst$$reg
// emit_opcode( cbuf, 0xDD );
// emit_d8( cbuf, 0xD8+$dst$$reg );
%}
enc_class fnstsw_sahf_skip_parity() %{
// fnstsw ax
emit_opcode( cbuf, 0xDF );
emit_opcode( cbuf, 0xE0 );
// sahf
emit_opcode( cbuf, 0x9E );
// jnp ::skip
emit_opcode( cbuf, 0x7B );
emit_opcode( cbuf, 0x05 );
%}
enc_class emitModD() %{
// fprem must be iterative
// :: loop
// fprem
emit_opcode( cbuf, 0xD9 );
emit_opcode( cbuf, 0xF8 );
// wait
emit_opcode( cbuf, 0x9b );
// fnstsw ax
emit_opcode( cbuf, 0xDF );
emit_opcode( cbuf, 0xE0 );
// sahf
emit_opcode( cbuf, 0x9E );
// jp ::loop
emit_opcode( cbuf, 0x0F );
emit_opcode( cbuf, 0x8A );
emit_opcode( cbuf, 0xF4 );
emit_opcode( cbuf, 0xFF );
emit_opcode( cbuf, 0xFF );
emit_opcode( cbuf, 0xFF );
%}
enc_class fpu_flags() %{
// fnstsw_ax
emit_opcode( cbuf, 0xDF);
emit_opcode( cbuf, 0xE0);
// test ax,0x0400
emit_opcode( cbuf, 0x66 ); // operand-size prefix for 16-bit immediate
emit_opcode( cbuf, 0xA9 );
emit_d16 ( cbuf, 0x0400 );
// // // This sequence works, but stalls for 12-16 cycles on PPro
// // test rax,0x0400
// emit_opcode( cbuf, 0xA9 );
// emit_d32 ( cbuf, 0x00000400 );
//
// jz exit (no unordered comparison)
emit_opcode( cbuf, 0x74 );
emit_d8 ( cbuf, 0x02 );
// mov ah,1 - treat as LT case (set carry flag)
emit_opcode( cbuf, 0xB4 );
emit_d8 ( cbuf, 0x01 );
// sahf
emit_opcode( cbuf, 0x9E);
%}
enc_class cmpF_P6_fixup() %{
// Fixup the integer flags in case comparison involved a NaN
//
// JNP exit (no unordered comparison, P-flag is set by NaN)
emit_opcode( cbuf, 0x7B );
emit_d8 ( cbuf, 0x03 );
// MOV AH,1 - treat as LT case (set carry flag)
emit_opcode( cbuf, 0xB4 );
emit_d8 ( cbuf, 0x01 );
// SAHF
emit_opcode( cbuf, 0x9E);
// NOP // target for branch to avoid branch to branch
emit_opcode( cbuf, 0x90);
%}
// fnstsw_ax();
// sahf();
// movl(dst, nan_result);
// jcc(Assembler::parity, exit);
// movl(dst, less_result);
// jcc(Assembler::below, exit);
// movl(dst, equal_result);
// jcc(Assembler::equal, exit);
// movl(dst, greater_result);
// less_result = 1;
// greater_result = -1;
// equal_result = 0;
// nan_result = -1;
enc_class CmpF_Result(eRegI dst) %{
// fnstsw_ax();
emit_opcode( cbuf, 0xDF);
emit_opcode( cbuf, 0xE0);
// sahf
emit_opcode( cbuf, 0x9E);
// movl(dst, nan_result);
emit_opcode( cbuf, 0xB8 + $dst$$reg);
emit_d32( cbuf, -1 );
// jcc(Assembler::parity, exit);
emit_opcode( cbuf, 0x7A );
emit_d8 ( cbuf, 0x13 );
// movl(dst, less_result);
emit_opcode( cbuf, 0xB8 + $dst$$reg);
emit_d32( cbuf, -1 );
// jcc(Assembler::below, exit);
emit_opcode( cbuf, 0x72 );
emit_d8 ( cbuf, 0x0C );
// movl(dst, equal_result);
emit_opcode( cbuf, 0xB8 + $dst$$reg);
emit_d32( cbuf, 0 );
// jcc(Assembler::equal, exit);
emit_opcode( cbuf, 0x74 );
emit_d8 ( cbuf, 0x05 );
// movl(dst, greater_result);
emit_opcode( cbuf, 0xB8 + $dst$$reg);
emit_d32( cbuf, 1 );
%}
// XMM version of CmpF_Result. Because the XMM compare
// instructions set the EFLAGS directly. It becomes simpler than
// the float version above.
enc_class CmpX_Result(eRegI dst) %{
MacroAssembler _masm(&cbuf);
Label nan, inc, done;
__ jccb(Assembler::parity, nan);
__ jccb(Assembler::equal, done);
__ jccb(Assembler::above, inc);
__ bind(nan);
__ decrement(as_Register($dst$$reg)); // NO L qqq
__ jmpb(done);
__ bind(inc);
__ increment(as_Register($dst$$reg)); // NO L qqq
__ bind(done);
%}
// Compare the longs and set flags
// BROKEN! Do Not use as-is
enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
// CMP $src1.hi,$src2.hi
emit_opcode( cbuf, 0x3B );
emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
// JNE,s done
emit_opcode(cbuf,0x75);
emit_d8(cbuf, 2 );
// CMP $src1.lo,$src2.lo
emit_opcode( cbuf, 0x3B );
emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
// done:
%}
enc_class convert_int_long( regL dst, eRegI src ) %{
// mov $dst.lo,$src
int dst_encoding = $dst$$reg;
int src_encoding = $src$$reg;
encode_Copy( cbuf, dst_encoding , src_encoding );
// mov $dst.hi,$src
encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
// sar $dst.hi,31
emit_opcode( cbuf, 0xC1 );
emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
emit_d8(cbuf, 0x1F );
%}
enc_class convert_long_double( eRegL src ) %{
// push $src.hi
emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
// push $src.lo
emit_opcode(cbuf, 0x50+$src$$reg );
// fild 64-bits at [SP]
emit_opcode(cbuf,0xdf);
emit_d8(cbuf, 0x6C);
emit_d8(cbuf, 0x24);
emit_d8(cbuf, 0x00);
// pop stack
emit_opcode(cbuf, 0x83); // add SP, #8
emit_rm(cbuf, 0x3, 0x00, ESP_enc);
emit_d8(cbuf, 0x8);
%}
enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
// IMUL EDX:EAX,$src1
emit_opcode( cbuf, 0xF7 );
emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
// SAR EDX,$cnt-32
int shift_count = ((int)$cnt$$constant) - 32;
if (shift_count > 0) {
emit_opcode(cbuf, 0xC1);
emit_rm(cbuf, 0x3, 7, $dst$$reg );
emit_d8(cbuf, shift_count);
}
%}
// this version doesn't have add sp, 8
enc_class convert_long_double2( eRegL src ) %{
// push $src.hi
emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
// push $src.lo
emit_opcode(cbuf, 0x50+$src$$reg );
// fild 64-bits at [SP]
emit_opcode(cbuf,0xdf);
emit_d8(cbuf, 0x6C);
emit_d8(cbuf, 0x24);
emit_d8(cbuf, 0x00);
%}
enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
// Basic idea: long = (long)int * (long)int
// IMUL EDX:EAX, src
emit_opcode( cbuf, 0xF7 );
emit_rm( cbuf, 0x3, 0x5, $src$$reg);
%}
enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
// Basic Idea: long = (int & 0xffffffffL) * (int & 0xffffffffL)
// MUL EDX:EAX, src
emit_opcode( cbuf, 0xF7 );
emit_rm( cbuf, 0x3, 0x4, $src$$reg);
%}
enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
// Basic idea: lo(result) = lo(x_lo * y_lo)
// hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
// MOV $tmp,$src.lo
encode_Copy( cbuf, $tmp$$reg, $src$$reg );
// IMUL $tmp,EDX
emit_opcode( cbuf, 0x0F );
emit_opcode( cbuf, 0xAF );
emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
// MOV EDX,$src.hi
encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
// IMUL EDX,EAX
emit_opcode( cbuf, 0x0F );
emit_opcode( cbuf, 0xAF );
emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
// ADD $tmp,EDX
emit_opcode( cbuf, 0x03 );
emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
// MUL EDX:EAX,$src.lo
emit_opcode( cbuf, 0xF7 );
emit_rm( cbuf, 0x3, 0x4, $src$$reg );
// ADD EDX,ESI
emit_opcode( cbuf, 0x03 );
emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
%}
enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
// Basic idea: lo(result) = lo(src * y_lo)
// hi(result) = hi(src * y_lo) + lo(src * y_hi)
// IMUL $tmp,EDX,$src
emit_opcode( cbuf, 0x6B );
emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
emit_d8( cbuf, (int)$src$$constant );
// MOV EDX,$src
emit_opcode(cbuf, 0xB8 + EDX_enc);
emit_d32( cbuf, (int)$src$$constant );
// MUL EDX:EAX,EDX
emit_opcode( cbuf, 0xF7 );
emit_rm( cbuf, 0x3, 0x4, EDX_enc );
// ADD EDX,ESI
emit_opcode( cbuf, 0x03 );
emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
%}
enc_class long_div( eRegL src1, eRegL src2 ) %{
// PUSH src1.hi
emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
// PUSH src1.lo
emit_opcode(cbuf, 0x50+$src1$$reg );
// PUSH src2.hi
emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
// PUSH src2.lo
emit_opcode(cbuf, 0x50+$src2$$reg );
// CALL directly to the runtime
cbuf.set_inst_mark();
emit_opcode(cbuf,0xE8); // Call into runtime
emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
// Restore stack
emit_opcode(cbuf, 0x83); // add SP, #framesize
emit_rm(cbuf, 0x3, 0x00, ESP_enc);
emit_d8(cbuf, 4*4);
%}
enc_class long_mod( eRegL src1, eRegL src2 ) %{
// PUSH src1.hi
emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
// PUSH src1.lo
emit_opcode(cbuf, 0x50+$src1$$reg );
// PUSH src2.hi
emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
// PUSH src2.lo
emit_opcode(cbuf, 0x50+$src2$$reg );
// CALL directly to the runtime
cbuf.set_inst_mark();
emit_opcode(cbuf,0xE8); // Call into runtime
emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
// Restore stack
emit_opcode(cbuf, 0x83); // add SP, #framesize
emit_rm(cbuf, 0x3, 0x00, ESP_enc);
emit_d8(cbuf, 4*4);
%}
enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
// MOV $tmp,$src.lo
emit_opcode(cbuf, 0x8B);
emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
// OR $tmp,$src.hi
emit_opcode(cbuf, 0x0B);
emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
%}
enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
// CMP $src1.lo,$src2.lo
emit_opcode( cbuf, 0x3B );
emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
// JNE,s skip
emit_cc(cbuf, 0x70, 0x5);
emit_d8(cbuf,2);
// CMP $src1.hi,$src2.hi
emit_opcode( cbuf, 0x3B );
emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
%}
enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
// CMP $src1.lo,$src2.lo\t! Long compare; set flags for low bits
emit_opcode( cbuf, 0x3B );
emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
// MOV $tmp,$src1.hi
emit_opcode( cbuf, 0x8B );
emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
// SBB $tmp,$src2.hi\t! Compute flags for long compare
emit_opcode( cbuf, 0x1B );
emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
%}
enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
// XOR $tmp,$tmp
emit_opcode(cbuf,0x33); // XOR
emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
// CMP $tmp,$src.lo
emit_opcode( cbuf, 0x3B );
emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
// SBB $tmp,$src.hi
emit_opcode( cbuf, 0x1B );
emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
%}
// Sniff, sniff... smells like Gnu Superoptimizer
enc_class neg_long( eRegL dst ) %{
emit_opcode(cbuf,0xF7); // NEG hi
emit_rm (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
emit_opcode(cbuf,0xF7); // NEG lo
emit_rm (cbuf,0x3, 0x3, $dst$$reg );
emit_opcode(cbuf,0x83); // SBB hi,0
emit_rm (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
emit_d8 (cbuf,0 );
%}
enc_class movq_ld(regXD dst, memory mem) %{
MacroAssembler _masm(&cbuf);
Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
__ movq(as_XMMRegister($dst$$reg), madr);
%}
enc_class movq_st(memory mem, regXD src) %{
MacroAssembler _masm(&cbuf);
Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
__ movq(madr, as_XMMRegister($src$$reg));
%}
enc_class pshufd_8x8(regX dst, regX src) %{
MacroAssembler _masm(&cbuf);
encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
__ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
__ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
%}
enc_class pshufd_4x16(regX dst, regX src) %{
MacroAssembler _masm(&cbuf);
__ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
%}
enc_class pshufd(regXD dst, regXD src, int mode) %{
MacroAssembler _masm(&cbuf);
__ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
%}
enc_class pxor(regXD dst, regXD src) %{
MacroAssembler _masm(&cbuf);
__ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
%}
enc_class mov_i2x(regXD dst, eRegI src) %{
MacroAssembler _masm(&cbuf);
__ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
%}
// Because the transitions from emitted code to the runtime
// monitorenter/exit helper stubs are so slow it's critical that
// we inline both the stack-locking fast-path and the inflated fast path.
//
// See also: cmpFastLock and cmpFastUnlock.
//
// What follows is a specialized inline transliteration of the code
// in slow_enter() and slow_exit(). If we're concerned about I$ bloat
// another option would be to emit TrySlowEnter and TrySlowExit methods
// at startup-time. These methods would accept arguments as
// (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
// indications in the icc.ZFlag. Fast_Lock and Fast_Unlock would simply
// marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
// In practice, however, the # of lock sites is bounded and is usually small.
// Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
// if the processor uses simple bimodal branch predictors keyed by EIP
// Since the helper routines would be called from multiple synchronization
// sites.
//
// An even better approach would be write "MonitorEnter()" and "MonitorExit()"
// in java - using j.u.c and unsafe - and just bind the lock and unlock sites
// to those specialized methods. That'd give us a mostly platform-independent
// implementation that the JITs could optimize and inline at their pleasure.
// Done correctly, the only time we'd need to cross to native could would be
// to park() or unpark() threads. We'd also need a few more unsafe operators
// to (a) prevent compiler-JIT reordering of non-volatile accesses, and
// (b) explicit barriers or fence operations.
//
// TODO:
//
// * Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
// This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
// Given TLAB allocation, Self is usually manifested in a register, so passing it into
// the lock operators would typically be faster than reifying Self.
//
// * Ideally I'd define the primitives as:
// fast_lock (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
// fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
// Unfortunately ADLC bugs prevent us from expressing the ideal form.
// Instead, we're stuck with a rather awkward and brittle register assignments below.
// Furthermore the register assignments are overconstrained, possibly resulting in
// sub-optimal code near the synchronization site.
//
// * Eliminate the sp-proximity tests and just use "== Self" tests instead.
// Alternately, use a better sp-proximity test.
//
// * Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
// Either one is sufficient to uniquely identify a thread.
// TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
//
// * Intrinsify notify() and notifyAll() for the common cases where the
// object is locked by the calling thread but the waitlist is empty.
// avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
//
// * use jccb and jmpb instead of jcc and jmp to improve code density.
// But beware of excessive branch density on AMD Opterons.
//
// * Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
// or failure of the fast-path. If the fast-path fails then we pass
// control to the slow-path, typically in C. In Fast_Lock and
// Fast_Unlock we often branch to DONE_LABEL, just to find that C2
// will emit a conditional branch immediately after the node.
// So we have branches to branches and lots of ICC.ZF games.
// Instead, it might be better to have C2 pass a "FailureLabel"
// into Fast_Lock and Fast_Unlock. In the case of success, control
// will drop through the node. ICC.ZF is undefined at exit.
// In the case of failure, the node will branch directly to the
// FailureLabel
// obj: object to lock
// box: on-stack box address (displaced header location) - KILLED
// rax,: tmp -- KILLED
// scr: tmp -- KILLED
enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
Register objReg = as_Register($obj$$reg);
Register boxReg = as_Register($box$$reg);
Register tmpReg = as_Register($tmp$$reg);
Register scrReg = as_Register($scr$$reg);
// Ensure the register assignents are disjoint
guarantee (objReg != boxReg, "") ;
guarantee (objReg != tmpReg, "") ;
guarantee (objReg != scrReg, "") ;
guarantee (boxReg != tmpReg, "") ;
guarantee (boxReg != scrReg, "") ;
guarantee (tmpReg == as_Register(EAX_enc), "") ;
MacroAssembler masm(&cbuf);
if (_counters != NULL) {
masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
}
if (EmitSync & 1) {
// set box->dhw = unused_mark (3)
// Force all sync thru slow-path: slow_enter() and slow_exit()
masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;
masm.cmpptr (rsp, (int32_t)0) ;
} else
if (EmitSync & 2) {
Label DONE_LABEL ;
if (UseBiasedLocking) {
// Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
}
masm.movptr(tmpReg, Address(objReg, 0)) ; // fetch markword
masm.orptr (tmpReg, 0x1);
masm.movptr(Address(boxReg, 0), tmpReg); // Anticipate successful CAS
if (os::is_MP()) { masm.lock(); }
masm.cmpxchgptr(boxReg, Address(objReg, 0)); // Updates tmpReg
masm.jcc(Assembler::equal, DONE_LABEL);
// Recursive locking
masm.subptr(tmpReg, rsp);
masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
masm.movptr(Address(boxReg, 0), tmpReg);
masm.bind(DONE_LABEL) ;
} else {
// Possible cases that we'll encounter in fast_lock
// ------------------------------------------------
// * Inflated
// -- unlocked
// -- Locked
// = by self
// = by other
// * biased
// -- by Self
// -- by other
// * neutral
// * stack-locked
// -- by self
// = sp-proximity test hits
// = sp-proximity test generates false-negative
// -- by other
//
Label IsInflated, DONE_LABEL, PopDone ;
// TODO: optimize away redundant LDs of obj->mark and improve the markword triage
// order to reduce the number of conditional branches in the most common cases.
// Beware -- there's a subtle invariant that fetch of the markword
// at [FETCH], below, will never observe a biased encoding (*101b).
// If this invariant is not held we risk exclusion (safety) failure.
if (UseBiasedLocking) {
masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
}
masm.movptr(tmpReg, Address(objReg, 0)) ; // [FETCH]
masm.testptr(tmpReg, 0x02) ; // Inflated v (Stack-locked or neutral)
masm.jccb (Assembler::notZero, IsInflated) ;
// Attempt stack-locking ...
masm.orptr (tmpReg, 0x1);
masm.movptr(Address(boxReg, 0), tmpReg); // Anticipate successful CAS
if (os::is_MP()) { masm.lock(); }
masm.cmpxchgptr(boxReg, Address(objReg, 0)); // Updates tmpReg
if (_counters != NULL) {
masm.cond_inc32(Assembler::equal,
ExternalAddress((address)_counters->fast_path_entry_count_addr()));
}
masm.jccb (Assembler::equal, DONE_LABEL);
// Recursive locking
masm.subptr(tmpReg, rsp);
masm.andptr(tmpReg, 0xFFFFF003 );
masm.movptr(Address(boxReg, 0), tmpReg);
if (_counters != NULL) {
masm.cond_inc32(Assembler::equal,
ExternalAddress((address)_counters->fast_path_entry_count_addr()));
}
masm.jmp (DONE_LABEL) ;
masm.bind (IsInflated) ;
// The object is inflated.
//
// TODO-FIXME: eliminate the ugly use of manifest constants:
// Use markOopDesc::monitor_value instead of "2".
// use markOop::unused_mark() instead of "3".
// The tmpReg value is an objectMonitor reference ORed with
// markOopDesc::monitor_value (2). We can either convert tmpReg to an
// objectmonitor pointer by masking off the "2" bit or we can just
// use tmpReg as an objectmonitor pointer but bias the objectmonitor
// field offsets with "-2" to compensate for and annul the low-order tag bit.
//
// I use the latter as it avoids AGI stalls.
// As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
// instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
//
#define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
// boxReg refers to the on-stack BasicLock in the current frame.
// We'd like to write:
// set box->_displaced_header = markOop::unused_mark(). Any non-0 value suffices.
// This is convenient but results a ST-before-CAS penalty. The following CAS suffers
// additional latency as we have another ST in the store buffer that must drain.
if (EmitSync & 8192) {
masm.movptr(Address(boxReg, 0), 3) ; // results in ST-before-CAS penalty
masm.get_thread (scrReg) ;
masm.movptr(boxReg, tmpReg); // consider: LEA box, [tmp-2]
masm.movptr(tmpReg, 0); // consider: xor vs mov
if (os::is_MP()) { masm.lock(); }
masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
} else
if ((EmitSync & 128) == 0) { // avoid ST-before-CAS
masm.movptr(scrReg, boxReg) ;
masm.movptr(boxReg, tmpReg); // consider: LEA box, [tmp-2]
// Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
// prefetchw [eax + Offset(_owner)-2]
masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
}
if ((EmitSync & 64) == 0) {
// Optimistic form: consider XORL tmpReg,tmpReg
masm.movptr(tmpReg, 0 ) ;
} else {
// Can suffer RTS->RTO upgrades on shared or cold $ lines
// Test-And-CAS instead of CAS
masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; // rax, = m->_owner
masm.testptr(tmpReg, tmpReg) ; // Locked ?
masm.jccb (Assembler::notZero, DONE_LABEL) ;
}
// Appears unlocked - try to swing _owner from null to non-null.
// Ideally, I'd manifest "Self" with get_thread and then attempt
// to CAS the register containing Self into m->Owner.
// But we don't have enough registers, so instead we can either try to CAS
// rsp or the address of the box (in scr) into &m->owner. If the CAS succeeds
// we later store "Self" into m->Owner. Transiently storing a stack address
// (rsp or the address of the box) into m->owner is harmless.
// Invariant: tmpReg == 0. tmpReg is EAX which is the implicit cmpxchg comparand.
if (os::is_MP()) { masm.lock(); }
masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
masm.movptr(Address(scrReg, 0), 3) ; // box->_displaced_header = 3
masm.jccb (Assembler::notZero, DONE_LABEL) ;
masm.get_thread (scrReg) ; // beware: clobbers ICCs
masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ;
masm.xorptr(boxReg, boxReg) ; // set icc.ZFlag = 1 to indicate success
// If the CAS fails we can either retry or pass control to the slow-path.
// We use the latter tactic.
// Pass the CAS result in the icc.ZFlag into DONE_LABEL
// If the CAS was successful ...
// Self has acquired the lock
// Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
// Intentional fall-through into DONE_LABEL ...
} else {
masm.movptr(Address(boxReg, 0), 3) ; // results in ST-before-CAS penalty
masm.movptr(boxReg, tmpReg) ;
// Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
// prefetchw [eax + Offset(_owner)-2]
masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
}
if ((EmitSync & 64) == 0) {
// Optimistic form
masm.xorptr (tmpReg, tmpReg) ;
} else {
// Can suffer RTS->RTO upgrades on shared or cold $ lines
masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; // rax, = m->_owner
masm.testptr(tmpReg, tmpReg) ; // Locked ?
masm.jccb (Assembler::notZero, DONE_LABEL) ;
}
// Appears unlocked - try to swing _owner from null to non-null.
// Use either "Self" (in scr) or rsp as thread identity in _owner.
// Invariant: tmpReg == 0. tmpReg is EAX which is the implicit cmpxchg comparand.
masm.get_thread (scrReg) ;
if (os::is_MP()) { masm.lock(); }
masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
// If the CAS fails we can either retry or pass control to the slow-path.
// We use the latter tactic.
// Pass the CAS result in the icc.ZFlag into DONE_LABEL
// If the CAS was successful ...
// Self has acquired the lock
// Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
// Intentional fall-through into DONE_LABEL ...
}
// DONE_LABEL is a hot target - we'd really like to place it at the
// start of cache line by padding with NOPs.
// See the AMD and Intel software optimization manuals for the
// most efficient "long" NOP encodings.
// Unfortunately none of our alignment mechanisms suffice.
masm.bind(DONE_LABEL);
// Avoid branch-to-branch on AMD processors
// This appears to be superstition.
if (EmitSync & 32) masm.nop() ;
// At DONE_LABEL the icc ZFlag is set as follows ...
// Fast_Unlock uses the same protocol.
// ZFlag == 1 -> Success
// ZFlag == 0 -> Failure - force control through the slow-path
}
%}
// obj: object to unlock
// box: box address (displaced header location), killed. Must be EAX.
// rbx,: killed tmp; cannot be obj nor box.
//
// Some commentary on balanced locking:
//
// Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
// Methods that don't have provably balanced locking are forced to run in the
// interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
// The interpreter provides two properties:
// I1: At return-time the interpreter automatically and quietly unlocks any
// objects acquired the current activation (frame). Recall that the
// interpreter maintains an on-stack list of locks currently held by
// a frame.
// I2: If a method attempts to unlock an object that is not held by the
// the frame the interpreter throws IMSX.
//
// Lets say A(), which has provably balanced locking, acquires O and then calls B().
// B() doesn't have provably balanced locking so it runs in the interpreter.
// Control returns to A() and A() unlocks O. By I1 and I2, above, we know that O
// is still locked by A().
//
// The only other source of unbalanced locking would be JNI. The "Java Native Interface:
// Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
// should not be unlocked by "normal" java-level locking and vice-versa. The specification
// doesn't specify what will occur if a program engages in such mixed-mode locking, however.
enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
Register objReg = as_Register($obj$$reg);
Register boxReg = as_Register($box$$reg);
Register tmpReg = as_Register($tmp$$reg);
guarantee (objReg != boxReg, "") ;
guarantee (objReg != tmpReg, "") ;
guarantee (boxReg != tmpReg, "") ;
guarantee (boxReg == as_Register(EAX_enc), "") ;
MacroAssembler masm(&cbuf);
if (EmitSync & 4) {
// Disable - inhibit all inlining. Force control through the slow-path
masm.cmpptr (rsp, 0) ;
} else
if (EmitSync & 8) {
Label DONE_LABEL ;
if (UseBiasedLocking) {
masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
}
// classic stack-locking code ...
masm.movptr(tmpReg, Address(boxReg, 0)) ;
masm.testptr(tmpReg, tmpReg) ;
masm.jcc (Assembler::zero, DONE_LABEL) ;
if (os::is_MP()) { masm.lock(); }
masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
masm.bind(DONE_LABEL);
} else {
Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
// Critically, the biased locking test must have precedence over
// and appear before the (box->dhw == 0) recursive stack-lock test.
if (UseBiasedLocking) {
masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
}
masm.cmpptr(Address(boxReg, 0), 0) ; // Examine the displaced header
masm.movptr(tmpReg, Address(objReg, 0)) ; // Examine the object's markword
masm.jccb (Assembler::zero, DONE_LABEL) ; // 0 indicates recursive stack-lock
masm.testptr(tmpReg, 0x02) ; // Inflated?
masm.jccb (Assembler::zero, Stacked) ;
masm.bind (Inflated) ;
// It's inflated.
// Despite our balanced locking property we still check that m->_owner == Self
// as java routines or native JNI code called by this thread might
// have released the lock.
// Refer to the comments in synchronizer.cpp for how we might encode extra
// state in _succ so we can avoid fetching EntryList|cxq.
//
// I'd like to add more cases in fast_lock() and fast_unlock() --
// such as recursive enter and exit -- but we have to be wary of
// I$ bloat, T$ effects and BP$ effects.
//
// If there's no contention try a 1-0 exit. That is, exit without
// a costly MEMBAR or CAS. See synchronizer.cpp for details on how
// we detect and recover from the race that the 1-0 exit admits.
//
// Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
// before it STs null into _owner, releasing the lock. Updates
// to data protected by the critical section must be visible before
// we drop the lock (and thus before any other thread could acquire
// the lock and observe the fields protected by the lock).
// IA32's memory-model is SPO, so STs are ordered with respect to
// each other and there's no need for an explicit barrier (fence).
// See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
masm.get_thread (boxReg) ;
if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
// prefetchw [ebx + Offset(_owner)-2]
masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
}
// Note that we could employ various encoding schemes to reduce
// the number of loads below (currently 4) to just 2 or 3.
// Refer to the comments in synchronizer.cpp.
// In practice the chain of fetches doesn't seem to impact performance, however.
if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
// Attempt to reduce branch density - AMD's branch predictor.
masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ;
masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ;
masm.jccb (Assembler::notZero, DONE_LABEL) ;
masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ;
masm.jmpb (DONE_LABEL) ;
} else {
masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
masm.jccb (Assembler::notZero, DONE_LABEL) ;
masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ;
masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ;
masm.jccb (Assembler::notZero, CheckSucc) ;
masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ;
masm.jmpb (DONE_LABEL) ;
}
// The Following code fragment (EmitSync & 65536) improves the performance of
// contended applications and contended synchronization microbenchmarks.
// Unfortunately the emission of the code - even though not executed - causes regressions
// in scimark and jetstream, evidently because of $ effects. Replacing the code
// with an equal number of never-executed NOPs results in the same regression.
// We leave it off by default.
if ((EmitSync & 65536) != 0) {
Label LSuccess, LGoSlowPath ;
masm.bind (CheckSucc) ;
// Optional pre-test ... it's safe to elide this
if ((EmitSync & 16) == 0) {
masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ;
masm.jccb (Assembler::zero, LGoSlowPath) ;
}
// We have a classic Dekker-style idiom:
// ST m->_owner = 0 ; MEMBAR; LD m->_succ
// There are a number of ways to implement the barrier:
// (1) lock:andl &m->_owner, 0
// is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
// LOCK: ANDL [ebx+Offset(_Owner)-2], 0
// Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
// (2) If supported, an explicit MFENCE is appealing.
// In older IA32 processors MFENCE is slower than lock:add or xchg
// particularly if the write-buffer is full as might be the case if
// if stores closely precede the fence or fence-equivalent instruction.
// In more modern implementations MFENCE appears faster, however.
// (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
// The $lines underlying the top-of-stack should be in M-state.
// The locked add instruction is serializing, of course.
// (4) Use xchg, which is serializing
// mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
// (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
// The integer condition codes will tell us if succ was 0.
// Since _succ and _owner should reside in the same $line and
// we just stored into _owner, it's likely that the $line
// remains in M-state for the lock:orl.
//
// We currently use (3), although it's likely that switching to (2)
// is correct for the future.
masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ;
if (os::is_MP()) {
if (VM_Version::supports_sse2() && 1 == FenceInstruction) {
masm.mfence();
} else {
masm.lock () ; masm.addptr(Address(rsp, 0), 0) ;
}
}
// Ratify _succ remains non-null
masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ;
masm.jccb (Assembler::notZero, LSuccess) ;
masm.xorptr(boxReg, boxReg) ; // box is really EAX
if (os::is_MP()) { masm.lock(); }
masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
masm.jccb (Assembler::notEqual, LSuccess) ;
// Since we're low on registers we installed rsp as a placeholding in _owner.
// Now install Self over rsp. This is safe as we're transitioning from
// non-null to non=null
masm.get_thread (boxReg) ;
masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
// Intentional fall-through into LGoSlowPath ...
masm.bind (LGoSlowPath) ;
masm.orptr(boxReg, 1) ; // set ICC.ZF=0 to indicate failure
masm.jmpb (DONE_LABEL) ;
masm.bind (LSuccess) ;
masm.xorptr(boxReg, boxReg) ; // set ICC.ZF=1 to indicate success
masm.jmpb (DONE_LABEL) ;
}
masm.bind (Stacked) ;
// It's not inflated and it's not recursively stack-locked and it's not biased.
// It must be stack-locked.
// Try to reset the header to displaced header.
// The "box" value on the stack is stable, so we can reload
// and be assured we observe the same value as above.
masm.movptr(tmpReg, Address(boxReg, 0)) ;
if (os::is_MP()) { masm.lock(); }
masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
// Intention fall-thru into DONE_LABEL
// DONE_LABEL is a hot target - we'd really like to place it at the
// start of cache line by padding with NOPs.
// See the AMD and Intel software optimization manuals for the
// most efficient "long" NOP encodings.
// Unfortunately none of our alignment mechanisms suffice.
if ((EmitSync & 65536) == 0) {
masm.bind (CheckSucc) ;
}
masm.bind(DONE_LABEL);
// Avoid branch to branch on AMD processors
if (EmitSync & 32768) { masm.nop() ; }
}
%}
enc_class enc_String_Compare() %{
Label ECX_GOOD_LABEL, LENGTH_DIFF_LABEL,
POP_LABEL, DONE_LABEL, CONT_LABEL,
WHILE_HEAD_LABEL;
MacroAssembler masm(&cbuf);
// Get the first character position in both strings
// [8] char array, [12] offset, [16] count
int value_offset = java_lang_String::value_offset_in_bytes();
int offset_offset = java_lang_String::offset_offset_in_bytes();
int count_offset = java_lang_String::count_offset_in_bytes();
int base_offset = arrayOopDesc::base_offset_in_bytes(T_CHAR);
masm.movptr(rax, Address(rsi, value_offset));
masm.movl(rcx, Address(rsi, offset_offset));
masm.lea(rax, Address(rax, rcx, Address::times_2, base_offset));
masm.movptr(rbx, Address(rdi, value_offset));
masm.movl(rcx, Address(rdi, offset_offset));
masm.lea(rbx, Address(rbx, rcx, Address::times_2, base_offset));
// Compute the minimum of the string lengths(rsi) and the
// difference of the string lengths (stack)
if (VM_Version::supports_cmov()) {
masm.movl(rdi, Address(rdi, count_offset));
masm.movl(rsi, Address(rsi, count_offset));
masm.movl(rcx, rdi);
masm.subl(rdi, rsi);
masm.push(rdi);
masm.cmovl(Assembler::lessEqual, rsi, rcx);
} else {
masm.movl(rdi, Address(rdi, count_offset));
masm.movl(rcx, Address(rsi, count_offset));
masm.movl(rsi, rdi);
masm.subl(rdi, rcx);
masm.push(rdi);
masm.jcc(Assembler::lessEqual, ECX_GOOD_LABEL);
masm.movl(rsi, rcx);
// rsi holds min, rcx is unused
}
// Is the minimum length zero?
masm.bind(ECX_GOOD_LABEL);
masm.testl(rsi, rsi);
masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
// Load first characters
masm.load_unsigned_word(rcx, Address(rbx, 0));
masm.load_unsigned_word(rdi, Address(rax, 0));
// Compare first characters
masm.subl(rcx, rdi);
masm.jcc(Assembler::notZero, POP_LABEL);
masm.decrementl(rsi);
masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
{
// Check after comparing first character to see if strings are equivalent
Label LSkip2;
// Check if the strings start at same location
masm.cmpptr(rbx,rax);
masm.jcc(Assembler::notEqual, LSkip2);
// Check if the length difference is zero (from stack)
masm.cmpl(Address(rsp, 0), 0x0);
masm.jcc(Assembler::equal, LENGTH_DIFF_LABEL);
// Strings might not be equivalent
masm.bind(LSkip2);
}
// Shift rax, and rbx, to the end of the arrays, negate min
masm.lea(rax, Address(rax, rsi, Address::times_2, 2));
masm.lea(rbx, Address(rbx, rsi, Address::times_2, 2));
masm.negl(rsi);
// Compare the rest of the characters
masm.bind(WHILE_HEAD_LABEL);
masm.load_unsigned_word(rcx, Address(rbx, rsi, Address::times_2, 0));
masm.load_unsigned_word(rdi, Address(rax, rsi, Address::times_2, 0));
masm.subl(rcx, rdi);
masm.jcc(Assembler::notZero, POP_LABEL);
masm.incrementl(rsi);
masm.jcc(Assembler::notZero, WHILE_HEAD_LABEL);
// Strings are equal up to min length. Return the length difference.
masm.bind(LENGTH_DIFF_LABEL);
masm.pop(rcx);
masm.jmp(DONE_LABEL);
// Discard the stored length difference
masm.bind(POP_LABEL);
masm.addptr(rsp, 4);
// That's it
masm.bind(DONE_LABEL);
%}
enc_class enc_Array_Equals(eDIRegP ary1, eSIRegP ary2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result) %{
Label TRUE_LABEL, FALSE_LABEL, DONE_LABEL, COMPARE_LOOP_HDR, COMPARE_LOOP;
MacroAssembler masm(&cbuf);
Register ary1Reg = as_Register($ary1$$reg);
Register ary2Reg = as_Register($ary2$$reg);
Register tmp1Reg = as_Register($tmp1$$reg);
Register tmp2Reg = as_Register($tmp2$$reg);
Register resultReg = as_Register($result$$reg);
int length_offset = arrayOopDesc::length_offset_in_bytes();
int base_offset = arrayOopDesc::base_offset_in_bytes(T_CHAR);
// Check the input args
masm.cmpl(ary1Reg, ary2Reg);
masm.jcc(Assembler::equal, TRUE_LABEL);
masm.testl(ary1Reg, ary1Reg);
masm.jcc(Assembler::zero, FALSE_LABEL);
masm.testl(ary2Reg, ary2Reg);
masm.jcc(Assembler::zero, FALSE_LABEL);
// Check the lengths
masm.movl(tmp2Reg, Address(ary1Reg, length_offset));
masm.movl(resultReg, Address(ary2Reg, length_offset));
masm.cmpl(tmp2Reg, resultReg);
masm.jcc(Assembler::notEqual, FALSE_LABEL);
masm.testl(resultReg, resultReg);
masm.jcc(Assembler::zero, TRUE_LABEL);
// Get the number of 4 byte vectors to compare
masm.shrl(resultReg, 1);
// Check for odd-length arrays
masm.andl(tmp2Reg, 1);
masm.testl(tmp2Reg, tmp2Reg);
masm.jcc(Assembler::zero, COMPARE_LOOP_HDR);
// Compare 2-byte "tail" at end of arrays
masm.load_unsigned_word(tmp1Reg, Address(ary1Reg, resultReg, Address::times_4, base_offset));
masm.load_unsigned_word(tmp2Reg, Address(ary2Reg, resultReg, Address::times_4, base_offset));
masm.cmpl(tmp1Reg, tmp2Reg);
masm.jcc(Assembler::notEqual, FALSE_LABEL);
masm.testl(resultReg, resultReg);
masm.jcc(Assembler::zero, TRUE_LABEL);
// Setup compare loop
masm.bind(COMPARE_LOOP_HDR);
// Shift tmp1Reg and tmp2Reg to the last 4-byte boundary of the arrays
masm.leal(tmp1Reg, Address(ary1Reg, resultReg, Address::times_4, base_offset));
masm.leal(tmp2Reg, Address(ary2Reg, resultReg, Address::times_4, base_offset));
masm.negl(resultReg);
// 4-byte-wide compare loop
masm.bind(COMPARE_LOOP);
masm.movl(ary1Reg, Address(tmp1Reg, resultReg, Address::times_4, 0));
masm.movl(ary2Reg, Address(tmp2Reg, resultReg, Address::times_4, 0));
masm.cmpl(ary1Reg, ary2Reg);
masm.jcc(Assembler::notEqual, FALSE_LABEL);
masm.increment(resultReg);
masm.jcc(Assembler::notZero, COMPARE_LOOP);
masm.bind(TRUE_LABEL);
masm.movl(resultReg, 1); // return true
masm.jmp(DONE_LABEL);
masm.bind(FALSE_LABEL);
masm.xorl(resultReg, resultReg); // return false
// That's it
masm.bind(DONE_LABEL);
%}
enc_class enc_pop_rdx() %{
emit_opcode(cbuf,0x5A);
%}
enc_class enc_rethrow() %{
cbuf.set_inst_mark();
emit_opcode(cbuf, 0xE9); // jmp entry
emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.code_end())-4,
runtime_call_Relocation::spec(), RELOC_IMM32 );
%}
// Convert a double to an int. Java semantics require we do complex
// manglelations in the corner cases. So we set the rounding mode to
// 'zero', store the darned double down as an int, and reset the
// rounding mode to 'nearest'. The hardware throws an exception which
// patches up the correct value directly to the stack.
enc_class D2I_encoding( regD src ) %{
// Flip to round-to-zero mode. We attempted to allow invalid-op
// exceptions here, so that a NAN or other corner-case value will
// thrown an exception (but normal values get converted at full speed).
// However, I2C adapters and other float-stack manglers leave pending
// invalid-op exceptions hanging. We would have to clear them before
// enabling them and that is more expensive than just testing for the
// invalid value Intel stores down in the corner cases.
emit_opcode(cbuf,0xD9); // FLDCW trunc
emit_opcode(cbuf,0x2D);
emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
// Allocate a word
emit_opcode(cbuf,0x83); // SUB ESP,4
emit_opcode(cbuf,0xEC);
emit_d8(cbuf,0x04);
// Encoding assumes a double has been pushed into FPR0.
// Store down the double as an int, popping the FPU stack
emit_opcode(cbuf,0xDB); // FISTP [ESP]
emit_opcode(cbuf,0x1C);
emit_d8(cbuf,0x24);
// Restore the rounding mode; mask the exception
emit_opcode(cbuf,0xD9); // FLDCW std/24-bit mode
emit_opcode(cbuf,0x2D);
emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
: (int)StubRoutines::addr_fpu_cntrl_wrd_std());
// Load the converted int; adjust CPU stack
emit_opcode(cbuf,0x58); // POP EAX
emit_opcode(cbuf,0x3D); // CMP EAX,imm
emit_d32 (cbuf,0x80000000); // 0x80000000
emit_opcode(cbuf,0x75); // JNE around_slow_call
emit_d8 (cbuf,0x07); // Size of slow_call
// Push src onto stack slow-path
emit_opcode(cbuf,0xD9 ); // FLD ST(i)
emit_d8 (cbuf,0xC0-1+$src$$reg );
// CALL directly to the runtime
cbuf.set_inst_mark();
emit_opcode(cbuf,0xE8); // Call into runtime
emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
// Carry on here...
%}
enc_class D2L_encoding( regD src ) %{
emit_opcode(cbuf,0xD9); // FLDCW trunc
emit_opcode(cbuf,0x2D);
emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
// Allocate a word
emit_opcode(cbuf,0x83); // SUB ESP,8
emit_opcode(cbuf,0xEC);
emit_d8(cbuf,0x08);
// Encoding assumes a double has been pushed into FPR0.
// Store down the double as a long, popping the FPU stack
emit_opcode(cbuf,0xDF); // FISTP [ESP]
emit_opcode(cbuf,0x3C);
emit_d8(cbuf,0x24);
// Restore the rounding mode; mask the exception
emit_opcode(cbuf,0xD9); // FLDCW std/24-bit mode
emit_opcode(cbuf,0x2D);
emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
: (int)StubRoutines::addr_fpu_cntrl_wrd_std());
// Load the converted int; adjust CPU stack
emit_opcode(cbuf,0x58); // POP EAX
emit_opcode(cbuf,0x5A); // POP EDX
emit_opcode(cbuf,0x81); // CMP EDX,imm
emit_d8 (cbuf,0xFA); // rdx
emit_d32 (cbuf,0x80000000); // 0x80000000
emit_opcode(cbuf,0x75); // JNE around_slow_call
emit_d8 (cbuf,0x07+4); // Size of slow_call
emit_opcode(cbuf,0x85); // TEST EAX,EAX
emit_opcode(cbuf,0xC0); // 2/rax,/rax,
emit_opcode(cbuf,0x75); // JNE around_slow_call
emit_d8 (cbuf,0x07); // Size of slow_call
// Push src onto stack slow-path
emit_opcode(cbuf,0xD9 ); // FLD ST(i)
emit_d8 (cbuf,0xC0-1+$src$$reg );
// CALL directly to the runtime
cbuf.set_inst_mark();
emit_opcode(cbuf,0xE8); // Call into runtime
emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
// Carry on here...
%}
enc_class X2L_encoding( regX src ) %{
// Allocate a word
emit_opcode(cbuf,0x83); // SUB ESP,8
emit_opcode(cbuf,0xEC);
emit_d8(cbuf,0x08);
emit_opcode (cbuf, 0xF3 ); // MOVSS [ESP], src
emit_opcode (cbuf, 0x0F );
emit_opcode (cbuf, 0x11 );
encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0xD9 ); // FLD_S [ESP]
encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0xD9); // FLDCW trunc
emit_opcode(cbuf,0x2D);
emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
// Encoding assumes a double has been pushed into FPR0.
// Store down the double as a long, popping the FPU stack
emit_opcode(cbuf,0xDF); // FISTP [ESP]
emit_opcode(cbuf,0x3C);
emit_d8(cbuf,0x24);
// Restore the rounding mode; mask the exception
emit_opcode(cbuf,0xD9); // FLDCW std/24-bit mode
emit_opcode(cbuf,0x2D);
emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
: (int)StubRoutines::addr_fpu_cntrl_wrd_std());
// Load the converted int; adjust CPU stack
emit_opcode(cbuf,0x58); // POP EAX
emit_opcode(cbuf,0x5A); // POP EDX
emit_opcode(cbuf,0x81); // CMP EDX,imm
emit_d8 (cbuf,0xFA); // rdx
emit_d32 (cbuf,0x80000000);// 0x80000000
emit_opcode(cbuf,0x75); // JNE around_slow_call
emit_d8 (cbuf,0x13+4); // Size of slow_call
emit_opcode(cbuf,0x85); // TEST EAX,EAX
emit_opcode(cbuf,0xC0); // 2/rax,/rax,
emit_opcode(cbuf,0x75); // JNE around_slow_call
emit_d8 (cbuf,0x13); // Size of slow_call
// Allocate a word
emit_opcode(cbuf,0x83); // SUB ESP,4
emit_opcode(cbuf,0xEC);
emit_d8(cbuf,0x04);
emit_opcode (cbuf, 0xF3 ); // MOVSS [ESP], src
emit_opcode (cbuf, 0x0F );
emit_opcode (cbuf, 0x11 );
encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0xD9 ); // FLD_S [ESP]
encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0x83); // ADD ESP,4
emit_opcode(cbuf,0xC4);
emit_d8(cbuf,0x04);
// CALL directly to the runtime
cbuf.set_inst_mark();
emit_opcode(cbuf,0xE8); // Call into runtime
emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
// Carry on here...
%}
enc_class XD2L_encoding( regXD src ) %{
// Allocate a word
emit_opcode(cbuf,0x83); // SUB ESP,8
emit_opcode(cbuf,0xEC);
emit_d8(cbuf,0x08);
emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], src
emit_opcode (cbuf, 0x0F );
emit_opcode (cbuf, 0x11 );
encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0xDD ); // FLD_D [ESP]
encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0xD9); // FLDCW trunc
emit_opcode(cbuf,0x2D);
emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
// Encoding assumes a double has been pushed into FPR0.
// Store down the double as a long, popping the FPU stack
emit_opcode(cbuf,0xDF); // FISTP [ESP]
emit_opcode(cbuf,0x3C);
emit_d8(cbuf,0x24);
// Restore the rounding mode; mask the exception
emit_opcode(cbuf,0xD9); // FLDCW std/24-bit mode
emit_opcode(cbuf,0x2D);
emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
: (int)StubRoutines::addr_fpu_cntrl_wrd_std());
// Load the converted int; adjust CPU stack
emit_opcode(cbuf,0x58); // POP EAX
emit_opcode(cbuf,0x5A); // POP EDX
emit_opcode(cbuf,0x81); // CMP EDX,imm
emit_d8 (cbuf,0xFA); // rdx
emit_d32 (cbuf,0x80000000); // 0x80000000
emit_opcode(cbuf,0x75); // JNE around_slow_call
emit_d8 (cbuf,0x13+4); // Size of slow_call
emit_opcode(cbuf,0x85); // TEST EAX,EAX
emit_opcode(cbuf,0xC0); // 2/rax,/rax,
emit_opcode(cbuf,0x75); // JNE around_slow_call
emit_d8 (cbuf,0x13); // Size of slow_call
// Push src onto stack slow-path
// Allocate a word
emit_opcode(cbuf,0x83); // SUB ESP,8
emit_opcode(cbuf,0xEC);
emit_d8(cbuf,0x08);
emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], src
emit_opcode (cbuf, 0x0F );
emit_opcode (cbuf, 0x11 );
encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0xDD ); // FLD_D [ESP]
encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0x83); // ADD ESP,8
emit_opcode(cbuf,0xC4);
emit_d8(cbuf,0x08);
// CALL directly to the runtime
cbuf.set_inst_mark();
emit_opcode(cbuf,0xE8); // Call into runtime
emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
// Carry on here...
%}
enc_class D2X_encoding( regX dst, regD src ) %{
// Allocate a word
emit_opcode(cbuf,0x83); // SUB ESP,4
emit_opcode(cbuf,0xEC);
emit_d8(cbuf,0x04);
int pop = 0x02;
if ($src$$reg != FPR1L_enc) {
emit_opcode( cbuf, 0xD9 ); // FLD ST(i-1)
emit_d8( cbuf, 0xC0-1+$src$$reg );
pop = 0x03;
}
store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S [ESP]
emit_opcode (cbuf, 0xF3 ); // MOVSS dst(xmm), [ESP]
emit_opcode (cbuf, 0x0F );
emit_opcode (cbuf, 0x10 );
encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0x83); // ADD ESP,4
emit_opcode(cbuf,0xC4);
emit_d8(cbuf,0x04);
// Carry on here...
%}
enc_class FX2I_encoding( regX src, eRegI dst ) %{
emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
// Compare the result to see if we need to go to the slow path
emit_opcode(cbuf,0x81); // CMP dst,imm
emit_rm (cbuf,0x3,0x7,$dst$$reg);
emit_d32 (cbuf,0x80000000); // 0x80000000
emit_opcode(cbuf,0x75); // JNE around_slow_call
emit_d8 (cbuf,0x13); // Size of slow_call
// Store xmm to a temp memory
// location and push it onto stack.
emit_opcode(cbuf,0x83); // SUB ESP,4
emit_opcode(cbuf,0xEC);
emit_d8(cbuf, $primary ? 0x8 : 0x4);
emit_opcode (cbuf, $primary ? 0xF2 : 0xF3 ); // MOVSS [ESP], xmm
emit_opcode (cbuf, 0x0F );
emit_opcode (cbuf, 0x11 );
encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf, $primary ? 0xDD : 0xD9 ); // FLD [ESP]
encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0x83); // ADD ESP,4
emit_opcode(cbuf,0xC4);
emit_d8(cbuf, $primary ? 0x8 : 0x4);
// CALL directly to the runtime
cbuf.set_inst_mark();
emit_opcode(cbuf,0xE8); // Call into runtime
emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
// Carry on here...
%}
enc_class X2D_encoding( regD dst, regX src ) %{
// Allocate a word
emit_opcode(cbuf,0x83); // SUB ESP,4
emit_opcode(cbuf,0xEC);
emit_d8(cbuf,0x04);
emit_opcode (cbuf, 0xF3 ); // MOVSS [ESP], xmm
emit_opcode (cbuf, 0x0F );
emit_opcode (cbuf, 0x11 );
encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0xD9 ); // FLD_S [ESP]
encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
emit_opcode(cbuf,0x83); // ADD ESP,4
emit_opcode(cbuf,0xC4);
emit_d8(cbuf,0x04);
// Carry on here...
%}
enc_class AbsXF_encoding(regX dst) %{
address signmask_address=(address)float_signmask_pool;
// andpd:\tANDPS $dst,[signconst]
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x54);
emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
emit_d32(cbuf, (int)signmask_address);
%}
enc_class AbsXD_encoding(regXD dst) %{
address signmask_address=(address)double_signmask_pool;
// andpd:\tANDPD $dst,[signconst]
emit_opcode(cbuf, 0x66);
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x54);
emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
emit_d32(cbuf, (int)signmask_address);
%}
enc_class NegXF_encoding(regX dst) %{
address signmask_address=(address)float_signflip_pool;
// andpd:\tXORPS $dst,[signconst]
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x57);
emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
emit_d32(cbuf, (int)signmask_address);
%}
enc_class NegXD_encoding(regXD dst) %{
address signmask_address=(address)double_signflip_pool;
// andpd:\tXORPD $dst,[signconst]
emit_opcode(cbuf, 0x66);
emit_opcode(cbuf, 0x0F);
emit_opcode(cbuf, 0x57);
emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
emit_d32(cbuf, (int)signmask_address);
%}
enc_class FMul_ST_reg( eRegF src1 ) %{
// Operand was loaded from memory into fp ST (stack top)
// FMUL ST,$src /* D8 C8+i */
emit_opcode(cbuf, 0xD8);
emit_opcode(cbuf, 0xC8 + $src1$$reg);
%}
enc_class FAdd_ST_reg( eRegF src2 ) %{
// FADDP ST,src2 /* D8 C0+i */
emit_opcode(cbuf, 0xD8);
emit_opcode(cbuf, 0xC0 + $src2$$reg);
//could use FADDP src2,fpST /* DE C0+i */
%}
enc_class FAddP_reg_ST( eRegF src2 ) %{
// FADDP src2,ST /* DE C0+i */
emit_opcode(cbuf, 0xDE);
emit_opcode(cbuf, 0xC0 + $src2$$reg);
%}
enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
// Operand has been loaded into fp ST (stack top)
// FSUB ST,$src1
emit_opcode(cbuf, 0xD8);
emit_opcode(cbuf, 0xE0 + $src1$$reg);
// FDIV
emit_opcode(cbuf, 0xD8);
emit_opcode(cbuf, 0xF0 + $src2$$reg);
%}
enc_class MulFAddF (eRegF src1, eRegF src2) %{
// Operand was loaded from memory into fp ST (stack top)
// FADD ST,$src /* D8 C0+i */
emit_opcode(cbuf, 0xD8);
emit_opcode(cbuf, 0xC0 + $src1$$reg);
// FMUL ST,src2 /* D8 C*+i */
emit_opcode(cbuf, 0xD8);
emit_opcode(cbuf, 0xC8 + $src2$$reg);
%}
enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
// Operand was loaded from memory into fp ST (stack top)
// FADD ST,$src /* D8 C0+i */
emit_opcode(cbuf, 0xD8);
emit_opcode(cbuf, 0xC0 + $src1$$reg);
// FMULP src2,ST /* DE C8+i */
emit_opcode(cbuf, 0xDE);
emit_opcode(cbuf, 0xC8 + $src2$$reg);
%}
enc_class enc_membar_acquire %{
// Doug Lea believes this is not needed with current Sparcs and TSO.
// MacroAssembler masm(&cbuf);
// masm.membar();
%}
enc_class enc_membar_release %{
// Doug Lea believes this is not needed with current Sparcs and TSO.
// MacroAssembler masm(&cbuf);
// masm.membar();
%}
enc_class enc_membar_volatile %{
MacroAssembler masm(&cbuf);
masm.membar(Assembler::Membar_mask_bits(Assembler::StoreLoad |
Assembler::StoreStore));
%}
// Atomically load the volatile long
enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
emit_opcode(cbuf,0xDF);
int rm_byte_opcode = 0x05;
int base = $mem$$base;
int index = $mem$$index;
int scale = $mem$$scale;
int displace = $mem$$disp;
bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
%}
enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
{ // Atomic long load
// UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
int base = $mem$$base;
int index = $mem$$index;
int scale = $mem$$scale;
int displace = $mem$$disp;
bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
}
{ // MOVSD $dst,$tmp ! atomic long store
emit_opcode(cbuf,0xF2);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0x11);
int base = $dst$$base;
int index = $dst$$index;
int scale = $dst$$scale;
int displace = $dst$$disp;
bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
}
%}
enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
{ // Atomic long load
// UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
int base = $mem$$base;
int index = $mem$$index;
int scale = $mem$$scale;
int displace = $mem$$disp;
bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
}
{ // MOVD $dst.lo,$tmp
emit_opcode(cbuf,0x66);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0x7E);
emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
}
{ // PSRLQ $tmp,32
emit_opcode(cbuf,0x66);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0x73);
emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
emit_d8(cbuf, 0x20);
}
{ // MOVD $dst.hi,$tmp
emit_opcode(cbuf,0x66);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0x7E);
emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
}
%}
// Volatile Store Long. Must be atomic, so move it into
// the FP TOS and then do a 64-bit FIST. Has to probe the
// target address before the store (for null-ptr checks)
// so the memory operand is used twice in the encoding.
enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
cbuf.set_inst_mark(); // Mark start of FIST in case $mem has an oop
emit_opcode(cbuf,0xDF);
int rm_byte_opcode = 0x07;
int base = $mem$$base;
int index = $mem$$index;
int scale = $mem$$scale;
int displace = $mem$$disp;
bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
%}
enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
{ // Atomic long load
// UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
int base = $src$$base;
int index = $src$$index;
int scale = $src$$scale;
int displace = $src$$disp;
bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
}
cbuf.set_inst_mark(); // Mark start of MOVSD in case $mem has an oop
{ // MOVSD $mem,$tmp ! atomic long store
emit_opcode(cbuf,0xF2);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0x11);
int base = $mem$$base;
int index = $mem$$index;
int scale = $mem$$scale;
int displace = $mem$$disp;
bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
}
%}
enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
{ // MOVD $tmp,$src.lo
emit_opcode(cbuf,0x66);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0x6E);
emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
}
{ // MOVD $tmp2,$src.hi
emit_opcode(cbuf,0x66);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0x6E);
emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
}
{ // PUNPCKLDQ $tmp,$tmp2
emit_opcode(cbuf,0x66);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0x62);
emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
}
cbuf.set_inst_mark(); // Mark start of MOVSD in case $mem has an oop
{ // MOVSD $mem,$tmp ! atomic long store
emit_opcode(cbuf,0xF2);
emit_opcode(cbuf,0x0F);
emit_opcode(cbuf,0x11);
int base = $mem$$base;
int index = $mem$$index;
int scale = $mem$$scale;
int displace = $mem$$disp;
bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
}
%}
// Safepoint Poll. This polls the safepoint page, and causes an
// exception if it is not readable. Unfortunately, it kills the condition code
// in the process
// We current use TESTL [spp],EDI
// A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
enc_class Safepoint_Poll() %{
cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0);
emit_opcode(cbuf,0x85);
emit_rm (cbuf, 0x0, 0x7, 0x5);
emit_d32(cbuf, (intptr_t)os::get_polling_page());
%}
%}
//----------FRAME--------------------------------------------------------------
// Definition of frame structure and management information.
//
// S T A C K L A Y O U T Allocators stack-slot number
// | (to get allocators register number
// G Owned by | | v add OptoReg::stack0())
// r CALLER | |
// o | +--------+ pad to even-align allocators stack-slot
// w V | pad0 | numbers; owned by CALLER
// t -----------+--------+----> Matcher::_in_arg_limit, unaligned
// h ^ | in | 5
// | | args | 4 Holes in incoming args owned by SELF
// | | | | 3
// | | +--------+
// V | | old out| Empty on Intel, window on Sparc
// | old |preserve| Must be even aligned.
// | SP-+--------+----> Matcher::_old_SP, even aligned
// | | in | 3 area for Intel ret address
// Owned by |preserve| Empty on Sparc.
// SELF +--------+
// | | pad2 | 2 pad to align old SP
// | +--------+ 1
// | | locks | 0
// | +--------+----> OptoReg::stack0(), even aligned
// | | pad1 | 11 pad to align new SP
// | +--------+
// | | | 10
// | | spills | 9 spills
// V | | 8 (pad0 slot for callee)
// -----------+--------+----> Matcher::_out_arg_limit, unaligned
// ^ | out | 7
// | | args | 6 Holes in outgoing args owned by CALLEE
// Owned by +--------+
// CALLEE | new out| 6 Empty on Intel, window on Sparc
// | new |preserve| Must be even-aligned.
// | SP-+--------+----> Matcher::_new_SP, even aligned
// | | |
//
// Note 1: Only region 8-11 is determined by the allocator. Region 0-5 is
// known from SELF's arguments and the Java calling convention.
// Region 6-7 is determined per call site.
// Note 2: If the calling convention leaves holes in the incoming argument
// area, those holes are owned by SELF. Holes in the outgoing area
// are owned by the CALLEE. Holes should not be nessecary in the
// incoming area, as the Java calling convention is completely under
// the control of the AD file. Doubles can be sorted and packed to
// avoid holes. Holes in the outgoing arguments may be nessecary for
// varargs C calling conventions.
// Note 3: Region 0-3 is even aligned, with pad2 as needed. Region 3-5 is
// even aligned with pad0 as needed.
// Region 6 is even aligned. Region 6-7 is NOT even aligned;
// region 6-11 is even aligned; it may be padded out more so that
// the region from SP to FP meets the minimum stack alignment.
frame %{
// What direction does stack grow in (assumed to be same for C & Java)
stack_direction(TOWARDS_LOW);
// These three registers define part of the calling convention
// between compiled code and the interpreter.
inline_cache_reg(EAX); // Inline Cache Register
interpreter_method_oop_reg(EBX); // Method Oop Register when calling interpreter
// Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
cisc_spilling_operand_name(indOffset32);
// Number of stack slots consumed by locking an object
sync_stack_slots(1);
// Compiled code's Frame Pointer
frame_pointer(ESP);
// Interpreter stores its frame pointer in a register which is
// stored to the stack by I2CAdaptors.
// I2CAdaptors convert from interpreted java to compiled java.
interpreter_frame_pointer(EBP);
// Stack alignment requirement
// Alignment size in bytes (128-bit -> 16 bytes)
stack_alignment(StackAlignmentInBytes);
// Number of stack slots between incoming argument block and the start of
// a new frame. The PROLOG must add this many slots to the stack. The
// EPILOG must remove this many slots. Intel needs one slot for
// return address and one for rbp, (must save rbp)
in_preserve_stack_slots(2+VerifyStackAtCalls);
// Number of outgoing stack slots killed above the out_preserve_stack_slots
// for calls to C. Supports the var-args backing area for register parms.
varargs_C_out_slots_killed(0);
// The after-PROLOG location of the return address. Location of
// return address specifies a type (REG or STACK) and a number
// representing the register number (i.e. - use a register name) or
// stack slot.
// Ret Addr is on stack in slot 0 if no locks or verification or alignment.
// Otherwise, it is above the locks and verification slot and alignment word
return_addr(STACK - 1 +
round_to(1+VerifyStackAtCalls+
Compile::current()->fixed_slots(),
(StackAlignmentInBytes/wordSize)));
// Body of function which returns an integer array locating
// arguments either in registers or in stack slots. Passed an array
// of ideal registers called "sig" and a "length" count. Stack-slot
// offsets are based on outgoing arguments, i.e. a CALLER setting up
// arguments for a CALLEE. Incoming stack arguments are
// automatically biased by the preserve_stack_slots field above.
calling_convention %{
// No difference between ingoing/outgoing just pass false
SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
%}
// Body of function which returns an integer array locating
// arguments either in registers or in stack slots. Passed an array
// of ideal registers called "sig" and a "length" count. Stack-slot
// offsets are based on outgoing arguments, i.e. a CALLER setting up
// arguments for a CALLEE. Incoming stack arguments are
// automatically biased by the preserve_stack_slots field above.
c_calling_convention %{
// This is obviously always outgoing
(void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
%}
// Location of C & interpreter return values
c_return_value %{
assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num, EAX_num, FPR1L_num, FPR1L_num, EAX_num };
static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
// in SSE2+ mode we want to keep the FPU stack clean so pretend
// that C functions return float and double results in XMM0.
if( ideal_reg == Op_RegD && UseSSE>=2 )
return OptoRegPair(XMM0b_num,XMM0a_num);
if( ideal_reg == Op_RegF && UseSSE>=2 )
return OptoRegPair(OptoReg::Bad,XMM0a_num);
return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
%}
// Location of return values
return_value %{
assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num, EAX_num, FPR1L_num, FPR1L_num, EAX_num };
static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
if( ideal_reg == Op_RegD && UseSSE>=2 )
return OptoRegPair(XMM0b_num,XMM0a_num);
if( ideal_reg == Op_RegF && UseSSE>=1 )
return OptoRegPair(OptoReg::Bad,XMM0a_num);
return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
%}
%}
//----------ATTRIBUTES---------------------------------------------------------
//----------Operand Attributes-------------------------------------------------
op_attrib op_cost(0); // Required cost attribute
//----------Instruction Attributes---------------------------------------------
ins_attrib ins_cost(100); // Required cost attribute
ins_attrib ins_size(8); // Required size attribute (in bits)
ins_attrib ins_pc_relative(0); // Required PC Relative flag
ins_attrib ins_short_branch(0); // Required flag: is this instruction a
// non-matching short branch variant of some
// long branch?
ins_attrib ins_alignment(1); // Required alignment attribute (must be a power of 2)
// specifies the alignment that some part of the instruction (not
// necessarily the start) requires. If > 1, a compute_padding()
// function must be provided for the instruction
//----------OPERANDS-----------------------------------------------------------
// Operand definitions must precede instruction definitions for correct parsing
// in the ADLC because operands constitute user defined types which are used in
// instruction definitions.
//----------Simple Operands----------------------------------------------------
// Immediate Operands
// Integer Immediate
operand immI() %{
match(ConI);
op_cost(10);
format %{ %}
interface(CONST_INTER);
%}
// Constant for test vs zero
operand immI0() %{
predicate(n->get_int() == 0);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Constant for increment
operand immI1() %{
predicate(n->get_int() == 1);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Constant for decrement
operand immI_M1() %{
predicate(n->get_int() == -1);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Valid scale values for addressing modes
operand immI2() %{
predicate(0 <= n->get_int() && (n->get_int() <= 3));
match(ConI);
format %{ %}
interface(CONST_INTER);
%}
operand immI8() %{
predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
match(ConI);
op_cost(5);
format %{ %}
interface(CONST_INTER);
%}
operand immI16() %{
predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
match(ConI);
op_cost(10);
format %{ %}
interface(CONST_INTER);
%}
// Constant for long shifts
operand immI_32() %{
predicate( n->get_int() == 32 );
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immI_1_31() %{
predicate( n->get_int() >= 1 && n->get_int() <= 31 );
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immI_32_63() %{
predicate( n->get_int() >= 32 && n->get_int() <= 63 );
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immI_1() %{
predicate( n->get_int() == 1 );
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immI_2() %{
predicate( n->get_int() == 2 );
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immI_3() %{
predicate( n->get_int() == 3 );
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Pointer Immediate
operand immP() %{
match(ConP);
op_cost(10);
format %{ %}
interface(CONST_INTER);
%}
// NULL Pointer Immediate
operand immP0() %{
predicate( n->get_ptr() == 0 );
match(ConP);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate
operand immL() %{
match(ConL);
op_cost(20);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate zero
operand immL0() %{
predicate( n->get_long() == 0L );
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate zero
operand immL_M1() %{
predicate( n->get_long() == -1L );
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Long immediate from 0 to 127.
// Used for a shorter form of long mul by 10.
operand immL_127() %{
predicate((0 <= n->get_long()) && (n->get_long() <= 127));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: low 32-bit mask
operand immL_32bits() %{
predicate(n->get_long() == 0xFFFFFFFFL);
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: low 32-bit mask
operand immL32() %{
predicate(n->get_long() == (int)(n->get_long()));
match(ConL);
op_cost(20);
format %{ %}
interface(CONST_INTER);
%}
//Double Immediate zero
operand immD0() %{
// Do additional (and counter-intuitive) test against NaN to work around VC++
// bug that generates code such that NaNs compare equal to 0.0
predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
match(ConD);
op_cost(5);
format %{ %}
interface(CONST_INTER);
%}
// Double Immediate
operand immD1() %{
predicate( UseSSE<=1 && n->getd() == 1.0 );
match(ConD);
op_cost(5);
format %{ %}
interface(CONST_INTER);
%}
// Double Immediate
operand immD() %{
predicate(UseSSE<=1);
match(ConD);
op_cost(5);
format %{ %}
interface(CONST_INTER);
%}
operand immXD() %{
predicate(UseSSE>=2);
match(ConD);
op_cost(5);
format %{ %}
interface(CONST_INTER);
%}
// Double Immediate zero
operand immXD0() %{
// Do additional (and counter-intuitive) test against NaN to work around VC++
// bug that generates code such that NaNs compare equal to 0.0 AND do not
// compare equal to -0.0.
predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
match(ConD);
format %{ %}
interface(CONST_INTER);
%}
// Float Immediate zero
operand immF0() %{
predicate( UseSSE == 0 && n->getf() == 0.0 );
match(ConF);
op_cost(5);
format %{ %}
interface(CONST_INTER);
%}
// Float Immediate
operand immF() %{
predicate( UseSSE == 0 );
match(ConF);
op_cost(5);
format %{ %}
interface(CONST_INTER);
%}
// Float Immediate
operand immXF() %{
predicate(UseSSE >= 1);
match(ConF);
op_cost(5);
format %{ %}
interface(CONST_INTER);
%}
// Float Immediate zero. Zero and not -0.0
operand immXF0() %{
predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
match(ConF);
op_cost(5);
format %{ %}
interface(CONST_INTER);
%}
// Immediates for special shifts (sign extend)
// Constants for increment
operand immI_16() %{
predicate( n->get_int() == 16 );
match(ConI);
format %{ %}
interface(CONST_INTER);
%}
operand immI_24() %{
predicate( n->get_int() == 24 );
match(ConI);
format %{ %}
interface(CONST_INTER);
%}
// Constant for byte-wide masking
operand immI_255() %{
predicate( n->get_int() == 255 );
match(ConI);
format %{ %}
interface(CONST_INTER);
%}
// Register Operands
// Integer Register
operand eRegI() %{
constraint(ALLOC_IN_RC(e_reg));
match(RegI);
match(xRegI);
match(eAXRegI);
match(eBXRegI);
match(eCXRegI);
match(eDXRegI);
match(eDIRegI);
match(eSIRegI);
format %{ %}
interface(REG_INTER);
%}
// Subset of Integer Register
operand xRegI(eRegI reg) %{
constraint(ALLOC_IN_RC(x_reg));
match(reg);
match(eAXRegI);
match(eBXRegI);
match(eCXRegI);
match(eDXRegI);
format %{ %}
interface(REG_INTER);
%}
// Special Registers
operand eAXRegI(xRegI reg) %{
constraint(ALLOC_IN_RC(eax_reg));
match(reg);
match(eRegI);
format %{ "EAX" %}
interface(REG_INTER);
%}
// Special Registers
operand eBXRegI(xRegI reg) %{
constraint(ALLOC_IN_RC(ebx_reg));
match(reg);
match(eRegI);
format %{ "EBX" %}
interface(REG_INTER);
%}
operand eCXRegI(xRegI reg) %{
constraint(ALLOC_IN_RC(ecx_reg));
match(reg);
match(eRegI);
format %{ "ECX" %}
interface(REG_INTER);
%}
operand eDXRegI(xRegI reg) %{
constraint(ALLOC_IN_RC(edx_reg));
match(reg);
match(eRegI);
format %{ "EDX" %}
interface(REG_INTER);
%}
operand eDIRegI(xRegI reg) %{
constraint(ALLOC_IN_RC(edi_reg));
match(reg);
match(eRegI);
format %{ "EDI" %}
interface(REG_INTER);
%}
operand naxRegI() %{
constraint(ALLOC_IN_RC(nax_reg));
match(RegI);
match(eCXRegI);
match(eDXRegI);
match(eSIRegI);
match(eDIRegI);
format %{ %}
interface(REG_INTER);
%}
operand nadxRegI() %{
constraint(ALLOC_IN_RC(nadx_reg));
match(RegI);
match(eBXRegI);
match(eCXRegI);
match(eSIRegI);
match(eDIRegI);
format %{ %}
interface(REG_INTER);
%}
operand ncxRegI() %{
constraint(ALLOC_IN_RC(ncx_reg));
match(RegI);
match(eAXRegI);
match(eDXRegI);
match(eSIRegI);
match(eDIRegI);
format %{ %}
interface(REG_INTER);
%}
// // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
// //
operand eSIRegI(xRegI reg) %{
constraint(ALLOC_IN_RC(esi_reg));
match(reg);
match(eRegI);
format %{ "ESI" %}
interface(REG_INTER);
%}
// Pointer Register
operand anyRegP() %{
constraint(ALLOC_IN_RC(any_reg));
match(RegP);
match(eAXRegP);
match(eBXRegP);
match(eCXRegP);
match(eDIRegP);
match(eRegP);
format %{ %}
interface(REG_INTER);
%}
operand eRegP() %{
constraint(ALLOC_IN_RC(e_reg));
match(RegP);
match(eAXRegP);
match(eBXRegP);
match(eCXRegP);
match(eDIRegP);
format %{ %}
interface(REG_INTER);
%}
// On windows95, EBP is not safe to use for implicit null tests.
operand eRegP_no_EBP() %{
constraint(ALLOC_IN_RC(e_reg_no_rbp));
match(RegP);
match(eAXRegP);
match(eBXRegP);
match(eCXRegP);
match(eDIRegP);
op_cost(100);
format %{ %}
interface(REG_INTER);
%}
operand naxRegP() %{
constraint(ALLOC_IN_RC(nax_reg));
match(RegP);
match(eBXRegP);
match(eDXRegP);
match(eCXRegP);
match(eSIRegP);
match(eDIRegP);
format %{ %}
interface(REG_INTER);
%}
operand nabxRegP() %{
constraint(ALLOC_IN_RC(nabx_reg));
match(RegP);
match(eCXRegP);
match(eDXRegP);
match(eSIRegP);
match(eDIRegP);
format %{ %}
interface(REG_INTER);
%}
operand pRegP() %{
constraint(ALLOC_IN_RC(p_reg));
match(RegP);
match(eBXRegP);
match(eDXRegP);
match(eSIRegP);
match(eDIRegP);
format %{ %}
interface(REG_INTER);
%}
// Special Registers
// Return a pointer value
operand eAXRegP(eRegP reg) %{
constraint(ALLOC_IN_RC(eax_reg));
match(reg);
format %{ "EAX" %}
interface(REG_INTER);
%}
// Used in AtomicAdd
operand eBXRegP(eRegP reg) %{
constraint(ALLOC_IN_RC(ebx_reg));
match(reg);
format %{ "EBX" %}
interface(REG_INTER);
%}
// Tail-call (interprocedural jump) to interpreter
operand eCXRegP(eRegP reg) %{
constraint(ALLOC_IN_RC(ecx_reg));
match(reg);
format %{ "ECX" %}
interface(REG_INTER);
%}
operand eSIRegP(eRegP reg) %{
constraint(ALLOC_IN_RC(esi_reg));
match(reg);
format %{ "ESI" %}
interface(REG_INTER);
%}
// Used in rep stosw
operand eDIRegP(eRegP reg) %{
constraint(ALLOC_IN_RC(edi_reg));
match(reg);
format %{ "EDI" %}
interface(REG_INTER);
%}
operand eBPRegP() %{
constraint(ALLOC_IN_RC(ebp_reg));
match(RegP);
format %{ "EBP" %}
interface(REG_INTER);
%}
operand eRegL() %{
constraint(ALLOC_IN_RC(long_reg));
match(RegL);
match(eADXRegL);
format %{ %}
interface(REG_INTER);
%}
operand eADXRegL( eRegL reg ) %{
constraint(ALLOC_IN_RC(eadx_reg));
match(reg);
format %{ "EDX:EAX" %}
interface(REG_INTER);
%}
operand eBCXRegL( eRegL reg ) %{
constraint(ALLOC_IN_RC(ebcx_reg));
match(reg);
format %{ "EBX:ECX" %}
interface(REG_INTER);
%}
// Special case for integer high multiply
operand eADXRegL_low_only() %{
constraint(ALLOC_IN_RC(eadx_reg));
match(RegL);
format %{ "EAX" %}
interface(REG_INTER);
%}
// Flags register, used as output of compare instructions
operand eFlagsReg() %{
constraint(ALLOC_IN_RC(int_flags));
match(RegFlags);
format %{ "EFLAGS" %}
interface(REG_INTER);
%}
// Flags register, used as output of FLOATING POINT compare instructions
operand eFlagsRegU() %{
constraint(ALLOC_IN_RC(int_flags));
match(RegFlags);
format %{ "EFLAGS_U" %}
interface(REG_INTER);
%}
// Condition Code Register used by long compare
operand flagsReg_long_LTGE() %{
constraint(ALLOC_IN_RC(int_flags));
match(RegFlags);
format %{ "FLAGS_LTGE" %}
interface(REG_INTER);
%}
operand flagsReg_long_EQNE() %{
constraint(ALLOC_IN_RC(int_flags));
match(RegFlags);
format %{ "FLAGS_EQNE" %}
interface(REG_INTER);
%}
operand flagsReg_long_LEGT() %{
constraint(ALLOC_IN_RC(int_flags));
match(RegFlags);
format %{ "FLAGS_LEGT" %}
interface(REG_INTER);
%}
// Float register operands
operand regD() %{
predicate( UseSSE < 2 );
constraint(ALLOC_IN_RC(dbl_reg));
match(RegD);
match(regDPR1);
match(regDPR2);
format %{ %}
interface(REG_INTER);
%}
operand regDPR1(regD reg) %{
predicate( UseSSE < 2 );
constraint(ALLOC_IN_RC(dbl_reg0));
match(reg);
format %{ "FPR1" %}
interface(REG_INTER);
%}
operand regDPR2(regD reg) %{
predicate( UseSSE < 2 );
constraint(ALLOC_IN_RC(dbl_reg1));
match(reg);
format %{ "FPR2" %}
interface(REG_INTER);
%}
operand regnotDPR1(regD reg) %{
predicate( UseSSE < 2 );
constraint(ALLOC_IN_RC(dbl_notreg0));
match(reg);
format %{ %}
interface(REG_INTER);
%}
// XMM Double register operands
operand regXD() %{
predicate( UseSSE>=2 );
constraint(ALLOC_IN_RC(xdb_reg));
match(RegD);
match(regXD6);
match(regXD7);
format %{ %}
interface(REG_INTER);
%}
// XMM6 double register operands
operand regXD6(regXD reg) %{
predicate( UseSSE>=2 );
constraint(ALLOC_IN_RC(xdb_reg6));
match(reg);
format %{ "XMM6" %}
interface(REG_INTER);
%}
// XMM7 double register operands
operand regXD7(regXD reg) %{
predicate( UseSSE>=2 );
constraint(ALLOC_IN_RC(xdb_reg7));
match(reg);
format %{ "XMM7" %}
interface(REG_INTER);
%}
// Float register operands
operand regF() %{
predicate( UseSSE < 2 );
constraint(ALLOC_IN_RC(flt_reg));
match(RegF);
match(regFPR1);
format %{ %}
interface(REG_INTER);
%}
// Float register operands
operand regFPR1(regF reg) %{
predicate( UseSSE < 2 );
constraint(ALLOC_IN_RC(flt_reg0));
match(reg);
format %{ "FPR1" %}
interface(REG_INTER);
%}
// XMM register operands
operand regX() %{
predicate( UseSSE>=1 );
constraint(ALLOC_IN_RC(xmm_reg));
match(RegF);
format %{ %}
interface(REG_INTER);
%}
//----------Memory Operands----------------------------------------------------
// Direct Memory Operand
operand direct(immP addr) %{
match(addr);
format %{ "[$addr]" %}
interface(MEMORY_INTER) %{
base(0xFFFFFFFF);
index(0x4);
scale(0x0);
disp($addr);
%}
%}
// Indirect Memory Operand
operand indirect(eRegP reg) %{
constraint(ALLOC_IN_RC(e_reg));
match(reg);
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0x4);
scale(0x0);
disp(0x0);
%}
%}
// Indirect Memory Plus Short Offset Operand
operand indOffset8(eRegP reg, immI8 off) %{
match(AddP reg off);
format %{ "[$reg + $off]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0x4);
scale(0x0);
disp($off);
%}
%}
// Indirect Memory Plus Long Offset Operand
operand indOffset32(eRegP reg, immI off) %{
match(AddP reg off);
format %{ "[$reg + $off]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0x4);
scale(0x0);
disp($off);
%}
%}
// Indirect Memory Plus Long Offset Operand
operand indOffset32X(eRegI reg, immP off) %{
match(AddP off reg);
format %{ "[$reg + $off]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0x4);
scale(0x0);
disp($off);
%}
%}
// Indirect Memory Plus Index Register Plus Offset Operand
operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
match(AddP (AddP reg ireg) off);
op_cost(10);
format %{"[$reg + $off + $ireg]" %}
interface(MEMORY_INTER) %{
base($reg);
index($ireg);
scale(0x0);
disp($off);
%}
%}
// Indirect Memory Plus Index Register Plus Offset Operand
operand indIndex(eRegP reg, eRegI ireg) %{
match(AddP reg ireg);
op_cost(10);
format %{"[$reg + $ireg]" %}
interface(MEMORY_INTER) %{
base($reg);
index($ireg);
scale(0x0);
disp(0x0);
%}
%}
// // -------------------------------------------------------------------------
// // 486 architecture doesn't support "scale * index + offset" with out a base
// // -------------------------------------------------------------------------
// // Scaled Memory Operands
// // Indirect Memory Times Scale Plus Offset Operand
// operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
// match(AddP off (LShiftI ireg scale));
//
// op_cost(10);
// format %{"[$off + $ireg << $scale]" %}
// interface(MEMORY_INTER) %{
// base(0x4);
// index($ireg);
// scale($scale);
// disp($off);
// %}
// %}
// Indirect Memory Times Scale Plus Index Register
operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
match(AddP reg (LShiftI ireg scale));
op_cost(10);
format %{"[$reg + $ireg << $scale]" %}
interface(MEMORY_INTER) %{
base($reg);
index($ireg);
scale($scale);
disp(0x0);
%}
%}
// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
match(AddP (AddP reg (LShiftI ireg scale)) off);
op_cost(10);
format %{"[$reg + $off + $ireg << $scale]" %}
interface(MEMORY_INTER) %{
base($reg);
index($ireg);
scale($scale);
disp($off);
%}
%}
//----------Load Long Memory Operands------------------------------------------
// The load-long idiom will use it's address expression again after loading
// the first word of the long. If the load-long destination overlaps with
// registers used in the addressing expression, the 2nd half will be loaded
// from a clobbered address. Fix this by requiring that load-long use
// address registers that do not overlap with the load-long target.
// load-long support
operand load_long_RegP() %{
constraint(ALLOC_IN_RC(esi_reg));
match(RegP);
match(eSIRegP);
op_cost(100);
format %{ %}
interface(REG_INTER);
%}
// Indirect Memory Operand Long
operand load_long_indirect(load_long_RegP reg) %{
constraint(ALLOC_IN_RC(esi_reg));
match(reg);
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0x4);
scale(0x0);
disp(0x0);
%}
%}
// Indirect Memory Plus Long Offset Operand
operand load_long_indOffset32(load_long_RegP reg, immI off) %{
match(AddP reg off);
format %{ "[$reg + $off]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0x4);
scale(0x0);
disp($off);
%}
%}
opclass load_long_memory(load_long_indirect, load_long_indOffset32);
//----------Special Memory Operands--------------------------------------------
// Stack Slot Operand - This operand is used for loading and storing temporary
// values on the stack where a match requires a value to
// flow through memory.
operand stackSlotP(sRegP reg) %{
constraint(ALLOC_IN_RC(stack_slots));
// No match rule because this operand is only generated in matching
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0x4); // ESP
index(0x4); // No Index
scale(0x0); // No Scale
disp($reg); // Stack Offset
%}
%}
operand stackSlotI(sRegI reg) %{
constraint(ALLOC_IN_RC(stack_slots));
// No match rule because this operand is only generated in matching
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0x4); // ESP
index(0x4); // No Index
scale(0x0); // No Scale
disp($reg); // Stack Offset
%}
%}
operand stackSlotF(sRegF reg) %{
constraint(ALLOC_IN_RC(stack_slots));
// No match rule because this operand is only generated in matching
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0x4); // ESP
index(0x4); // No Index
scale(0x0); // No Scale
disp($reg); // Stack Offset
%}
%}
operand stackSlotD(sRegD reg) %{
constraint(ALLOC_IN_RC(stack_slots));
// No match rule because this operand is only generated in matching
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0x4); // ESP
index(0x4); // No Index
scale(0x0); // No Scale
disp($reg); // Stack Offset
%}
%}
operand stackSlotL(sRegL reg) %{
constraint(ALLOC_IN_RC(stack_slots));
// No match rule because this operand is only generated in matching
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0x4); // ESP
index(0x4); // No Index
scale(0x0); // No Scale
disp($reg); // Stack Offset
%}
%}
//----------Memory Operands - Win95 Implicit Null Variants----------------
// Indirect Memory Operand
operand indirect_win95_safe(eRegP_no_EBP reg)
%{
constraint(ALLOC_IN_RC(e_reg));
match(reg);
op_cost(100);
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0x4);
scale(0x0);
disp(0x0);
%}
%}
// Indirect Memory Plus Short Offset Operand
operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
%{
match(AddP reg off);
op_cost(100);
format %{ "[$reg + $off]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0x4);
scale(0x0);
disp($off);
%}
%}
// Indirect Memory Plus Long Offset Operand
operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
%{
match(AddP reg off);
op_cost(100);
format %{ "[$reg + $off]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0x4);
scale(0x0);
disp($off);
%}
%}
// Indirect Memory Plus Index Register Plus Offset Operand
operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
%{
match(AddP (AddP reg ireg) off);
op_cost(100);
format %{"[$reg + $off + $ireg]" %}
interface(MEMORY_INTER) %{
base($reg);
index($ireg);
scale(0x0);
disp($off);
%}
%}
// Indirect Memory Times Scale Plus Index Register
operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
%{
match(AddP reg (LShiftI ireg scale));
op_cost(100);
format %{"[$reg + $ireg << $scale]" %}
interface(MEMORY_INTER) %{
base($reg);
index($ireg);
scale($scale);
disp(0x0);
%}
%}
// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
%{
match(AddP (AddP reg (LShiftI ireg scale)) off);
op_cost(100);
format %{"[$reg + $off + $ireg << $scale]" %}
interface(MEMORY_INTER) %{
base($reg);
index($ireg);
scale($scale);
disp($off);
%}
%}
//----------Conditional Branch Operands----------------------------------------
// Comparison Op - This is the operation of the comparison, and is limited to
// the following set of codes:
// L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
//
// Other attributes of the comparison, such as unsignedness, are specified
// by the comparison instruction that sets a condition code flags register.
// That result is represented by a flags operand whose subtype is appropriate
// to the unsignedness (etc.) of the comparison.
//
// Later, the instruction which matches both the Comparison Op (a Bool) and
// the flags (produced by the Cmp) specifies the coding of the comparison op
// by matching a specific subtype of Bool operand below, such as cmpOpU.
// Comparision Code
operand cmpOp() %{
match(Bool);
format %{ "" %}
interface(COND_INTER) %{
equal(0x4);
not_equal(0x5);
less(0xC);
greater_equal(0xD);
less_equal(0xE);
greater(0xF);
%}
%}
// Comparison Code, unsigned compare. Used by FP also, with
// C2 (unordered) turned into GT or LT already. The other bits
// C0 and C3 are turned into Carry & Zero flags.
operand cmpOpU() %{
match(Bool);
format %{ "" %}
interface(COND_INTER) %{
equal(0x4);
not_equal(0x5);
less(0x2);
greater_equal(0x3);
less_equal(0x6);
greater(0x7);
%}
%}
// Comparison Code for FP conditional move
operand cmpOp_fcmov() %{
match(Bool);
format %{ "" %}
interface(COND_INTER) %{
equal (0x0C8);
not_equal (0x1C8);
less (0x0C0);
greater_equal(0x1C0);
less_equal (0x0D0);
greater (0x1D0);
%}
%}
// Comparision Code used in long compares
operand cmpOp_commute() %{
match(Bool);
format %{ "" %}
interface(COND_INTER) %{
equal(0x4);
not_equal(0x5);
less(0xF);
greater_equal(0xE);
less_equal(0xD);
greater(0xC);
%}
%}
//----------OPERAND CLASSES----------------------------------------------------
// Operand Classes are groups of operands that are used as to simplify
// instruction definitions by not requiring the AD writer to specify seperate
// instructions for every form of operand when the instruction accepts
// multiple operand types with the same basic encoding and format. The classic
// case of this is memory operands.
opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
indIndex, indIndexScale, indIndexScaleOffset);
// Long memory operations are encoded in 2 instructions and a +4 offset.
// This means some kind of offset is always required and you cannot use
// an oop as the offset (done when working on static globals).
opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
indIndex, indIndexScale, indIndexScaleOffset);
//----------PIPELINE-----------------------------------------------------------
// Rules which define the behavior of the target architectures pipeline.
pipeline %{
//----------ATTRIBUTES---------------------------------------------------------
attributes %{
variable_size_instructions; // Fixed size instructions
max_instructions_per_bundle = 3; // Up to 3 instructions per bundle
instruction_unit_size = 1; // An instruction is 1 bytes long
instruction_fetch_unit_size = 16; // The processor fetches one line
instruction_fetch_units = 1; // of 16 bytes
// List of nop instructions
nops( MachNop );
%}
//----------RESOURCES----------------------------------------------------------
// Resources are the functional units available to the machine
// Generic P2/P3 pipeline
// 3 decoders, only D0 handles big operands; a "bundle" is the limit of
// 3 instructions decoded per cycle.
// 2 load/store ops per cycle, 1 branch, 1 FPU,
// 2 ALU op, only ALU0 handles mul/div instructions.
resources( D0, D1, D2, DECODE = D0 | D1 | D2,
MS0, MS1, MEM = MS0 | MS1,
BR, FPU,
ALU0, ALU1, ALU = ALU0 | ALU1 );
//----------PIPELINE DESCRIPTION-----------------------------------------------
// Pipeline Description specifies the stages in the machine's pipeline
// Generic P2/P3 pipeline
pipe_desc(S0, S1, S2, S3, S4, S5);
//----------PIPELINE CLASSES---------------------------------------------------
// Pipeline Classes describe the stages in which input and output are
// referenced by the hardware pipeline.
// Naming convention: ialu or fpu
// Then: _reg
// Then: _reg if there is a 2nd register
// Then: _long if it's a pair of instructions implementing a long
// Then: _fat if it requires the big decoder
// Or: _mem if it requires the big decoder and a memory unit.
// Integer ALU reg operation
pipe_class ialu_reg(eRegI dst) %{
single_instruction;
dst : S4(write);
dst : S3(read);
DECODE : S0; // any decoder
ALU : S3; // any alu
%}
// Long ALU reg operation
pipe_class ialu_reg_long(eRegL dst) %{
instruction_count(2);
dst : S4(write);
dst : S3(read);
DECODE : S0(2); // any 2 decoders
ALU : S3(2); // both alus
%}
// Integer ALU reg operation using big decoder
pipe_class ialu_reg_fat(eRegI dst) %{
single_instruction;
dst : S4(write);
dst : S3(read);
D0 : S0; // big decoder only
ALU : S3; // any alu
%}
// Long ALU reg operation using big decoder
pipe_class ialu_reg_long_fat(eRegL dst) %{
instruction_count(2);
dst : S4(write);
dst : S3(read);
D0 : S0(2); // big decoder only; twice
ALU : S3(2); // any 2 alus
%}
// Integer ALU reg-reg operation
pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
single_instruction;
dst : S4(write);
src : S3(read);
DECODE : S0; // any decoder
ALU : S3; // any alu
%}
// Long ALU reg-reg operation
pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
instruction_count(2);
dst : S4(write);
src : S3(read);
DECODE : S0(2); // any 2 decoders
ALU : S3(2); // both alus
%}
// Integer ALU reg-reg operation
pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
single_instruction;
dst : S4(write);
src : S3(read);
D0 : S0; // big decoder only
ALU : S3; // any alu
%}
// Long ALU reg-reg operation
pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
instruction_count(2);
dst : S4(write);
src : S3(read);
D0 : S0(2); // big decoder only; twice
ALU : S3(2); // both alus
%}
// Integer ALU reg-mem operation
pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
single_instruction;
dst : S5(write);
mem : S3(read);
D0 : S0; // big decoder only
ALU : S4; // any alu
MEM : S3; // any mem
%}
// Long ALU reg-mem operation
pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
instruction_count(2);
dst : S5(write);
mem : S3(read);
D0 : S0(2); // big decoder only; twice
ALU : S4(2); // any 2 alus
MEM : S3(2); // both mems
%}
// Integer mem operation (prefetch)
pipe_class ialu_mem(memory mem)
%{
single_instruction;
mem : S3(read);
D0 : S0; // big decoder only
MEM : S3; // any mem
%}
// Integer Store to Memory
pipe_class ialu_mem_reg(memory mem, eRegI src) %{
single_instruction;
mem : S3(read);
src : S5(read);
D0 : S0; // big decoder only
ALU : S4; // any alu
MEM : S3;
%}
// Long Store to Memory
pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
instruction_count(2);
mem : S3(read);
src : S5(read);
D0 : S0(2); // big decoder only; twice
ALU : S4(2); // any 2 alus
MEM : S3(2); // Both mems
%}
// Integer Store to Memory
pipe_class ialu_mem_imm(memory mem) %{
single_instruction;
mem : S3(read);
D0 : S0; // big decoder only
ALU : S4; // any alu
MEM : S3;
%}
// Integer ALU0 reg-reg operation
pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
single_instruction;
dst : S4(write);
src : S3(read);
D0 : S0; // Big decoder only
ALU0 : S3; // only alu0
%}
// Integer ALU0 reg-mem operation
pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
single_instruction;
dst : S5(write);
mem : S3(read);
D0 : S0; // big decoder only
ALU0 : S4; // ALU0 only
MEM : S3; // any mem
%}
// Integer ALU reg-reg operation
pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
single_instruction;
cr : S4(write);
src1 : S3(read);
src2 : S3(read);
DECODE : S0; // any decoder
ALU : S3; // any alu
%}
// Integer ALU reg-imm operation
pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
single_instruction;
cr : S4(write);
src1 : S3(read);
DECODE : S0; // any decoder
ALU : S3; // any alu
%}
// Integer ALU reg-mem operation
pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
single_instruction;
cr : S4(write);
src1 : S3(read);
src2 : S3(read);
D0 : S0; // big decoder only
ALU : S4; // any alu
MEM : S3;
%}
// Conditional move reg-reg
pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
instruction_count(4);
y : S4(read);
q : S3(read);
p : S3(read);
DECODE : S0(4); // any decoder
%}
// Conditional move reg-reg
pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
single_instruction;
dst : S4(write);
src : S3(read);
cr : S3(read);
DECODE : S0; // any decoder
%}
// Conditional move reg-mem
pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
single_instruction;
dst : S4(write);
src : S3(read);
cr : S3(read);
DECODE : S0; // any decoder
MEM : S3;
%}
// Conditional move reg-reg long
pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
single_instruction;
dst : S4(write);
src : S3(read);
cr : S3(read);
DECODE : S0(2); // any 2 decoders
%}
// Conditional move double reg-reg
pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
single_instruction;
dst : S4(write);
src : S3(read);
cr : S3(read);
DECODE : S0; // any decoder
%}
// Float reg-reg operation
pipe_class fpu_reg(regD dst) %{
instruction_count(2);
dst : S3(read);
DECODE : S0(2); // any 2 decoders
FPU : S3;
%}
// Float reg-reg operation
pipe_class fpu_reg_reg(regD dst, regD src) %{
instruction_count(2);
dst : S4(write);
src : S3(read);
DECODE : S0(2); // any 2 decoders
FPU : S3;
%}
// Float reg-reg operation
pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
instruction_count(3);
dst : S4(write);
src1 : S3(read);
src2 : S3(read);
DECODE : S0(3); // any 3 decoders
FPU : S3(2);
%}
// Float reg-reg operation
pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
instruction_count(4);
dst : S4(write);
src1 : S3(read);
src2 : S3(read);
src3 : S3(read);
DECODE : S0(4); // any 3 decoders
FPU : S3(2);
%}
// Float reg-reg operation
pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
instruction_count(4);
dst : S4(write);
src1 : S3(read);
src2 : S3(read);
src3 : S3(read);
DECODE : S1(3); // any 3 decoders
D0 : S0; // Big decoder only
FPU : S3(2);
MEM : S3;
%}
// Float reg-mem operation
pipe_class fpu_reg_mem(regD dst, memory mem) %{
instruction_count(2);
dst : S5(write);
mem : S3(read);
D0 : S0; // big decoder only
DECODE : S1; // any decoder for FPU POP
FPU : S4;
MEM : S3; // any mem
%}
// Float reg-mem operation
pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
instruction_count(3);
dst : S5(write);
src1 : S3(read);
mem : S3(read);
D0 : S0; // big decoder only
DECODE : S1(2); // any decoder for FPU POP
FPU : S4;
MEM : S3; // any mem
%}
// Float mem-reg operation
pipe_class fpu_mem_reg(memory mem, regD src) %{
instruction_count(2);
src : S5(read);
mem : S3(read);
DECODE : S0; // any decoder for FPU PUSH
D0 : S1; // big decoder only
FPU : S4;
MEM : S3; // any mem
%}
pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
instruction_count(3);
src1 : S3(read);
src2 : S3(read);
mem : S3(read);
DECODE : S0(2); // any decoder for FPU PUSH
D0 : S1; // big decoder only
FPU : S4;
MEM : S3; // any mem
%}
pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
instruction_count(3);
src1 : S3(read);
src2 : S3(read);
mem : S4(read);
DECODE : S0; // any decoder for FPU PUSH
D0 : S0(2); // big decoder only
FPU : S4;
MEM : S3(2); // any mem
%}
pipe_class fpu_mem_mem(memory dst, memory src1) %{
instruction_count(2);
src1 : S3(read);
dst : S4(read);
D0 : S0(2); // big decoder only
MEM : S3(2); // any mem
%}
pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
instruction_count(3);
src1 : S3(read);
src2 : S3(read);
dst : S4(read);
D0 : S0(3); // big decoder only
FPU : S4;
MEM : S3(3); // any mem
%}
pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
instruction_count(3);
src1 : S4(read);
mem : S4(read);
DECODE : S0; // any decoder for FPU PUSH
D0 : S0(2); // big decoder only
FPU : S4;
MEM : S3(2); // any mem
%}
// Float load constant
pipe_class fpu_reg_con(regD dst) %{
instruction_count(2);
dst : S5(write);
D0 : S0; // big decoder only for the load
DECODE : S1; // any decoder for FPU POP
FPU : S4;
MEM : S3; // any mem
%}
// Float load constant
pipe_class fpu_reg_reg_con(regD dst, regD src) %{
instruction_count(3);
dst : S5(write);
src : S3(read);
D0 : S0; // big decoder only for the load
DECODE : S1(2); // any decoder for FPU POP
FPU : S4;
MEM : S3; // any mem
%}
// UnConditional branch
pipe_class pipe_jmp( label labl ) %{
single_instruction;
BR : S3;
%}
// Conditional branch
pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
single_instruction;
cr : S1(read);
BR : S3;
%}
// Allocation idiom
pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
instruction_count(1); force_serialization;
fixed_latency(6);
heap_ptr : S3(read);
DECODE : S0(3);
D0 : S2;
MEM : S3;
ALU : S3(2);
dst : S5(write);
BR : S5;
%}
// Generic big/slow expanded idiom
pipe_class pipe_slow( ) %{
instruction_count(10); multiple_bundles; force_serialization;
fixed_latency(100);
D0 : S0(2);
MEM : S3(2);
%}
// The real do-nothing guy
pipe_class empty( ) %{
instruction_count(0);
%}
// Define the class for the Nop node
define %{
MachNop = empty;
%}
%}
//----------INSTRUCTIONS-------------------------------------------------------
//
// match -- States which machine-independent subtree may be replaced
// by this instruction.
// ins_cost -- The estimated cost of this instruction is used by instruction
// selection to identify a minimum cost tree of machine
// instructions that matches a tree of machine-independent
// instructions.
// format -- A string providing the disassembly for this instruction.
// The value of an instruction's operand may be inserted
// by referring to it with a '$' prefix.
// opcode -- Three instruction opcodes may be provided. These are referred
// to within an encode class as $primary, $secondary, and $tertiary
// respectively. The primary opcode is commonly used to
// indicate the type of machine instruction, while secondary
// and tertiary are often used for prefix options or addressing
// modes.
// ins_encode -- A list of encode classes with parameters. The encode class
// name must have been defined in an 'enc_class' specification
// in the encode section of the architecture description.
//----------BSWAP-Instruction--------------------------------------------------
instruct bytes_reverse_int(eRegI dst) %{
match(Set dst (ReverseBytesI dst));
format %{ "BSWAP $dst" %}
opcode(0x0F, 0xC8);
ins_encode( OpcP, OpcSReg(dst) );
ins_pipe( ialu_reg );
%}
instruct bytes_reverse_long(eRegL dst) %{
match(Set dst (ReverseBytesL dst));
format %{ "BSWAP $dst.lo\n\t"
"BSWAP $dst.hi\n\t"
"XCHG $dst.lo $dst.hi" %}
ins_cost(125);
ins_encode( bswap_long_bytes(dst) );
ins_pipe( ialu_reg_reg);
%}
//----------Load/Store/Move Instructions---------------------------------------
//----------Load Instructions--------------------------------------------------
// Load Byte (8bit signed)
instruct loadB(xRegI dst, memory mem) %{
match(Set dst (LoadB mem));
ins_cost(125);
format %{ "MOVSX8 $dst,$mem" %}
opcode(0xBE, 0x0F);
ins_encode( OpcS, OpcP, RegMem(dst,mem));
ins_pipe( ialu_reg_mem );
%}
// Load Byte (8bit UNsigned)
instruct loadUB(xRegI dst, memory mem, immI_255 bytemask) %{
match(Set dst (AndI (LoadB mem) bytemask));
ins_cost(125);
format %{ "MOVZX8 $dst,$mem" %}
opcode(0xB6, 0x0F);
ins_encode( OpcS, OpcP, RegMem(dst,mem));
ins_pipe( ialu_reg_mem );
%}
// Load Char (16bit unsigned)
instruct loadC(eRegI dst, memory mem) %{
match(Set dst (LoadC mem));
ins_cost(125);
format %{ "MOVZX $dst,$mem" %}
opcode(0xB7, 0x0F);
ins_encode( OpcS, OpcP, RegMem(dst,mem));
ins_pipe( ialu_reg_mem );
%}
// Load Integer
instruct loadI(eRegI dst, memory mem) %{
match(Set dst (LoadI mem));
ins_cost(125);
format %{ "MOV $dst,$mem" %}
opcode(0x8B);
ins_encode( OpcP, RegMem(dst,mem));
ins_pipe( ialu_reg_mem );
%}
// Load Long. Cannot clobber address while loading, so restrict address
// register to ESI
instruct loadL(eRegL dst, load_long_memory mem) %{
predicate(!((LoadLNode*)n)->require_atomic_access());
match(Set dst (LoadL mem));
ins_cost(250);
format %{ "MOV $dst.lo,$mem\n\t"
"MOV $dst.hi,$mem+4" %}
opcode(0x8B, 0x8B);
ins_encode( OpcP, RegMem(dst,mem), OpcS, RegMem_Hi(dst,mem));
ins_pipe( ialu_reg_long_mem );
%}
// Volatile Load Long. Must be atomic, so do 64-bit FILD
// then store it down to the stack and reload on the int
// side.
instruct loadL_volatile(stackSlotL dst, memory mem) %{
predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
match(Set dst (LoadL mem));
ins_cost(200);
format %{ "FILD $mem\t# Atomic volatile long load\n\t"
"FISTp $dst" %}
ins_encode(enc_loadL_volatile(mem,dst));
ins_pipe( fpu_reg_mem );
%}
instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
match(Set dst (LoadL mem));
effect(TEMP tmp);
ins_cost(180);
format %{ "MOVSD $tmp,$mem\t# Atomic volatile long load\n\t"
"MOVSD $dst,$tmp" %}
ins_encode(enc_loadLX_volatile(mem, dst, tmp));
ins_pipe( pipe_slow );
%}
instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
match(Set dst (LoadL mem));
effect(TEMP tmp);
ins_cost(160);
format %{ "MOVSD $tmp,$mem\t# Atomic volatile long load\n\t"
"MOVD $dst.lo,$tmp\n\t"
"PSRLQ $tmp,32\n\t"
"MOVD $dst.hi,$tmp" %}
ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
ins_pipe( pipe_slow );
%}
// Load Range
instruct loadRange(eRegI dst, memory mem) %{
match(Set dst (LoadRange mem));
ins_cost(125);
format %{ "MOV $dst,$mem" %}
opcode(0x8B);
ins_encode( OpcP, RegMem(dst,mem));
ins_pipe( ialu_reg_mem );
%}
// Load Pointer
instruct loadP(eRegP dst, memory mem) %{
match(Set dst (LoadP mem));
ins_cost(125);
format %{ "MOV $dst,$mem" %}
opcode(0x8B);
ins_encode( OpcP, RegMem(dst,mem));
ins_pipe( ialu_reg_mem );
%}
// Load Klass Pointer
instruct loadKlass(eRegP dst, memory mem) %{
match(Set dst (LoadKlass mem));
ins_cost(125);
format %{ "MOV $dst,$mem" %}
opcode(0x8B);
ins_encode( OpcP, RegMem(dst,mem));
ins_pipe( ialu_reg_mem );
%}
// Load Short (16bit signed)
instruct loadS(eRegI dst, memory mem) %{
match(Set dst (LoadS mem));
ins_cost(125);
format %{ "MOVSX $dst,$mem" %}
opcode(0xBF, 0x0F);
ins_encode( OpcS, OpcP, RegMem(dst,mem));
ins_pipe( ialu_reg_mem );
%}
// Load Double
instruct loadD(regD dst, memory mem) %{
predicate(UseSSE<=1);
match(Set dst (LoadD mem));
ins_cost(150);
format %{ "FLD_D ST,$mem\n\t"
"FSTP $dst" %}
opcode(0xDD); /* DD /0 */
ins_encode( OpcP, RMopc_Mem(0x00,mem),
Pop_Reg_D(dst) );
ins_pipe( fpu_reg_mem );
%}
// Load Double to XMM
instruct loadXD(regXD dst, memory mem) %{
predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
match(Set dst (LoadD mem));
ins_cost(145);
format %{ "MOVSD $dst,$mem" %}
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
ins_pipe( pipe_slow );
%}
instruct loadXD_partial(regXD dst, memory mem) %{
predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
match(Set dst (LoadD mem));
ins_cost(145);
format %{ "MOVLPD $dst,$mem" %}
ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
ins_pipe( pipe_slow );
%}
// Load to XMM register (single-precision floating point)
// MOVSS instruction
instruct loadX(regX dst, memory mem) %{
predicate(UseSSE>=1);
match(Set dst (LoadF mem));
ins_cost(145);
format %{ "MOVSS $dst,$mem" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
ins_pipe( pipe_slow );
%}
// Load Float
instruct loadF(regF dst, memory mem) %{
predicate(UseSSE==0);
match(Set dst (LoadF mem));
ins_cost(150);
format %{ "FLD_S ST,$mem\n\t"
"FSTP $dst" %}
opcode(0xD9); /* D9 /0 */
ins_encode( OpcP, RMopc_Mem(0x00,mem),
Pop_Reg_F(dst) );
ins_pipe( fpu_reg_mem );
%}
// Load Aligned Packed Byte to XMM register
instruct loadA8B(regXD dst, memory mem) %{
predicate(UseSSE>=1);
match(Set dst (Load8B mem));
ins_cost(125);
format %{ "MOVQ $dst,$mem\t! packed8B" %}
ins_encode( movq_ld(dst, mem));
ins_pipe( pipe_slow );
%}
// Load Aligned Packed Short to XMM register
instruct loadA4S(regXD dst, memory mem) %{
predicate(UseSSE>=1);
match(Set dst (Load4S mem));
ins_cost(125);
format %{ "MOVQ $dst,$mem\t! packed4S" %}
ins_encode( movq_ld(dst, mem));
ins_pipe( pipe_slow );
%}
// Load Aligned Packed Char to XMM register
instruct loadA4C(regXD dst, memory mem) %{
predicate(UseSSE>=1);
match(Set dst (Load4C mem));
ins_cost(125);
format %{ "MOVQ $dst,$mem\t! packed4C" %}
ins_encode( movq_ld(dst, mem));
ins_pipe( pipe_slow );
%}
// Load Aligned Packed Integer to XMM register
instruct load2IU(regXD dst, memory mem) %{
predicate(UseSSE>=1);
match(Set dst (Load2I mem));
ins_cost(125);
format %{ "MOVQ $dst,$mem\t! packed2I" %}
ins_encode( movq_ld(dst, mem));
ins_pipe( pipe_slow );
%}
// Load Aligned Packed Single to XMM
instruct loadA2F(regXD dst, memory mem) %{
predicate(UseSSE>=1);
match(Set dst (Load2F mem));
ins_cost(145);
format %{ "MOVQ $dst,$mem\t! packed2F" %}
ins_encode( movq_ld(dst, mem));
ins_pipe( pipe_slow );
%}
// Load Effective Address
instruct leaP8(eRegP dst, indOffset8 mem) %{
match(Set dst mem);
ins_cost(110);
format %{ "LEA $dst,$mem" %}
opcode(0x8D);
ins_encode( OpcP, RegMem(dst,mem));
ins_pipe( ialu_reg_reg_fat );
%}
instruct leaP32(eRegP dst, indOffset32 mem) %{
match(Set dst mem);
ins_cost(110);
format %{ "LEA $dst,$mem" %}
opcode(0x8D);
ins_encode( OpcP, RegMem(dst,mem));
ins_pipe( ialu_reg_reg_fat );
%}
instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
match(Set dst mem);
ins_cost(110);
format %{ "LEA $dst,$mem" %}
opcode(0x8D);
ins_encode( OpcP, RegMem(dst,mem));
ins_pipe( ialu_reg_reg_fat );
%}
instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
match(Set dst mem);
ins_cost(110);
format %{ "LEA $dst,$mem" %}
opcode(0x8D);
ins_encode( OpcP, RegMem(dst,mem));
ins_pipe( ialu_reg_reg_fat );
%}
instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
match(Set dst mem);
ins_cost(110);
format %{ "LEA $dst,$mem" %}
opcode(0x8D);
ins_encode( OpcP, RegMem(dst,mem));
ins_pipe( ialu_reg_reg_fat );
%}
// Load Constant
instruct loadConI(eRegI dst, immI src) %{
match(Set dst src);
format %{ "MOV $dst,$src" %}
ins_encode( LdImmI(dst, src) );
ins_pipe( ialu_reg_fat );
%}
// Load Constant zero
instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
match(Set dst src);
effect(KILL cr);
ins_cost(50);
format %{ "XOR $dst,$dst" %}
opcode(0x33); /* + rd */
ins_encode( OpcP, RegReg( dst, dst ) );
ins_pipe( ialu_reg );
%}
instruct loadConP(eRegP dst, immP src) %{
match(Set dst src);
format %{ "MOV $dst,$src" %}
opcode(0xB8); /* + rd */
ins_encode( LdImmP(dst, src) );
ins_pipe( ialu_reg_fat );
%}
instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
match(Set dst src);
effect(KILL cr);
ins_cost(200);
format %{ "MOV $dst.lo,$src.lo\n\t"
"MOV $dst.hi,$src.hi" %}
opcode(0xB8);
ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
ins_pipe( ialu_reg_long_fat );
%}
instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
match(Set dst src);
effect(KILL cr);
ins_cost(150);
format %{ "XOR $dst.lo,$dst.lo\n\t"
"XOR $dst.hi,$dst.hi" %}
opcode(0x33,0x33);
ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
ins_pipe( ialu_reg_long );
%}
// The instruction usage is guarded by predicate in operand immF().
instruct loadConF(regF dst, immF src) %{
match(Set dst src);
ins_cost(125);
format %{ "FLD_S ST,$src\n\t"
"FSTP $dst" %}
opcode(0xD9, 0x00); /* D9 /0 */
ins_encode(LdImmF(src), Pop_Reg_F(dst) );
ins_pipe( fpu_reg_con );
%}
// The instruction usage is guarded by predicate in operand immXF().
instruct loadConX(regX dst, immXF con) %{
match(Set dst con);
ins_cost(125);
format %{ "MOVSS $dst,[$con]" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
ins_pipe( pipe_slow );
%}
// The instruction usage is guarded by predicate in operand immXF0().
instruct loadConX0(regX dst, immXF0 src) %{
match(Set dst src);
ins_cost(100);
format %{ "XORPS $dst,$dst\t# float 0.0" %}
ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
ins_pipe( pipe_slow );
%}
// The instruction usage is guarded by predicate in operand immD().
instruct loadConD(regD dst, immD src) %{
match(Set dst src);
ins_cost(125);
format %{ "FLD_D ST,$src\n\t"
"FSTP $dst" %}
ins_encode(LdImmD(src), Pop_Reg_D(dst) );
ins_pipe( fpu_reg_con );
%}
// The instruction usage is guarded by predicate in operand immXD().
instruct loadConXD(regXD dst, immXD con) %{
match(Set dst con);
ins_cost(125);
format %{ "MOVSD $dst,[$con]" %}
ins_encode(load_conXD(dst, con));
ins_pipe( pipe_slow );
%}
// The instruction usage is guarded by predicate in operand immXD0().
instruct loadConXD0(regXD dst, immXD0 src) %{
match(Set dst src);
ins_cost(100);
format %{ "XORPD $dst,$dst\t# double 0.0" %}
ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
ins_pipe( pipe_slow );
%}
// Load Stack Slot
instruct loadSSI(eRegI dst, stackSlotI src) %{
match(Set dst src);
ins_cost(125);
format %{ "MOV $dst,$src" %}
opcode(0x8B);
ins_encode( OpcP, RegMem(dst,src));
ins_pipe( ialu_reg_mem );
%}
instruct loadSSL(eRegL dst, stackSlotL src) %{
match(Set dst src);
ins_cost(200);
format %{ "MOV $dst,$src.lo\n\t"
"MOV $dst+4,$src.hi" %}
opcode(0x8B, 0x8B);
ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
ins_pipe( ialu_mem_long_reg );
%}
// Load Stack Slot
instruct loadSSP(eRegP dst, stackSlotP src) %{
match(Set dst src);
ins_cost(125);
format %{ "MOV $dst,$src" %}
opcode(0x8B);
ins_encode( OpcP, RegMem(dst,src));
ins_pipe( ialu_reg_mem );
%}
// Load Stack Slot
instruct loadSSF(regF dst, stackSlotF src) %{
match(Set dst src);
ins_cost(125);
format %{ "FLD_S $src\n\t"
"FSTP $dst" %}
opcode(0xD9); /* D9 /0, FLD m32real */
ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
Pop_Reg_F(dst) );
ins_pipe( fpu_reg_mem );
%}
// Load Stack Slot
instruct loadSSD(regD dst, stackSlotD src) %{
match(Set dst src);
ins_cost(125);
format %{ "FLD_D $src\n\t"
"FSTP $dst" %}
opcode(0xDD); /* DD /0, FLD m64real */
ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
Pop_Reg_D(dst) );
ins_pipe( fpu_reg_mem );
%}
// Prefetch instructions.
// Must be safe to execute with invalid address (cannot fault).
instruct prefetchr0( memory mem ) %{
predicate(UseSSE==0 && !VM_Version::supports_3dnow());
match(PrefetchRead mem);
ins_cost(0);
size(0);
format %{ "PREFETCHR (non-SSE is empty encoding)" %}
ins_encode();
ins_pipe(empty);
%}
instruct prefetchr( memory mem ) %{
predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
match(PrefetchRead mem);
ins_cost(100);
format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
opcode(0x0F, 0x0d); /* Opcode 0F 0d /0 */
ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
ins_pipe(ialu_mem);
%}
instruct prefetchrNTA( memory mem ) %{
predicate(UseSSE>=1 && ReadPrefetchInstr==0);
match(PrefetchRead mem);
ins_cost(100);
format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
opcode(0x0F, 0x18); /* Opcode 0F 18 /0 */
ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
ins_pipe(ialu_mem);
%}
instruct prefetchrT0( memory mem ) %{
predicate(UseSSE>=1 && ReadPrefetchInstr==1);
match(PrefetchRead mem);
ins_cost(100);
format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
opcode(0x0F, 0x18); /* Opcode 0F 18 /1 */
ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
ins_pipe(ialu_mem);
%}
instruct prefetchrT2( memory mem ) %{
predicate(UseSSE>=1 && ReadPrefetchInstr==2);
match(PrefetchRead mem);
ins_cost(100);
format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
opcode(0x0F, 0x18); /* Opcode 0F 18 /3 */
ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
ins_pipe(ialu_mem);
%}
instruct prefetchw0( memory mem ) %{
predicate(UseSSE==0 && !VM_Version::supports_3dnow());
match(PrefetchWrite mem);
ins_cost(0);
size(0);
format %{ "Prefetch (non-SSE is empty encoding)" %}
ins_encode();
ins_pipe(empty);
%}
instruct prefetchw( memory mem ) %{
predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
match( PrefetchWrite mem );
ins_cost(100);
format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
opcode(0x0F, 0x0D); /* Opcode 0F 0D /1 */
ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
ins_pipe(ialu_mem);
%}
instruct prefetchwNTA( memory mem ) %{
predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
match(PrefetchWrite mem);
ins_cost(100);
format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
opcode(0x0F, 0x18); /* Opcode 0F 18 /0 */
ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
ins_pipe(ialu_mem);
%}
instruct prefetchwT0( memory mem ) %{
predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
match(PrefetchWrite mem);
ins_cost(100);
format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
opcode(0x0F, 0x18); /* Opcode 0F 18 /1 */
ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
ins_pipe(ialu_mem);
%}
instruct prefetchwT2( memory mem ) %{
predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
match(PrefetchWrite mem);
ins_cost(100);
format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
opcode(0x0F, 0x18); /* Opcode 0F 18 /3 */
ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
ins_pipe(ialu_mem);
%}
//----------Store Instructions-------------------------------------------------
// Store Byte
instruct storeB(memory mem, xRegI src) %{
match(Set mem (StoreB mem src));
ins_cost(125);
format %{ "MOV8 $mem,$src" %}
opcode(0x88);
ins_encode( OpcP, RegMem( src, mem ) );
ins_pipe( ialu_mem_reg );
%}
// Store Char/Short
instruct storeC(memory mem, eRegI src) %{
match(Set mem (StoreC mem src));
ins_cost(125);
format %{ "MOV16 $mem,$src" %}
opcode(0x89, 0x66);
ins_encode( OpcS, OpcP, RegMem( src, mem ) );
ins_pipe( ialu_mem_reg );
%}
// Store Integer
instruct storeI(memory mem, eRegI src) %{
match(Set mem (StoreI mem src));
ins_cost(125);
format %{ "MOV $mem,$src" %}
opcode(0x89);
ins_encode( OpcP, RegMem( src, mem ) );
ins_pipe( ialu_mem_reg );
%}
// Store Long
instruct storeL(long_memory mem, eRegL src) %{
predicate(!((StoreLNode*)n)->require_atomic_access());
match(Set mem (StoreL mem src));
ins_cost(200);
format %{ "MOV $mem,$src.lo\n\t"
"MOV $mem+4,$src.hi" %}
opcode(0x89, 0x89);
ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
ins_pipe( ialu_mem_long_reg );
%}
// Volatile Store Long. Must be atomic, so move it into
// the FP TOS and then do a 64-bit FIST. Has to probe the
// target address before the store (for null-ptr checks)
// so the memory operand is used twice in the encoding.
instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
match(Set mem (StoreL mem src));
effect( KILL cr );
ins_cost(400);
format %{ "CMP $mem,EAX\t# Probe address for implicit null check\n\t"
"FILD $src\n\t"
"FISTp $mem\t # 64-bit atomic volatile long store" %}
opcode(0x3B);
ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
ins_pipe( fpu_reg_mem );
%}
instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
match(Set mem (StoreL mem src));
effect( TEMP tmp, KILL cr );
ins_cost(380);
format %{ "CMP $mem,EAX\t# Probe address for implicit null check\n\t"
"MOVSD $tmp,$src\n\t"
"MOVSD $mem,$tmp\t # 64-bit atomic volatile long store" %}
opcode(0x3B);
ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
ins_pipe( pipe_slow );
%}
instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
match(Set mem (StoreL mem src));
effect( TEMP tmp2 , TEMP tmp, KILL cr );
ins_cost(360);
format %{ "CMP $mem,EAX\t# Probe address for implicit null check\n\t"
"MOVD $tmp,$src.lo\n\t"
"MOVD $tmp2,$src.hi\n\t"
"PUNPCKLDQ $tmp,$tmp2\n\t"
"MOVSD $mem,$tmp\t # 64-bit atomic volatile long store" %}
opcode(0x3B);
ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
ins_pipe( pipe_slow );
%}
// Store Pointer; for storing unknown oops and raw pointers
instruct storeP(memory mem, anyRegP src) %{
match(Set mem (StoreP mem src));
ins_cost(125);
format %{ "MOV $mem,$src" %}
opcode(0x89);
ins_encode( OpcP, RegMem( src, mem ) );
ins_pipe( ialu_mem_reg );
%}
// Store Integer Immediate
instruct storeImmI(memory mem, immI src) %{
match(Set mem (StoreI mem src));
ins_cost(150);
format %{ "MOV $mem,$src" %}
opcode(0xC7); /* C7 /0 */
ins_encode( OpcP, RMopc_Mem(0x00,mem), Con32( src ));
ins_pipe( ialu_mem_imm );
%}
// Store Short/Char Immediate
instruct storeImmI16(memory mem, immI16 src) %{
predicate(UseStoreImmI16);
match(Set mem (StoreC mem src));
ins_cost(150);
format %{ "MOV16 $mem,$src" %}
opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */
ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem), Con16( src ));
ins_pipe( ialu_mem_imm );
%}
// Store Pointer Immediate; null pointers or constant oops that do not
// need card-mark barriers.
instruct storeImmP(memory mem, immP src) %{
match(Set mem (StoreP mem src));
ins_cost(150);
format %{ "MOV $mem,$src" %}
opcode(0xC7); /* C7 /0 */
ins_encode( OpcP, RMopc_Mem(0x00,mem), Con32( src ));
ins_pipe( ialu_mem_imm );
%}
// Store Byte Immediate
instruct storeImmB(memory mem, immI8 src) %{
match(Set mem (StoreB mem src));
ins_cost(150);
format %{ "MOV8 $mem,$src" %}
opcode(0xC6); /* C6 /0 */
ins_encode( OpcP, RMopc_Mem(0x00,mem), Con8or32( src ));
ins_pipe( ialu_mem_imm );
%}
// Store Aligned Packed Byte XMM register to memory
instruct storeA8B(memory mem, regXD src) %{
predicate(UseSSE>=1);
match(Set mem (Store8B mem src));
ins_cost(145);
format %{ "MOVQ $mem,$src\t! packed8B" %}
ins_encode( movq_st(mem, src));
ins_pipe( pipe_slow );
%}
// Store Aligned Packed Char/Short XMM register to memory
instruct storeA4C(memory mem, regXD src) %{
predicate(UseSSE>=1);
match(Set mem (Store4C mem src));
ins_cost(145);
format %{ "MOVQ $mem,$src\t! packed4C" %}
ins_encode( movq_st(mem, src));
ins_pipe( pipe_slow );
%}
// Store Aligned Packed Integer XMM register to memory
instruct storeA2I(memory mem, regXD src) %{
predicate(UseSSE>=1);
match(Set mem (Store2I mem src));
ins_cost(145);
format %{ "MOVQ $mem,$src\t! packed2I" %}
ins_encode( movq_st(mem, src));
ins_pipe( pipe_slow );
%}
// Store CMS card-mark Immediate
instruct storeImmCM(memory mem, immI8 src) %{
match(Set mem (StoreCM mem src));
ins_cost(150);
format %{ "MOV8 $mem,$src\t! CMS card-mark imm0" %}
opcode(0xC6); /* C6 /0 */
ins_encode( OpcP, RMopc_Mem(0x00,mem), Con8or32( src ));
ins_pipe( ialu_mem_imm );
%}
// Store Double
instruct storeD( memory mem, regDPR1 src) %{
predicate(UseSSE<=1);
match(Set mem (StoreD mem src));
ins_cost(100);
format %{ "FST_D $mem,$src" %}
opcode(0xDD); /* DD /2 */
ins_encode( enc_FP_store(mem,src) );
ins_pipe( fpu_mem_reg );
%}
// Store double does rounding on x86
instruct storeD_rounded( memory mem, regDPR1 src) %{
predicate(UseSSE<=1);
match(Set mem (StoreD mem (RoundDouble src)));
ins_cost(100);
format %{ "FST_D $mem,$src\t# round" %}
opcode(0xDD); /* DD /2 */
ins_encode( enc_FP_store(mem,src) );
ins_pipe( fpu_mem_reg );
%}
// Store XMM register to memory (double-precision floating points)
// MOVSD instruction
instruct storeXD(memory mem, regXD src) %{
predicate(UseSSE>=2);
match(Set mem (StoreD mem src));
ins_cost(95);
format %{ "MOVSD $mem,$src" %}
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
ins_pipe( pipe_slow );
%}
// Store XMM register to memory (single-precision floating point)
// MOVSS instruction
instruct storeX(memory mem, regX src) %{
predicate(UseSSE>=1);
match(Set mem (StoreF mem src));
ins_cost(95);
format %{ "MOVSS $mem,$src" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
ins_pipe( pipe_slow );
%}
// Store Aligned Packed Single Float XMM register to memory
instruct storeA2F(memory mem, regXD src) %{
predicate(UseSSE>=1);
match(Set mem (Store2F mem src));
ins_cost(145);
format %{ "MOVQ $mem,$src\t! packed2F" %}
ins_encode( movq_st(mem, src));
ins_pipe( pipe_slow );
%}
// Store Float
instruct storeF( memory mem, regFPR1 src) %{
predicate(UseSSE==0);
match(Set mem (StoreF mem src));
ins_cost(100);
format %{ "FST_S $mem,$src" %}
opcode(0xD9); /* D9 /2 */
ins_encode( enc_FP_store(mem,src) );
ins_pipe( fpu_mem_reg );
%}
// Store Float does rounding on x86
instruct storeF_rounded( memory mem, regFPR1 src) %{
predicate(UseSSE==0);
match(Set mem (StoreF mem (RoundFloat src)));
ins_cost(100);
format %{ "FST_S $mem,$src\t# round" %}
opcode(0xD9); /* D9 /2 */
ins_encode( enc_FP_store(mem,src) );
ins_pipe( fpu_mem_reg );
%}
// Store Float does rounding on x86
instruct storeF_Drounded( memory mem, regDPR1 src) %{
predicate(UseSSE<=1);
match(Set mem (StoreF mem (ConvD2F src)));
ins_cost(100);
format %{ "FST_S $mem,$src\t# D-round" %}
opcode(0xD9); /* D9 /2 */
ins_encode( enc_FP_store(mem,src) );
ins_pipe( fpu_mem_reg );
%}
// Store immediate Float value (it is faster than store from FPU register)
// The instruction usage is guarded by predicate in operand immF().
instruct storeF_imm( memory mem, immF src) %{
match(Set mem (StoreF mem src));
ins_cost(50);
format %{ "MOV $mem,$src\t# store float" %}
opcode(0xC7); /* C7 /0 */
ins_encode( OpcP, RMopc_Mem(0x00,mem), Con32F_as_bits( src ));
ins_pipe( ialu_mem_imm );
%}
// Store immediate Float value (it is faster than store from XMM register)
// The instruction usage is guarded by predicate in operand immXF().
instruct storeX_imm( memory mem, immXF src) %{
match(Set mem (StoreF mem src));
ins_cost(50);
format %{ "MOV $mem,$src\t# store float" %}
opcode(0xC7); /* C7 /0 */
ins_encode( OpcP, RMopc_Mem(0x00,mem), Con32XF_as_bits( src ));
ins_pipe( ialu_mem_imm );
%}
// Store Integer to stack slot
instruct storeSSI(stackSlotI dst, eRegI src) %{
match(Set dst src);
ins_cost(100);
format %{ "MOV $dst,$src" %}
opcode(0x89);
ins_encode( OpcPRegSS( dst, src ) );
ins_pipe( ialu_mem_reg );
%}
// Store Integer to stack slot
instruct storeSSP(stackSlotP dst, eRegP src) %{
match(Set dst src);
ins_cost(100);
format %{ "MOV $dst,$src" %}
opcode(0x89);
ins_encode( OpcPRegSS( dst, src ) );
ins_pipe( ialu_mem_reg );
%}
// Store Long to stack slot
instruct storeSSL(stackSlotL dst, eRegL src) %{
match(Set dst src);
ins_cost(200);
format %{ "MOV $dst,$src.lo\n\t"
"MOV $dst+4,$src.hi" %}
opcode(0x89, 0x89);
ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
ins_pipe( ialu_mem_long_reg );
%}
//----------MemBar Instructions-----------------------------------------------
// Memory barrier flavors
instruct membar_acquire() %{
match(MemBarAcquire);
ins_cost(400);
size(0);
format %{ "MEMBAR-acquire" %}
ins_encode( enc_membar_acquire );
ins_pipe(pipe_slow);
%}
instruct membar_acquire_lock() %{
match(MemBarAcquire);
predicate(Matcher::prior_fast_lock(n));
ins_cost(0);
size(0);
format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
ins_encode( );
ins_pipe(empty);
%}
instruct membar_release() %{
match(MemBarRelease);
ins_cost(400);
size(0);
format %{ "MEMBAR-release" %}
ins_encode( enc_membar_release );
ins_pipe(pipe_slow);
%}
instruct membar_release_lock() %{
match(MemBarRelease);
predicate(Matcher::post_fast_unlock(n));
ins_cost(0);
size(0);
format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
ins_encode( );
ins_pipe(empty);
%}
instruct membar_volatile() %{
match(MemBarVolatile);
ins_cost(400);
format %{ "MEMBAR-volatile" %}
ins_encode( enc_membar_volatile );
ins_pipe(pipe_slow);
%}
instruct unnecessary_membar_volatile() %{
match(MemBarVolatile);
predicate(Matcher::post_store_load_barrier(n));
ins_cost(0);
size(0);
format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
ins_encode( );
ins_pipe(empty);
%}
//----------Move Instructions--------------------------------------------------
instruct castX2P(eAXRegP dst, eAXRegI src) %{
match(Set dst (CastX2P src));
format %{ "# X2P $dst, $src" %}
ins_encode( /*empty encoding*/ );
ins_cost(0);
ins_pipe(empty);
%}
instruct castP2X(eRegI dst, eRegP src ) %{
match(Set dst (CastP2X src));
ins_cost(50);
format %{ "MOV $dst, $src\t# CastP2X" %}
ins_encode( enc_Copy( dst, src) );
ins_pipe( ialu_reg_reg );
%}
//----------Conditional Move---------------------------------------------------
// Conditional move
instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
predicate(VM_Version::supports_cmov() );
match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
ins_cost(200);
format %{ "CMOV$cop $dst,$src" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cop), RegReg( dst, src ) );
ins_pipe( pipe_cmov_reg );
%}
instruct cmovI_regU( eRegI dst, eRegI src, eFlagsRegU cr, cmpOpU cop ) %{
predicate(VM_Version::supports_cmov() );
match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
ins_cost(200);
format %{ "CMOV$cop $dst,$src" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cop), RegReg( dst, src ) );
ins_pipe( pipe_cmov_reg );
%}
// Conditional move
instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
predicate(VM_Version::supports_cmov() );
match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
ins_cost(250);
format %{ "CMOV$cop $dst,$src" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cop), RegMem( dst, src ) );
ins_pipe( pipe_cmov_mem );
%}
// Conditional move
instruct cmovI_memu(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
predicate(VM_Version::supports_cmov() );
match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
ins_cost(250);
format %{ "CMOV$cop $dst,$src" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cop), RegMem( dst, src ) );
ins_pipe( pipe_cmov_mem );
%}
// Conditional move
instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
predicate(VM_Version::supports_cmov() );
match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
ins_cost(200);
format %{ "CMOV$cop $dst,$src\t# ptr" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cop), RegReg( dst, src ) );
ins_pipe( pipe_cmov_reg );
%}
// Conditional move (non-P6 version)
// Note: a CMoveP is generated for stubs and native wrappers
// regardless of whether we are on a P6, so we
// emulate a cmov here
instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
ins_cost(300);
format %{ "Jn$cop skip\n\t"
"MOV $dst,$src\t# pointer\n"
"skip:" %}
opcode(0x8b);
ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
ins_pipe( pipe_cmov_reg );
%}
// Conditional move
instruct cmovP_regU(eRegP dst, eRegP src, eFlagsRegU cr, cmpOpU cop ) %{
predicate(VM_Version::supports_cmov() );
match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
ins_cost(200);
format %{ "CMOV$cop $dst,$src\t# ptr" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cop), RegReg( dst, src ) );
ins_pipe( pipe_cmov_reg );
%}
// DISABLED: Requires the ADLC to emit a bottom_type call that
// correctly meets the two pointer arguments; one is an incoming
// register but the other is a memory operand. ALSO appears to
// be buggy with implicit null checks.
//
//// Conditional move
//instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
// predicate(VM_Version::supports_cmov() );
// match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
// ins_cost(250);
// format %{ "CMOV$cop $dst,$src\t# ptr" %}
// opcode(0x0F,0x40);
// ins_encode( enc_cmov(cop), RegMem( dst, src ) );
// ins_pipe( pipe_cmov_mem );
//%}
//
//// Conditional move
//instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
// predicate(VM_Version::supports_cmov() );
// match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
// ins_cost(250);
// format %{ "CMOV$cop $dst,$src\t# ptr" %}
// opcode(0x0F,0x40);
// ins_encode( enc_cmov(cop), RegMem( dst, src ) );
// ins_pipe( pipe_cmov_mem );
//%}
// Conditional move
instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
predicate(UseSSE<=1);
match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
ins_cost(200);
format %{ "FCMOV$cop $dst,$src\t# double" %}
opcode(0xDA);
ins_encode( enc_cmov_d(cop,src) );
ins_pipe( pipe_cmovD_reg );
%}
// Conditional move
instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
predicate(UseSSE==0);
match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
ins_cost(200);
format %{ "FCMOV$cop $dst,$src\t# float" %}
opcode(0xDA);
ins_encode( enc_cmov_d(cop,src) );
ins_pipe( pipe_cmovD_reg );
%}
// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
predicate(UseSSE<=1);
match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
ins_cost(200);
format %{ "Jn$cop skip\n\t"
"MOV $dst,$src\t# double\n"
"skip:" %}
opcode (0xdd, 0x3); /* DD D8+i or DD /3 */
ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
ins_pipe( pipe_cmovD_reg );
%}
// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
predicate(UseSSE==0);
match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
ins_cost(200);
format %{ "Jn$cop skip\n\t"
"MOV $dst,$src\t# float\n"
"skip:" %}
opcode (0xdd, 0x3); /* DD D8+i or DD /3 */
ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
ins_pipe( pipe_cmovD_reg );
%}
// No CMOVE with SSE/SSE2
instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
predicate (UseSSE>=1);
match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
ins_cost(200);
format %{ "Jn$cop skip\n\t"
"MOVSS $dst,$src\t# float\n"
"skip:" %}
ins_encode %{
Label skip;
// Invert sense of branch from sense of CMOV
__ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
__ movflt($dst$$XMMRegister, $src$$XMMRegister);
__ bind(skip);
%}
ins_pipe( pipe_slow );
%}
// No CMOVE with SSE/SSE2
instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
predicate (UseSSE>=2);
match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
ins_cost(200);
format %{ "Jn$cop skip\n\t"
"MOVSD $dst,$src\t# float\n"
"skip:" %}
ins_encode %{
Label skip;
// Invert sense of branch from sense of CMOV
__ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
__ movdbl($dst$$XMMRegister, $src$$XMMRegister);
__ bind(skip);
%}
ins_pipe( pipe_slow );
%}
// unsigned version
instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
predicate (UseSSE>=1);
match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
ins_cost(200);
format %{ "Jn$cop skip\n\t"
"MOVSS $dst,$src\t# float\n"
"skip:" %}
ins_encode %{
Label skip;
// Invert sense of branch from sense of CMOV
__ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
__ movflt($dst$$XMMRegister, $src$$XMMRegister);
__ bind(skip);
%}
ins_pipe( pipe_slow );
%}
// unsigned version
instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
predicate (UseSSE>=2);
match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
ins_cost(200);
format %{ "Jn$cop skip\n\t"
"MOVSD $dst,$src\t# float\n"
"skip:" %}
ins_encode %{
Label skip;
// Invert sense of branch from sense of CMOV
__ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
__ movdbl($dst$$XMMRegister, $src$$XMMRegister);
__ bind(skip);
%}
ins_pipe( pipe_slow );
%}
instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
predicate(VM_Version::supports_cmov() );
match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
ins_cost(200);
format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
"CMOV$cop $dst.hi,$src.hi" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
ins_pipe( pipe_cmov_reg_long );
%}
instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
predicate(VM_Version::supports_cmov() );
match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
ins_cost(200);
format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
"CMOV$cop $dst.hi,$src.hi" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
ins_pipe( pipe_cmov_reg_long );
%}
//----------Arithmetic Instructions--------------------------------------------
//----------Addition Instructions----------------------------------------------
// Integer Addition Instructions
instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
match(Set dst (AddI dst src));
effect(KILL cr);
size(2);
format %{ "ADD $dst,$src" %}
opcode(0x03);
ins_encode( OpcP, RegReg( dst, src) );
ins_pipe( ialu_reg_reg );
%}
instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
match(Set dst (AddI dst src));
effect(KILL cr);
format %{ "ADD $dst,$src" %}
opcode(0x81, 0x00); /* /0 id */
ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
ins_pipe( ialu_reg );
%}
instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
predicate(UseIncDec);
match(Set dst (AddI dst src));
effect(KILL cr);
size(1);
format %{ "INC $dst" %}
opcode(0x40); /* */
ins_encode( Opc_plus( primary, dst ) );
ins_pipe( ialu_reg );
%}
instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
match(Set dst (AddI src0 src1));
ins_cost(110);
format %{ "LEA $dst,[$src0 + $src1]" %}
opcode(0x8D); /* 0x8D /r */
ins_encode( OpcP, RegLea( dst, src0, src1 ) );
ins_pipe( ialu_reg_reg );
%}
instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
match(Set dst (AddP src0 src1));
ins_cost(110);
format %{ "LEA $dst,[$src0 + $src1]\t# ptr" %}
opcode(0x8D); /* 0x8D /r */
ins_encode( OpcP, RegLea( dst, src0, src1 ) );
ins_pipe( ialu_reg_reg );
%}
instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
predicate(UseIncDec);
match(Set dst (AddI dst src));
effect(KILL cr);
size(1);
format %{ "DEC $dst" %}
opcode(0x48); /* */
ins_encode( Opc_plus( primary, dst ) );
ins_pipe( ialu_reg );
%}
instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
match(Set dst (AddP dst src));
effect(KILL cr);
size(2);
format %{ "ADD $dst,$src" %}
opcode(0x03);
ins_encode( OpcP, RegReg( dst, src) );
ins_pipe( ialu_reg_reg );
%}
instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
match(Set dst (AddP dst src));
effect(KILL cr);
format %{ "ADD $dst,$src" %}
opcode(0x81,0x00); /* Opcode 81 /0 id */
// ins_encode( RegImm( dst, src) );
ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
ins_pipe( ialu_reg );
%}
instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
match(Set dst (AddI dst (LoadI src)));
effect(KILL cr);
ins_cost(125);
format %{ "ADD $dst,$src" %}
opcode(0x03);
ins_encode( OpcP, RegMem( dst, src) );
ins_pipe( ialu_reg_mem );
%}
instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
match(Set dst (StoreI dst (AddI (LoadI dst) src)));
effect(KILL cr);
ins_cost(150);
format %{ "ADD $dst,$src" %}
opcode(0x01); /* Opcode 01 /r */
ins_encode( OpcP, RegMem( src, dst ) );
ins_pipe( ialu_mem_reg );
%}
// Add Memory with Immediate
instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
match(Set dst (StoreI dst (AddI (LoadI dst) src)));
effect(KILL cr);
ins_cost(125);
format %{ "ADD $dst,$src" %}
opcode(0x81); /* Opcode 81 /0 id */
ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
ins_pipe( ialu_mem_imm );
%}
instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
match(Set dst (StoreI dst (AddI (LoadI dst) src)));
effect(KILL cr);
ins_cost(125);
format %{ "INC $dst" %}
opcode(0xFF); /* Opcode FF /0 */
ins_encode( OpcP, RMopc_Mem(0x00,dst));
ins_pipe( ialu_mem_imm );
%}
instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
match(Set dst (StoreI dst (AddI (LoadI dst) src)));
effect(KILL cr);
ins_cost(125);
format %{ "DEC $dst" %}
opcode(0xFF); /* Opcode FF /1 */
ins_encode( OpcP, RMopc_Mem(0x01,dst));
ins_pipe( ialu_mem_imm );
%}
instruct checkCastPP( eRegP dst ) %{
match(Set dst (CheckCastPP dst));
size(0);
format %{ "#checkcastPP of $dst" %}
ins_encode( /*empty encoding*/ );
ins_pipe( empty );
%}
instruct castPP( eRegP dst ) %{
match(Set dst (CastPP dst));
format %{ "#castPP of $dst" %}
ins_encode( /*empty encoding*/ );
ins_pipe( empty );
%}
instruct castII( eRegI dst ) %{
match(Set dst (CastII dst));
format %{ "#castII of $dst" %}
ins_encode( /*empty encoding*/ );
ins_cost(0);
ins_pipe( empty );
%}
// Load-locked - same as a regular pointer load when used with compare-swap
instruct loadPLocked(eRegP dst, memory mem) %{
match(Set dst (LoadPLocked mem));
ins_cost(125);
format %{ "MOV $dst,$mem\t# Load ptr. locked" %}
opcode(0x8B);
ins_encode( OpcP, RegMem(dst,mem));
ins_pipe( ialu_reg_mem );
%}
// LoadLong-locked - same as a volatile long load when used with compare-swap
instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
predicate(UseSSE<=1);
match(Set dst (LoadLLocked mem));
ins_cost(200);
format %{ "FILD $mem\t# Atomic volatile long load\n\t"
"FISTp $dst" %}
ins_encode(enc_loadL_volatile(mem,dst));
ins_pipe( fpu_reg_mem );
%}
instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
predicate(UseSSE>=2);
match(Set dst (LoadLLocked mem));
effect(TEMP tmp);
ins_cost(180);
format %{ "MOVSD $tmp,$mem\t# Atomic volatile long load\n\t"
"MOVSD $dst,$tmp" %}
ins_encode(enc_loadLX_volatile(mem, dst, tmp));
ins_pipe( pipe_slow );
%}
instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
predicate(UseSSE>=2);
match(Set dst (LoadLLocked mem));
effect(TEMP tmp);
ins_cost(160);
format %{ "MOVSD $tmp,$mem\t# Atomic volatile long load\n\t"
"MOVD $dst.lo,$tmp\n\t"
"PSRLQ $tmp,32\n\t"
"MOVD $dst.hi,$tmp" %}
ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
ins_pipe( pipe_slow );
%}
// Conditional-store of the updated heap-top.
// Used during allocation of the shared heap.
// Sets flags (EQ) on success. Implemented with a CMPXCHG on Intel.
instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
// EAX is killed if there is contention, but then it's also unused.
// In the common case of no contention, EAX holds the new oop address.
format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
ins_pipe( pipe_cmpxchg );
%}
// Conditional-store of a long value
// Returns a boolean value (0/1) on success. Implemented with a CMPXCHG8 on Intel.
// mem_ptr can actually be in either ESI or EDI
instruct storeLConditional( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
match(Set res (StoreLConditional mem_ptr (Binary oldval newval)));
effect(KILL cr);
// EDX:EAX is killed if there is contention, but then it's also unused.
// In the common case of no contention, EDX:EAX holds the new oop address.
format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
"MOV $res,0\n\t"
"JNE,s fail\n\t"
"MOV $res,1\n"
"fail:" %}
ins_encode( enc_cmpxchg8(mem_ptr),
enc_flags_ne_to_boolean(res) );
ins_pipe( pipe_cmpxchg );
%}
// Conditional-store of a long value
// ZF flag is set on success, reset otherwise. Implemented with a CMPXCHG8 on Intel.
// mem_ptr can actually be in either ESI or EDI
instruct storeLConditional_flags( eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr, immI0 zero ) %{
match(Set cr (CmpI (StoreLConditional mem_ptr (Binary oldval newval)) zero));
// EDX:EAX is killed if there is contention, but then it's also unused.
// In the common case of no contention, EDX:EAX holds the new oop address.
format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t" %}
ins_encode( enc_cmpxchg8(mem_ptr) );
ins_pipe( pipe_cmpxchg );
%}
// No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
effect(KILL cr, KILL oldval);
format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
"MOV $res,0\n\t"
"JNE,s fail\n\t"
"MOV $res,1\n"
"fail:" %}
ins_encode( enc_cmpxchg8(mem_ptr),
enc_flags_ne_to_boolean(res) );
ins_pipe( pipe_cmpxchg );
%}
instruct compareAndSwapP( eRegI res, pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
effect(KILL cr, KILL oldval);
format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
"MOV $res,0\n\t"
"JNE,s fail\n\t"
"MOV $res,1\n"
"fail:" %}
ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
ins_pipe( pipe_cmpxchg );
%}
instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
effect(KILL cr, KILL oldval);
format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
"MOV $res,0\n\t"
"JNE,s fail\n\t"
"MOV $res,1\n"
"fail:" %}
ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
ins_pipe( pipe_cmpxchg );
%}
//----------Subtraction Instructions-------------------------------------------
// Integer Subtraction Instructions
instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
match(Set dst (SubI dst src));
effect(KILL cr);
size(2);
format %{ "SUB $dst,$src" %}
opcode(0x2B);
ins_encode( OpcP, RegReg( dst, src) );
ins_pipe( ialu_reg_reg );
%}
instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
match(Set dst (SubI dst src));
effect(KILL cr);
format %{ "SUB $dst,$src" %}
opcode(0x81,0x05); /* Opcode 81 /5 */
// ins_encode( RegImm( dst, src) );
ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
ins_pipe( ialu_reg );
%}
instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
match(Set dst (SubI dst (LoadI src)));
effect(KILL cr);
ins_cost(125);
format %{ "SUB $dst,$src" %}
opcode(0x2B);
ins_encode( OpcP, RegMem( dst, src) );
ins_pipe( ialu_reg_mem );
%}
instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
match(Set dst (StoreI dst (SubI (LoadI dst) src)));
effect(KILL cr);
ins_cost(150);
format %{ "SUB $dst,$src" %}
opcode(0x29); /* Opcode 29 /r */
ins_encode( OpcP, RegMem( src, dst ) );
ins_pipe( ialu_mem_reg );
%}
// Subtract from a pointer
instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
match(Set dst (AddP dst (SubI zero src)));
effect(KILL cr);
size(2);
format %{ "SUB $dst,$src" %}
opcode(0x2B);
ins_encode( OpcP, RegReg( dst, src) );
ins_pipe( ialu_reg_reg );
%}
instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
match(Set dst (SubI zero dst));
effect(KILL cr);
size(2);
format %{ "NEG $dst" %}
opcode(0xF7,0x03); // Opcode F7 /3
ins_encode( OpcP, RegOpc( dst ) );
ins_pipe( ialu_reg );
%}
//----------Multiplication/Division Instructions-------------------------------
// Integer Multiplication Instructions
// Multiply Register
instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
match(Set dst (MulI dst src));
effect(KILL cr);
size(3);
ins_cost(300);
format %{ "IMUL $dst,$src" %}
opcode(0xAF, 0x0F);
ins_encode( OpcS, OpcP, RegReg( dst, src) );
ins_pipe( ialu_reg_reg_alu0 );
%}
// Multiply 32-bit Immediate
instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
match(Set dst (MulI src imm));
effect(KILL cr);
ins_cost(300);
format %{ "IMUL $dst,$src,$imm" %}
opcode(0x69); /* 69 /r id */
ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
ins_pipe( ialu_reg_reg_alu0 );
%}
instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
match(Set dst src);
effect(KILL cr);
// Note that this is artificially increased to make it more expensive than loadConL
ins_cost(250);
format %{ "MOV EAX,$src\t// low word only" %}
opcode(0xB8);
ins_encode( LdImmL_Lo(dst, src) );
ins_pipe( ialu_reg_fat );
%}
// Multiply by 32-bit Immediate, taking the shifted high order results
// (special case for shift by 32)
instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
_kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
_kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
effect(USE src1, KILL cr);
// Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
ins_cost(0*100 + 1*400 - 150);
format %{ "IMUL EDX:EAX,$src1" %}
ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
ins_pipe( pipe_slow );
%}
// Multiply by 32-bit Immediate, taking the shifted high order results
instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
_kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
_kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
effect(USE src1, KILL cr);
// Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
ins_cost(1*100 + 1*400 - 150);
format %{ "IMUL EDX:EAX,$src1\n\t"
"SAR EDX,$cnt-32" %}
ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
ins_pipe( pipe_slow );
%}
// Multiply Memory 32-bit Immediate
instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
match(Set dst (MulI (LoadI src) imm));
effect(KILL cr);
ins_cost(300);
format %{ "IMUL $dst,$src,$imm" %}
opcode(0x69); /* 69 /r id */
ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
ins_pipe( ialu_reg_mem_alu0 );
%}
// Multiply Memory
instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
match(Set dst (MulI dst (LoadI src)));
effect(KILL cr);
ins_cost(350);
format %{ "IMUL $dst,$src" %}
opcode(0xAF, 0x0F);
ins_encode( OpcS, OpcP, RegMem( dst, src) );
ins_pipe( ialu_reg_mem_alu0 );
%}
// Multiply Register Int to Long
instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
// Basic Idea: long = (long)int * (long)int
match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
effect(DEF dst, USE src, USE src1, KILL flags);
ins_cost(300);
format %{ "IMUL $dst,$src1" %}
ins_encode( long_int_multiply( dst, src1 ) );
ins_pipe( ialu_reg_reg_alu0 );
%}
instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
// Basic Idea: long = (int & 0xffffffffL) * (int & 0xffffffffL)
match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
effect(KILL flags);
ins_cost(300);
format %{ "MUL $dst,$src1" %}
ins_encode( long_uint_multiply(dst, src1) );
ins_pipe( ialu_reg_reg_alu0 );
%}
// Multiply Register Long
instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
match(Set dst (MulL dst src));
effect(KILL cr, TEMP tmp);
ins_cost(4*100+3*400);
// Basic idea: lo(result) = lo(x_lo * y_lo)
// hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
format %{ "MOV $tmp,$src.lo\n\t"
"IMUL $tmp,EDX\n\t"
"MOV EDX,$src.hi\n\t"
"IMUL EDX,EAX\n\t"
"ADD $tmp,EDX\n\t"
"MUL EDX:EAX,$src.lo\n\t"
"ADD EDX,$tmp" %}
ins_encode( long_multiply( dst, src, tmp ) );
ins_pipe( pipe_slow );
%}
// Multiply Register Long by small constant
instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
match(Set dst (MulL dst src));
effect(KILL cr, TEMP tmp);
ins_cost(2*100+2*400);
size(12);
// Basic idea: lo(result) = lo(src * EAX)
// hi(result) = hi(src * EAX) + lo(src * EDX)
format %{ "IMUL $tmp,EDX,$src\n\t"
"MOV EDX,$src\n\t"
"MUL EDX\t# EDX*EAX -> EDX:EAX\n\t"
"ADD EDX,$tmp" %}
ins_encode( long_multiply_con( dst, src, tmp ) );
ins_pipe( pipe_slow );
%}
// Integer DIV with Register
instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
match(Set rax (DivI rax div));
effect(KILL rdx, KILL cr);
size(26);
ins_cost(30*100+10*100);
format %{ "CMP EAX,0x80000000\n\t"
"JNE,s normal\n\t"
"XOR EDX,EDX\n\t"
"CMP ECX,-1\n\t"
"JE,s done\n"
"normal: CDQ\n\t"
"IDIV $div\n\t"
"done:" %}
opcode(0xF7, 0x7); /* Opcode F7 /7 */
ins_encode( cdq_enc, OpcP, RegOpc(div) );
ins_pipe( ialu_reg_reg_alu0 );
%}
// Divide Register Long
instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
match(Set dst (DivL src1 src2));
effect( KILL cr, KILL cx, KILL bx );
ins_cost(10000);
format %{ "PUSH $src1.hi\n\t"
"PUSH $src1.lo\n\t"
"PUSH $src2.hi\n\t"
"PUSH $src2.lo\n\t"
"CALL SharedRuntime::ldiv\n\t"
"ADD ESP,16" %}
ins_encode( long_div(src1,src2) );
ins_pipe( pipe_slow );
%}
// Integer DIVMOD with Register, both quotient and mod results
instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
match(DivModI rax div);
effect(KILL cr);
size(26);
ins_cost(30*100+10*100);
format %{ "CMP EAX,0x80000000\n\t"
"JNE,s normal\n\t"
"XOR EDX,EDX\n\t"
"CMP ECX,-1\n\t"
"JE,s done\n"
"normal: CDQ\n\t"
"IDIV $div\n\t"
"done:" %}
opcode(0xF7, 0x7); /* Opcode F7 /7 */
ins_encode( cdq_enc, OpcP, RegOpc(div) );
ins_pipe( pipe_slow );
%}
// Integer MOD with Register
instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
match(Set rdx (ModI rax div));
effect(KILL rax, KILL cr);
size(26);
ins_cost(300);
format %{ "CDQ\n\t"
"IDIV $div" %}
opcode(0xF7, 0x7); /* Opcode F7 /7 */
ins_encode( cdq_enc, OpcP, RegOpc(div) );
ins_pipe( ialu_reg_reg_alu0 );
%}
// Remainder Register Long
instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
match(Set dst (ModL src1 src2));
effect( KILL cr, KILL cx, KILL bx );
ins_cost(10000);
format %{ "PUSH $src1.hi\n\t"
"PUSH $src1.lo\n\t"
"PUSH $src2.hi\n\t"
"PUSH $src2.lo\n\t"
"CALL SharedRuntime::lrem\n\t"
"ADD ESP,16" %}
ins_encode( long_mod(src1,src2) );
ins_pipe( pipe_slow );
%}
// Integer Shift Instructions
// Shift Left by one
instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
match(Set dst (LShiftI dst shift));
effect(KILL cr);
size(2);
format %{ "SHL $dst,$shift" %}
opcode(0xD1, 0x4); /* D1 /4 */
ins_encode( OpcP, RegOpc( dst ) );
ins_pipe( ialu_reg );
%}
// Shift Left by 8-bit immediate
instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
match(Set dst (LShiftI dst shift));
effect(KILL cr);
size(3);
format %{ "SHL $dst,$shift" %}
opcode(0xC1, 0x4); /* C1 /4 ib */
ins_encode( RegOpcImm( dst, shift) );
ins_pipe( ialu_reg );
%}
// Shift Left by variable
instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
match(Set dst (LShiftI dst shift));
effect(KILL cr);
size(2);
format %{ "SHL $dst,$shift" %}
opcode(0xD3, 0x4); /* D3 /4 */
ins_encode( OpcP, RegOpc( dst ) );
ins_pipe( ialu_reg_reg );
%}
// Arithmetic shift right by one
instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
match(Set dst (RShiftI dst shift));
effect(KILL cr);
size(2);
format %{ "SAR $dst,$shift" %}
opcode(0xD1, 0x7); /* D1 /7 */
ins_encode( OpcP, RegOpc( dst ) );
ins_pipe( ialu_reg );
%}
// Arithmetic shift right by one
instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
effect(KILL cr);
format %{ "SAR $dst,$shift" %}
opcode(0xD1, 0x7); /* D1 /7 */
ins_encode( OpcP, RMopc_Mem(secondary,dst) );
ins_pipe( ialu_mem_imm );
%}
// Arithmetic Shift Right by 8-bit immediate
instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
match(Set dst (RShiftI dst shift));
effect(KILL cr);
size(3);
format %{ "SAR $dst,$shift" %}
opcode(0xC1, 0x7); /* C1 /7 ib */
ins_encode( RegOpcImm( dst, shift ) );
ins_pipe( ialu_mem_imm );
%}
// Arithmetic Shift Right by 8-bit immediate
instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
effect(KILL cr);
format %{ "SAR $dst,$shift" %}
opcode(0xC1, 0x7); /* C1 /7 ib */
ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
ins_pipe( ialu_mem_imm );
%}
// Arithmetic Shift Right by variable
instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
match(Set dst (RShiftI dst shift));
effect(KILL cr);
size(2);
format %{ "SAR $dst,$shift" %}
opcode(0xD3, 0x7); /* D3 /7 */
ins_encode( OpcP, RegOpc( dst ) );
ins_pipe( ialu_reg_reg );
%}
// Logical shift right by one
instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
match(Set dst (URShiftI dst shift));
effect(KILL cr);
size(2);
format %{ "SHR $dst,$shift" %}
opcode(0xD1, 0x5); /* D1 /5 */
ins_encode( OpcP, RegOpc( dst ) );
ins_pipe( ialu_reg );
%}
// Logical Shift Right by 8-bit immediate
instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
match(Set dst (URShiftI dst shift));
effect(KILL cr);
size(3);
format %{ "SHR $dst,$shift" %}
opcode(0xC1, 0x5); /* C1 /5 ib */
ins_encode( RegOpcImm( dst, shift) );
ins_pipe( ialu_reg );
%}
// Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
// This idiom is used by the compiler for the i2b bytecode.
instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour, eFlagsReg cr) %{
match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
effect(KILL cr);
size(3);
format %{ "MOVSX $dst,$src :8" %}
opcode(0xBE, 0x0F);
ins_encode( OpcS, OpcP, RegReg( dst, src));
ins_pipe( ialu_reg_reg );
%}
// Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
// This idiom is used by the compiler the i2s bytecode.
instruct i2s(eRegI dst, xRegI src, immI_16 sixteen, eFlagsReg cr) %{
match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
effect(KILL cr);
size(3);
format %{ "MOVSX $dst,$src :16" %}
opcode(0xBF, 0x0F);
ins_encode( OpcS, OpcP, RegReg( dst, src));
ins_pipe( ialu_reg_reg );
%}
// Logical Shift Right by variable
instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
match(Set dst (URShiftI dst shift));
effect(KILL cr);
size(2);
format %{ "SHR $dst,$shift" %}
opcode(0xD3, 0x5); /* D3 /5 */
ins_encode( OpcP, RegOpc( dst ) );
ins_pipe( ialu_reg_reg );
%}
//----------Logical Instructions-----------------------------------------------
//----------Integer Logical Instructions---------------------------------------
// And Instructions
// And Register with Register
instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
match(Set dst (AndI dst src));
effect(KILL cr);
size(2);
format %{ "AND $dst,$src" %}
opcode(0x23);
ins_encode( OpcP, RegReg( dst, src) );
ins_pipe( ialu_reg_reg );
%}
// And Register with Immediate
instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
match(Set dst (AndI dst src));
effect(KILL cr);
format %{ "AND $dst,$src" %}
opcode(0x81,0x04); /* Opcode 81 /4 */
// ins_encode( RegImm( dst, src) );
ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
ins_pipe( ialu_reg );
%}
// And Register with Memory
instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
match(Set dst (AndI dst (LoadI src)));
effect(KILL cr);
ins_cost(125);
format %{ "AND $dst,$src" %}
opcode(0x23);
ins_encode( OpcP, RegMem( dst, src) );
ins_pipe( ialu_reg_mem );
%}
// And Memory with Register
instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
match(Set dst (StoreI dst (AndI (LoadI dst) src)));
effect(KILL cr);
ins_cost(150);
format %{ "AND $dst,$src" %}
opcode(0x21); /* Opcode 21 /r */
ins_encode( OpcP, RegMem( src, dst ) );
ins_pipe( ialu_mem_reg );
%}
// And Memory with Immediate
instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
match(Set dst (StoreI dst (AndI (LoadI dst) src)));
effect(KILL cr);
ins_cost(125);
format %{ "AND $dst,$src" %}
opcode(0x81, 0x4); /* Opcode 81 /4 id */
// ins_encode( MemImm( dst, src) );
ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
ins_pipe( ialu_mem_imm );
%}
// Or Instructions
// Or Register with Register
instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
match(Set dst (OrI dst src));
effect(KILL cr);
size(2);
format %{ "OR $dst,$src" %}
opcode(0x0B);
ins_encode( OpcP, RegReg( dst, src) );
ins_pipe( ialu_reg_reg );
%}
// Or Register with Immediate
instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
match(Set dst (OrI dst src));
effect(KILL cr);
format %{ "OR $dst,$src" %}
opcode(0x81,0x01); /* Opcode 81 /1 id */
// ins_encode( RegImm( dst, src) );
ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
ins_pipe( ialu_reg );
%}
// Or Register with Memory
instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
match(Set dst (OrI dst (LoadI src)));
effect(KILL cr);
ins_cost(125);
format %{ "OR $dst,$src" %}
opcode(0x0B);
ins_encode( OpcP, RegMem( dst, src) );
ins_pipe( ialu_reg_mem );
%}
// Or Memory with Register
instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
match(Set dst (StoreI dst (OrI (LoadI dst) src)));
effect(KILL cr);
ins_cost(150);
format %{ "OR $dst,$src" %}
opcode(0x09); /* Opcode 09 /r */
ins_encode( OpcP, RegMem( src, dst ) );
ins_pipe( ialu_mem_reg );
%}
// Or Memory with Immediate
instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
match(Set dst (StoreI dst (OrI (LoadI dst) src)));
effect(KILL cr);
ins_cost(125);
format %{ "OR $dst,$src" %}
opcode(0x81,0x1); /* Opcode 81 /1 id */
// ins_encode( MemImm( dst, src) );
ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
ins_pipe( ialu_mem_imm );
%}
// ROL/ROR
// ROL expand
instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
effect(USE_DEF dst, USE shift, KILL cr);
format %{ "ROL $dst, $shift" %}
opcode(0xD1, 0x0); /* Opcode D1 /0 */
ins_encode( OpcP, RegOpc( dst ));
ins_pipe( ialu_reg );
%}
instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
effect(USE_DEF dst, USE shift, KILL cr);
format %{ "ROL $dst, $shift" %}
opcode(0xC1, 0x0); /*Opcode /C1 /0 */
ins_encode( RegOpcImm(dst, shift) );
ins_pipe(ialu_reg);
%}
instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
effect(USE_DEF dst, USE shift, KILL cr);
format %{ "ROL $dst, $shift" %}
opcode(0xD3, 0x0); /* Opcode D3 /0 */
ins_encode(OpcP, RegOpc(dst));
ins_pipe( ialu_reg_reg );
%}
// end of ROL expand
// ROL 32bit by one once
instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
expand %{
rolI_eReg_imm1(dst, lshift, cr);
%}
%}
// ROL 32bit var by imm8 once
instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
predicate( 0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
expand %{
rolI_eReg_imm8(dst, lshift, cr);
%}
%}
// ROL 32bit var by var once
instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
expand %{
rolI_eReg_CL(dst, shift, cr);
%}
%}
// ROL 32bit var by var once
instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
expand %{
rolI_eReg_CL(dst, shift, cr);
%}
%}
// ROR expand
instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
effect(USE_DEF dst, USE shift, KILL cr);
format %{ "ROR $dst, $shift" %}
opcode(0xD1,0x1); /* Opcode D1 /1 */
ins_encode( OpcP, RegOpc( dst ) );
ins_pipe( ialu_reg );
%}
instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
effect (USE_DEF dst, USE shift, KILL cr);
format %{ "ROR $dst, $shift" %}
opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
ins_encode( RegOpcImm(dst, shift) );
ins_pipe( ialu_reg );
%}
instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
effect(USE_DEF dst, USE shift, KILL cr);
format %{ "ROR $dst, $shift" %}
opcode(0xD3, 0x1); /* Opcode D3 /1 */
ins_encode(OpcP, RegOpc(dst));
ins_pipe( ialu_reg_reg );
%}
// end of ROR expand
// ROR right once
instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
expand %{
rorI_eReg_imm1(dst, rshift, cr);
%}
%}
// ROR 32bit by immI8 once
instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
predicate( 0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
expand %{
rorI_eReg_imm8(dst, rshift, cr);
%}
%}
// ROR 32bit var by var once
instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
expand %{
rorI_eReg_CL(dst, shift, cr);
%}
%}
// ROR 32bit var by var once
instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
expand %{
rorI_eReg_CL(dst, shift, cr);
%}
%}
// Xor Instructions
// Xor Register with Register
instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
match(Set dst (XorI dst src));
effect(KILL cr);
size(2);
format %{ "XOR $dst,$src" %}
opcode(0x33);
ins_encode( OpcP, RegReg( dst, src) );
ins_pipe( ialu_reg_reg );
%}
// Xor Register with Immediate -1
instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
match(Set dst (XorI dst imm));
size(2);
format %{ "NOT $dst" %}
ins_encode %{
__ notl($dst$$Register);
%}
ins_pipe( ialu_reg );
%}
// Xor Register with Immediate
instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
match(Set dst (XorI dst src));
effect(KILL cr);
format %{ "XOR $dst,$src" %}
opcode(0x81,0x06); /* Opcode 81 /6 id */
// ins_encode( RegImm( dst, src) );
ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
ins_pipe( ialu_reg );
%}
// Xor Register with Memory
instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
match(Set dst (XorI dst (LoadI src)));
effect(KILL cr);
ins_cost(125);
format %{ "XOR $dst,$src" %}
opcode(0x33);
ins_encode( OpcP, RegMem(dst, src) );
ins_pipe( ialu_reg_mem );
%}
// Xor Memory with Register
instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
match(Set dst (StoreI dst (XorI (LoadI dst) src)));
effect(KILL cr);
ins_cost(150);
format %{ "XOR $dst,$src" %}
opcode(0x31); /* Opcode 31 /r */
ins_encode( OpcP, RegMem( src, dst ) );
ins_pipe( ialu_mem_reg );
%}
// Xor Memory with Immediate
instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
match(Set dst (StoreI dst (XorI (LoadI dst) src)));
effect(KILL cr);
ins_cost(125);
format %{ "XOR $dst,$src" %}
opcode(0x81,0x6); /* Opcode 81 /6 id */
ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
ins_pipe( ialu_mem_imm );
%}
//----------Convert Int to Boolean---------------------------------------------
instruct movI_nocopy(eRegI dst, eRegI src) %{
effect( DEF dst, USE src );
format %{ "MOV $dst,$src" %}
ins_encode( enc_Copy( dst, src) );
ins_pipe( ialu_reg_reg );
%}
instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
effect( USE_DEF dst, USE src, KILL cr );
size(4);
format %{ "NEG $dst\n\t"
"ADC $dst,$src" %}
ins_encode( neg_reg(dst),
OpcRegReg(0x13,dst,src) );
ins_pipe( ialu_reg_reg_long );
%}
instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
match(Set dst (Conv2B src));
expand %{
movI_nocopy(dst,src);
ci2b(dst,src,cr);
%}
%}
instruct movP_nocopy(eRegI dst, eRegP src) %{
effect( DEF dst, USE src );
format %{ "MOV $dst,$src" %}
ins_encode( enc_Copy( dst, src) );
ins_pipe( ialu_reg_reg );
%}
instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
effect( USE_DEF dst, USE src, KILL cr );
format %{ "NEG $dst\n\t"
"ADC $dst,$src" %}
ins_encode( neg_reg(dst),
OpcRegReg(0x13,dst,src) );
ins_pipe( ialu_reg_reg_long );
%}
instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
match(Set dst (Conv2B src));
expand %{
movP_nocopy(dst,src);
cp2b(dst,src,cr);
%}
%}
instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
match(Set dst (CmpLTMask p q));
effect( KILL cr );
ins_cost(400);
// SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
format %{ "XOR $dst,$dst\n\t"
"CMP $p,$q\n\t"
"SETlt $dst\n\t"
"NEG $dst" %}
ins_encode( OpcRegReg(0x33,dst,dst),
OpcRegReg(0x3B,p,q),
setLT_reg(dst), neg_reg(dst) );
ins_pipe( pipe_slow );
%}
instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
match(Set dst (CmpLTMask dst zero));
effect( DEF dst, KILL cr );
ins_cost(100);
format %{ "SAR $dst,31" %}
opcode(0xC1, 0x7); /* C1 /7 ib */
ins_encode( RegOpcImm( dst, 0x1F ) );
ins_pipe( ialu_reg );
%}
instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
effect( KILL tmp, KILL cr );
ins_cost(400);
// annoyingly, $tmp has no edges so you cant ask for it in
// any format or encoding
format %{ "SUB $p,$q\n\t"
"SBB ECX,ECX\n\t"
"AND ECX,$y\n\t"
"ADD $p,ECX" %}
ins_encode( enc_cmpLTP(p,q,y,tmp) );
ins_pipe( pipe_cmplt );
%}
/* If I enable this, I encourage spilling in the inner loop of compress.
instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
effect( USE_KILL tmp, KILL cr );
ins_cost(400);
format %{ "SUB $p,$q\n\t"
"SBB ECX,ECX\n\t"
"AND ECX,$y\n\t"
"ADD $p,ECX" %}
ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
%}
*/
//----------Long Instructions------------------------------------------------
// Add Long Register with Register
instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
match(Set dst (AddL dst src));
effect(KILL cr);
ins_cost(200);
format %{ "ADD $dst.lo,$src.lo\n\t"
"ADC $dst.hi,$src.hi" %}
opcode(0x03, 0x13);
ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
ins_pipe( ialu_reg_reg_long );
%}
// Add Long Register with Immediate
instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
match(Set dst (AddL dst src));
effect(KILL cr);
format %{ "ADD $dst.lo,$src.lo\n\t"
"ADC $dst.hi,$src.hi" %}
opcode(0x81,0x00,0x02); /* Opcode 81 /0, 81 /2 */
ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
ins_pipe( ialu_reg_long );
%}
// Add Long Register with Memory
instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
match(Set dst (AddL dst (LoadL mem)));
effect(KILL cr);
ins_cost(125);
format %{ "ADD $dst.lo,$mem\n\t"
"ADC $dst.hi,$mem+4" %}
opcode(0x03, 0x13);
ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
ins_pipe( ialu_reg_long_mem );
%}
// Subtract Long Register with Register.
instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
match(Set dst (SubL dst src));
effect(KILL cr);
ins_cost(200);
format %{ "SUB $dst.lo,$src.lo\n\t"
"SBB $dst.hi,$src.hi" %}
opcode(0x2B, 0x1B);
ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
ins_pipe( ialu_reg_reg_long );
%}
// Subtract Long Register with Immediate
instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
match(Set dst (SubL dst src));
effect(KILL cr);
format %{ "SUB $dst.lo,$src.lo\n\t"
"SBB $dst.hi,$src.hi" %}
opcode(0x81,0x05,0x03); /* Opcode 81 /5, 81 /3 */
ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
ins_pipe( ialu_reg_long );
%}
// Subtract Long Register with Memory
instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
match(Set dst (SubL dst (LoadL mem)));
effect(KILL cr);
ins_cost(125);
format %{ "SUB $dst.lo,$mem\n\t"
"SBB $dst.hi,$mem+4" %}
opcode(0x2B, 0x1B);
ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
ins_pipe( ialu_reg_long_mem );
%}
instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
match(Set dst (SubL zero dst));
effect(KILL cr);
ins_cost(300);
format %{ "NEG $dst.hi\n\tNEG $dst.lo\n\tSBB $dst.hi,0" %}
ins_encode( neg_long(dst) );
ins_pipe( ialu_reg_reg_long );
%}
// And Long Register with Register
instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
match(Set dst (AndL dst src));
effect(KILL cr);
format %{ "AND $dst.lo,$src.lo\n\t"
"AND $dst.hi,$src.hi" %}
opcode(0x23,0x23);
ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
ins_pipe( ialu_reg_reg_long );
%}
// And Long Register with Immediate
instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
match(Set dst (AndL dst src));
effect(KILL cr);
format %{ "AND $dst.lo,$src.lo\n\t"
"AND $dst.hi,$src.hi" %}
opcode(0x81,0x04,0x04); /* Opcode 81 /4, 81 /4 */
ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
ins_pipe( ialu_reg_long );
%}
// And Long Register with Memory
instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
match(Set dst (AndL dst (LoadL mem)));
effect(KILL cr);
ins_cost(125);
format %{ "AND $dst.lo,$mem\n\t"
"AND $dst.hi,$mem+4" %}
opcode(0x23, 0x23);
ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
ins_pipe( ialu_reg_long_mem );
%}
// Or Long Register with Register
instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
match(Set dst (OrL dst src));
effect(KILL cr);
format %{ "OR $dst.lo,$src.lo\n\t"
"OR $dst.hi,$src.hi" %}
opcode(0x0B,0x0B);
ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
ins_pipe( ialu_reg_reg_long );
%}
// Or Long Register with Immediate
instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
match(Set dst (OrL dst src));
effect(KILL cr);
format %{ "OR $dst.lo,$src.lo\n\t"
"OR $dst.hi,$src.hi" %}
opcode(0x81,0x01,0x01); /* Opcode 81 /1, 81 /1 */
ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
ins_pipe( ialu_reg_long );
%}
// Or Long Register with Memory
instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
match(Set dst (OrL dst (LoadL mem)));
effect(KILL cr);
ins_cost(125);
format %{ "OR $dst.lo,$mem\n\t"
"OR $dst.hi,$mem+4" %}
opcode(0x0B,0x0B);
ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
ins_pipe( ialu_reg_long_mem );
%}
// Xor Long Register with Register
instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
match(Set dst (XorL dst src));
effect(KILL cr);
format %{ "XOR $dst.lo,$src.lo\n\t"
"XOR $dst.hi,$src.hi" %}
opcode(0x33,0x33);
ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
ins_pipe( ialu_reg_reg_long );
%}
// Xor Long Register with Immediate -1
instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
match(Set dst (XorL dst imm));
format %{ "NOT $dst.lo\n\t"
"NOT $dst.hi" %}
ins_encode %{
__ notl($dst$$Register);
__ notl(HIGH_FROM_LOW($dst$$Register));
%}
ins_pipe( ialu_reg_long );
%}
// Xor Long Register with Immediate
instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
match(Set dst (XorL dst src));
effect(KILL cr);
format %{ "XOR $dst.lo,$src.lo\n\t"
"XOR $dst.hi,$src.hi" %}
opcode(0x81,0x06,0x06); /* Opcode 81 /6, 81 /6 */
ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
ins_pipe( ialu_reg_long );
%}
// Xor Long Register with Memory
instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
match(Set dst (XorL dst (LoadL mem)));
effect(KILL cr);
ins_cost(125);
format %{ "XOR $dst.lo,$mem\n\t"
"XOR $dst.hi,$mem+4" %}
opcode(0x33,0x33);
ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
ins_pipe( ialu_reg_long_mem );
%}
// Shift Left Long by 1
instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
predicate(UseNewLongLShift);
match(Set dst (LShiftL dst cnt));
effect(KILL cr);
ins_cost(100);
format %{ "ADD $dst.lo,$dst.lo\n\t"
"ADC $dst.hi,$dst.hi" %}
ins_encode %{
__ addl($dst$$Register,$dst$$Register);
__ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
%}
ins_pipe( ialu_reg_long );
%}
// Shift Left Long by 2
instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
predicate(UseNewLongLShift);
match(Set dst (LShiftL dst cnt));
effect(KILL cr);
ins_cost(100);
format %{ "ADD $dst.lo,$dst.lo\n\t"
"ADC $dst.hi,$dst.hi\n\t"
"ADD $dst.lo,$dst.lo\n\t"
"ADC $dst.hi,$dst.hi" %}
ins_encode %{
__ addl($dst$$Register,$dst$$Register);
__ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
__ addl($dst$$Register,$dst$$Register);
__ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
%}
ins_pipe( ialu_reg_long );
%}
// Shift Left Long by 3
instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
predicate(UseNewLongLShift);
match(Set dst (LShiftL dst cnt));
effect(KILL cr);
ins_cost(100);
format %{ "ADD $dst.lo,$dst.lo\n\t"
"ADC $dst.hi,$dst.hi\n\t"
"ADD $dst.lo,$dst.lo\n\t"
"ADC $dst.hi,$dst.hi\n\t"
"ADD $dst.lo,$dst.lo\n\t"
"ADC $dst.hi,$dst.hi" %}
ins_encode %{
__ addl($dst$$Register,$dst$$Register);
__ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
__ addl($dst$$Register,$dst$$Register);
__ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
__ addl($dst$$Register,$dst$$Register);
__ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
%}
ins_pipe( ialu_reg_long );
%}
// Shift Left Long by 1-31
instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
match(Set dst (LShiftL dst cnt));
effect(KILL cr);
ins_cost(200);
format %{ "SHLD $dst.hi,$dst.lo,$cnt\n\t"
"SHL $dst.lo,$cnt" %}
opcode(0xC1, 0x4, 0xA4); /* 0F/A4, then C1 /4 ib */
ins_encode( move_long_small_shift(dst,cnt) );
ins_pipe( ialu_reg_long );
%}
// Shift Left Long by 32-63
instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
match(Set dst (LShiftL dst cnt));
effect(KILL cr);
ins_cost(300);
format %{ "MOV $dst.hi,$dst.lo\n"
"\tSHL $dst.hi,$cnt-32\n"
"\tXOR $dst.lo,$dst.lo" %}
opcode(0xC1, 0x4); /* C1 /4 ib */
ins_encode( move_long_big_shift_clr(dst,cnt) );
ins_pipe( ialu_reg_long );
%}
// Shift Left Long by variable
instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
match(Set dst (LShiftL dst shift));
effect(KILL cr);
ins_cost(500+200);
size(17);
format %{ "TEST $shift,32\n\t"
"JEQ,s small\n\t"
"MOV $dst.hi,$dst.lo\n\t"
"XOR $dst.lo,$dst.lo\n"
"small:\tSHLD $dst.hi,$dst.lo,$shift\n\t"
"SHL $dst.lo,$shift" %}
ins_encode( shift_left_long( dst, shift ) );
ins_pipe( pipe_slow );
%}
// Shift Right Long by 1-31
instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
match(Set dst (URShiftL dst cnt));
effect(KILL cr);
ins_cost(200);
format %{ "SHRD $dst.lo,$dst.hi,$cnt\n\t"
"SHR $dst.hi,$cnt" %}
opcode(0xC1, 0x5, 0xAC); /* 0F/AC, then C1 /5 ib */
ins_encode( move_long_small_shift(dst,cnt) );
ins_pipe( ialu_reg_long );
%}
// Shift Right Long by 32-63
instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
match(Set dst (URShiftL dst cnt));
effect(KILL cr);
ins_cost(300);
format %{ "MOV $dst.lo,$dst.hi\n"
"\tSHR $dst.lo,$cnt-32\n"
"\tXOR $dst.hi,$dst.hi" %}
opcode(0xC1, 0x5); /* C1 /5 ib */
ins_encode( move_long_big_shift_clr(dst,cnt) );
ins_pipe( ialu_reg_long );
%}
// Shift Right Long by variable
instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
match(Set dst (URShiftL dst shift));
effect(KILL cr);
ins_cost(600);
size(17);
format %{ "TEST $shift,32\n\t"
"JEQ,s small\n\t"
"MOV $dst.lo,$dst.hi\n\t"
"XOR $dst.hi,$dst.hi\n"
"small:\tSHRD $dst.lo,$dst.hi,$shift\n\t"
"SHR $dst.hi,$shift" %}
ins_encode( shift_right_long( dst, shift ) );
ins_pipe( pipe_slow );
%}
// Shift Right Long by 1-31
instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
match(Set dst (RShiftL dst cnt));
effect(KILL cr);
ins_cost(200);
format %{ "SHRD $dst.lo,$dst.hi,$cnt\n\t"
"SAR $dst.hi,$cnt" %}
opcode(0xC1, 0x7, 0xAC); /* 0F/AC, then C1 /7 ib */
ins_encode( move_long_small_shift(dst,cnt) );
ins_pipe( ialu_reg_long );
%}
// Shift Right Long by 32-63
instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
match(Set dst (RShiftL dst cnt));
effect(KILL cr);
ins_cost(300);
format %{ "MOV $dst.lo,$dst.hi\n"
"\tSAR $dst.lo,$cnt-32\n"
"\tSAR $dst.hi,31" %}
opcode(0xC1, 0x7); /* C1 /7 ib */
ins_encode( move_long_big_shift_sign(dst,cnt) );
ins_pipe( ialu_reg_long );
%}
// Shift Right arithmetic Long by variable
instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
match(Set dst (RShiftL dst shift));
effect(KILL cr);
ins_cost(600);
size(18);
format %{ "TEST $shift,32\n\t"
"JEQ,s small\n\t"
"MOV $dst.lo,$dst.hi\n\t"
"SAR $dst.hi,31\n"
"small:\tSHRD $dst.lo,$dst.hi,$shift\n\t"
"SAR $dst.hi,$shift" %}
ins_encode( shift_right_arith_long( dst, shift ) );
ins_pipe( pipe_slow );
%}
//----------Double Instructions------------------------------------------------
// Double Math
// Compare & branch
// P6 version of float compare, sets condition codes in EFLAGS
instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
predicate(VM_Version::supports_cmov() && UseSSE <=1);
match(Set cr (CmpD src1 src2));
effect(KILL rax);
ins_cost(150);
format %{ "FLD $src1\n\t"
"FUCOMIP ST,$src2 // P6 instruction\n\t"
"JNP exit\n\t"
"MOV ah,1 // saw a NaN, set CF\n\t"
"SAHF\n"
"exit:\tNOP // avoid branch to branch" %}
opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
ins_encode( Push_Reg_D(src1),
OpcP, RegOpc(src2),
cmpF_P6_fixup );
ins_pipe( pipe_slow );
%}
// Compare & branch
instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
predicate(UseSSE<=1);
match(Set cr (CmpD src1 src2));
effect(KILL rax);
ins_cost(200);
format %{ "FLD $src1\n\t"
"FCOMp $src2\n\t"
"FNSTSW AX\n\t"
"TEST AX,0x400\n\t"
"JZ,s flags\n\t"
"MOV AH,1\t# unordered treat as LT\n"
"flags:\tSAHF" %}
opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
ins_encode( Push_Reg_D(src1),
OpcP, RegOpc(src2),
fpu_flags);
ins_pipe( pipe_slow );
%}
// Compare vs zero into -1,0,1
instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
predicate(UseSSE<=1);
match(Set dst (CmpD3 src1 zero));
effect(KILL cr, KILL rax);
ins_cost(280);
format %{ "FTSTD $dst,$src1" %}
opcode(0xE4, 0xD9);
ins_encode( Push_Reg_D(src1),
OpcS, OpcP, PopFPU,
CmpF_Result(dst));
ins_pipe( pipe_slow );
%}
// Compare into -1,0,1
instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
predicate(UseSSE<=1);
match(Set dst (CmpD3 src1 src2));
effect(KILL cr, KILL rax);
ins_cost(300);
format %{ "FCMPD $dst,$src1,$src2" %}
opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
ins_encode( Push_Reg_D(src1),
OpcP, RegOpc(src2),
CmpF_Result(dst));
ins_pipe( pipe_slow );
%}
// float compare and set condition codes in EFLAGS by XMM regs
instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
predicate(UseSSE>=2);
match(Set cr (CmpD dst src));
effect(KILL rax);
ins_cost(125);
format %{ "COMISD $dst,$src\n"
"\tJNP exit\n"
"\tMOV ah,1 // saw a NaN, set CF\n"
"\tSAHF\n"
"exit:\tNOP // avoid branch to branch" %}
opcode(0x66, 0x0F, 0x2F);
ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
ins_pipe( pipe_slow );
%}
// float compare and set condition codes in EFLAGS by XMM regs
instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
predicate(UseSSE>=2);
match(Set cr (CmpD dst (LoadD src)));
effect(KILL rax);
ins_cost(145);
format %{ "COMISD $dst,$src\n"
"\tJNP exit\n"
"\tMOV ah,1 // saw a NaN, set CF\n"
"\tSAHF\n"
"exit:\tNOP // avoid branch to branch" %}
opcode(0x66, 0x0F, 0x2F);
ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
ins_pipe( pipe_slow );
%}
// Compare into -1,0,1 in XMM
instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
predicate(UseSSE>=2);
match(Set dst (CmpD3 src1 src2));
effect(KILL cr);
ins_cost(255);
format %{ "XOR $dst,$dst\n"
"\tCOMISD $src1,$src2\n"
"\tJP,s nan\n"
"\tJEQ,s exit\n"
"\tJA,s inc\n"
"nan:\tDEC $dst\n"
"\tJMP,s exit\n"
"inc:\tINC $dst\n"
"exit:"
%}
opcode(0x66, 0x0F, 0x2F);
ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
CmpX_Result(dst));
ins_pipe( pipe_slow );
%}
// Compare into -1,0,1 in XMM and memory
instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
predicate(UseSSE>=2);
match(Set dst (CmpD3 src1 (LoadD mem)));
effect(KILL cr);
ins_cost(275);
format %{ "COMISD $src1,$mem\n"
"\tMOV $dst,0\t\t# do not blow flags\n"
"\tJP,s nan\n"
"\tJEQ,s exit\n"
"\tJA,s inc\n"
"nan:\tDEC $dst\n"
"\tJMP,s exit\n"
"inc:\tINC $dst\n"
"exit:"
%}
opcode(0x66, 0x0F, 0x2F);
ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
LdImmI(dst,0x0), CmpX_Result(dst));
ins_pipe( pipe_slow );
%}
instruct subD_reg(regD dst, regD src) %{
predicate (UseSSE <=1);
match(Set dst (SubD dst src));
format %{ "FLD $src\n\t"
"DSUBp $dst,ST" %}
opcode(0xDE, 0x5); /* DE E8+i or DE /5 */
ins_cost(150);
ins_encode( Push_Reg_D(src),
OpcP, RegOpc(dst) );
ins_pipe( fpu_reg_reg );
%}
instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
predicate (UseSSE <=1);
match(Set dst (RoundDouble (SubD src1 src2)));
ins_cost(250);
format %{ "FLD $src2\n\t"
"DSUB ST,$src1\n\t"
"FSTP_D $dst\t# D-round" %}
opcode(0xD8, 0x5);
ins_encode( Push_Reg_D(src2),
OpcP, RegOpc(src1), Pop_Mem_D(dst) );
ins_pipe( fpu_mem_reg_reg );
%}
instruct subD_reg_mem(regD dst, memory src) %{
predicate (UseSSE <=1);
match(Set dst (SubD dst (LoadD src)));
ins_cost(150);
format %{ "FLD $src\n\t"
"DSUBp $dst,ST" %}
opcode(0xDE, 0x5, 0xDD); /* DE C0+i */ /* LoadD DD /0 */
ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
OpcP, RegOpc(dst) );
ins_pipe( fpu_reg_mem );
%}
instruct absD_reg(regDPR1 dst, regDPR1 src) %{
predicate (UseSSE<=1);
match(Set dst (AbsD src));
ins_cost(100);
format %{ "FABS" %}
opcode(0xE1, 0xD9);
ins_encode( OpcS, OpcP );
ins_pipe( fpu_reg_reg );
%}
instruct absXD_reg( regXD dst ) %{
predicate(UseSSE>=2);
match(Set dst (AbsD dst));
format %{ "ANDPD $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
ins_encode( AbsXD_encoding(dst));
ins_pipe( pipe_slow );
%}
instruct negD_reg(regDPR1 dst, regDPR1 src) %{
predicate(UseSSE<=1);
match(Set dst (NegD src));
ins_cost(100);
format %{ "FCHS" %}
opcode(0xE0, 0xD9);
ins_encode( OpcS, OpcP );
ins_pipe( fpu_reg_reg );
%}
instruct negXD_reg( regXD dst ) %{
predicate(UseSSE>=2);
match(Set dst (NegD dst));
format %{ "XORPD $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
ins_encode %{
__ xorpd($dst$$XMMRegister,
ExternalAddress((address)double_signflip_pool));
%}
ins_pipe( pipe_slow );
%}
instruct addD_reg(regD dst, regD src) %{
predicate(UseSSE<=1);
match(Set dst (AddD dst src));
format %{ "FLD $src\n\t"
"DADD $dst,ST" %}
size(4);
ins_cost(150);
opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
ins_encode( Push_Reg_D(src),
OpcP, RegOpc(dst) );
ins_pipe( fpu_reg_reg );
%}
instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
predicate(UseSSE<=1);
match(Set dst (RoundDouble (AddD src1 src2)));
ins_cost(250);
format %{ "FLD $src2\n\t"
"DADD ST,$src1\n\t"
"FSTP_D $dst\t# D-round" %}
opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
ins_encode( Push_Reg_D(src2),
OpcP, RegOpc(src1), Pop_Mem_D(dst) );
ins_pipe( fpu_mem_reg_reg );
%}
instruct addD_reg_mem(regD dst, memory src) %{
predicate(UseSSE<=1);
match(Set dst (AddD dst (LoadD src)));
ins_cost(150);
format %{ "FLD $src\n\t"
"DADDp $dst,ST" %}
opcode(0xDE, 0x0, 0xDD); /* DE C0+i */ /* LoadD DD /0 */
ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
OpcP, RegOpc(dst) );
ins_pipe( fpu_reg_mem );
%}
// add-to-memory
instruct addD_mem_reg(memory dst, regD src) %{
predicate(UseSSE<=1);
match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
ins_cost(150);
format %{ "FLD_D $dst\n\t"
"DADD ST,$src\n\t"
"FST_D $dst" %}
opcode(0xDD, 0x0);
ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
Opcode(0xD8), RegOpc(src),
set_instruction_start,
Opcode(0xDD), RMopc_Mem(0x03,dst) );
ins_pipe( fpu_reg_mem );
%}
instruct addD_reg_imm1(regD dst, immD1 src) %{
predicate(UseSSE<=1);
match(Set dst (AddD dst src));
ins_cost(125);
format %{ "FLD1\n\t"
"DADDp $dst,ST" %}
opcode(0xDE, 0x00);
ins_encode( LdImmD(src),
OpcP, RegOpc(dst) );
ins_pipe( fpu_reg );
%}
instruct addD_reg_imm(regD dst, immD src) %{
predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
match(Set dst (AddD dst src));
ins_cost(200);
format %{ "FLD_D [$src]\n\t"
"DADDp $dst,ST" %}
opcode(0xDE, 0x00); /* DE /0 */
ins_encode( LdImmD(src),
OpcP, RegOpc(dst));
ins_pipe( fpu_reg_mem );
%}
instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
match(Set dst (RoundDouble (AddD src con)));
ins_cost(200);
format %{ "FLD_D [$con]\n\t"
"DADD ST,$src\n\t"
"FSTP_D $dst\t# D-round" %}
opcode(0xD8, 0x00); /* D8 /0 */
ins_encode( LdImmD(con),
OpcP, RegOpc(src), Pop_Mem_D(dst));
ins_pipe( fpu_mem_reg_con );
%}
// Add two double precision floating point values in xmm
instruct addXD_reg(regXD dst, regXD src) %{
predicate(UseSSE>=2);
match(Set dst (AddD dst src));
format %{ "ADDSD $dst,$src" %}
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
ins_pipe( pipe_slow );
%}
instruct addXD_imm(regXD dst, immXD con) %{
predicate(UseSSE>=2);
match(Set dst (AddD dst con));
format %{ "ADDSD $dst,[$con]" %}
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
ins_pipe( pipe_slow );
%}
instruct addXD_mem(regXD dst, memory mem) %{
predicate(UseSSE>=2);
match(Set dst (AddD dst (LoadD mem)));
format %{ "ADDSD $dst,$mem" %}
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
ins_pipe( pipe_slow );
%}
// Sub two double precision floating point values in xmm
instruct subXD_reg(regXD dst, regXD src) %{
predicate(UseSSE>=2);
match(Set dst (SubD dst src));
format %{ "SUBSD $dst,$src" %}
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
ins_pipe( pipe_slow );
%}
instruct subXD_imm(regXD dst, immXD con) %{
predicate(UseSSE>=2);
match(Set dst (SubD dst con));
format %{ "SUBSD $dst,[$con]" %}
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
ins_pipe( pipe_slow );
%}
instruct subXD_mem(regXD dst, memory mem) %{
predicate(UseSSE>=2);
match(Set dst (SubD dst (LoadD mem)));
format %{ "SUBSD $dst,$mem" %}
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
ins_pipe( pipe_slow );
%}
// Mul two double precision floating point values in xmm
instruct mulXD_reg(regXD dst, regXD src) %{
predicate(UseSSE>=2);
match(Set dst (MulD dst src));
format %{ "MULSD $dst,$src" %}
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
ins_pipe( pipe_slow );
%}
instruct mulXD_imm(regXD dst, immXD con) %{
predicate(UseSSE>=2);
match(Set dst (MulD dst con));
format %{ "MULSD $dst,[$con]" %}
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
ins_pipe( pipe_slow );
%}
instruct mulXD_mem(regXD dst, memory mem) %{
predicate(UseSSE>=2);
match(Set dst (MulD dst (LoadD mem)));
format %{ "MULSD $dst,$mem" %}
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
ins_pipe( pipe_slow );
%}
// Div two double precision floating point values in xmm
instruct divXD_reg(regXD dst, regXD src) %{
predicate(UseSSE>=2);
match(Set dst (DivD dst src));
format %{ "DIVSD $dst,$src" %}
opcode(0xF2, 0x0F, 0x5E);
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
ins_pipe( pipe_slow );
%}
instruct divXD_imm(regXD dst, immXD con) %{
predicate(UseSSE>=2);
match(Set dst (DivD dst con));
format %{ "DIVSD $dst,[$con]" %}
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
ins_pipe( pipe_slow );
%}
instruct divXD_mem(regXD dst, memory mem) %{
predicate(UseSSE>=2);
match(Set dst (DivD dst (LoadD mem)));
format %{ "DIVSD $dst,$mem" %}
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
ins_pipe( pipe_slow );
%}
instruct mulD_reg(regD dst, regD src) %{
predicate(UseSSE<=1);
match(Set dst (MulD dst src));
format %{ "FLD $src\n\t"
"DMULp $dst,ST" %}
opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
ins_cost(150);
ins_encode( Push_Reg_D(src),
OpcP, RegOpc(dst) );
ins_pipe( fpu_reg_reg );
%}
// Strict FP instruction biases argument before multiply then
// biases result to avoid double rounding of subnormals.
//
// scale arg1 by multiplying arg1 by 2^(-15360)
// load arg2
// multiply scaled arg1 by arg2
// rescale product by 2^(15360)
//
instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
match(Set dst (MulD dst src));
ins_cost(1); // Select this instruction for all strict FP double multiplies
format %{ "FLD StubRoutines::_fpu_subnormal_bias1\n\t"
"DMULp $dst,ST\n\t"
"FLD $src\n\t"
"DMULp $dst,ST\n\t"
"FLD StubRoutines::_fpu_subnormal_bias2\n\t"
"DMULp $dst,ST\n\t" %}
opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
ins_encode( strictfp_bias1(dst),
Push_Reg_D(src),
OpcP, RegOpc(dst),
strictfp_bias2(dst) );
ins_pipe( fpu_reg_reg );
%}
instruct mulD_reg_imm(regD dst, immD src) %{
predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
match(Set dst (MulD dst src));
ins_cost(200);
format %{ "FLD_D [$src]\n\t"
"DMULp $dst,ST" %}
opcode(0xDE, 0x1); /* DE /1 */
ins_encode( LdImmD(src),
OpcP, RegOpc(dst) );
ins_pipe( fpu_reg_mem );
%}
instruct mulD_reg_mem(regD dst, memory src) %{
predicate( UseSSE<=1 );
match(Set dst (MulD dst (LoadD src)));
ins_cost(200);
format %{ "FLD_D $src\n\t"
"DMULp $dst,ST" %}
opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/ /* LoadD DD /0 */
ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
OpcP, RegOpc(dst) );
ins_pipe( fpu_reg_mem );
%}
//
// Cisc-alternate to reg-reg multiply
instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
predicate( UseSSE<=1 );
match(Set dst (MulD src (LoadD mem)));
ins_cost(250);
format %{ "FLD_D $mem\n\t"
"DMUL ST,$src\n\t"
"FSTP_D $dst" %}
opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */ /* LoadD D9 /0 */
ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
OpcReg_F(src),
Pop_Reg_D(dst) );
ins_pipe( fpu_reg_reg_mem );
%}
// MACRO3 -- addD a mulD
// This instruction is a '2-address' instruction in that the result goes
// back to src2. This eliminates a move from the macro; possibly the
// register allocator will have to add it back (and maybe not).
instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
predicate( UseSSE<=1 );
match(Set src2 (AddD (MulD src0 src1) src2));
format %{ "FLD $src0\t# ===MACRO3d===\n\t"
"DMUL ST,$src1\n\t"
"DADDp $src2,ST" %}
ins_cost(250);
opcode(0xDD); /* LoadD DD /0 */
ins_encode( Push_Reg_F(src0),
FMul_ST_reg(src1),
FAddP_reg_ST(src2) );
ins_pipe( fpu_reg_reg_reg );
%}
// MACRO3 -- subD a mulD
instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
predicate( UseSSE<=1 );
match(Set src2 (SubD (MulD src0 src1) src2));
format %{ "FLD $src0\t# ===MACRO3d===\n\t"
"DMUL ST,$src1\n\t"
"DSUBRp $src2,ST" %}
ins_cost(250);
ins_encode( Push_Reg_F(src0),
FMul_ST_reg(src1),
Opcode(0xDE), Opc_plus(0xE0,src2));
ins_pipe( fpu_reg_reg_reg );
%}
instruct divD_reg(regD dst, regD src) %{
predicate( UseSSE<=1 );
match(Set dst (DivD dst src));
format %{ "FLD $src\n\t"
"FDIVp $dst,ST" %}
opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
ins_cost(150);
ins_encode( Push_Reg_D(src),
OpcP, RegOpc(dst) );
ins_pipe( fpu_reg_reg );
%}
// Strict FP instruction biases argument before division then
// biases result, to avoid double rounding of subnormals.
//
// scale dividend by multiplying dividend by 2^(-15360)
// load divisor
// divide scaled dividend by divisor
// rescale quotient by 2^(15360)
//
instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
predicate (UseSSE<=1);
match(Set dst (DivD dst src));
predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
ins_cost(01);
format %{ "FLD StubRoutines::_fpu_subnormal_bias1\n\t"
"DMULp $dst,ST\n\t"
"FLD $src\n\t"
"FDIVp $dst,ST\n\t"
"FLD StubRoutines::_fpu_subnormal_bias2\n\t"
"DMULp $dst,ST\n\t" %}
opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
ins_encode( strictfp_bias1(dst),
Push_Reg_D(src),
OpcP, RegOpc(dst),
strictfp_bias2(dst) );
ins_pipe( fpu_reg_reg );
%}
instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
match(Set dst (RoundDouble (DivD src1 src2)));
format %{ "FLD $src1\n\t"
"FDIV ST,$src2\n\t"
"FSTP_D $dst\t# D-round" %}
opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
ins_encode( Push_Reg_D(src1),
OpcP, RegOpc(src2), Pop_Mem_D(dst) );
ins_pipe( fpu_mem_reg_reg );
%}
instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
predicate(UseSSE<=1);
match(Set dst (ModD dst src));
effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
format %{ "DMOD $dst,$src" %}
ins_cost(250);
ins_encode(Push_Reg_Mod_D(dst, src),
emitModD(),
Push_Result_Mod_D(src),
Pop_Reg_D(dst));
ins_pipe( pipe_slow );
%}
instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
predicate(UseSSE>=2);
match(Set dst (ModD src0 src1));
effect(KILL rax, KILL cr);
format %{ "SUB ESP,8\t # DMOD\n"
"\tMOVSD [ESP+0],$src1\n"
"\tFLD_D [ESP+0]\n"
"\tMOVSD [ESP+0],$src0\n"
"\tFLD_D [ESP+0]\n"
"loop:\tFPREM\n"
"\tFWAIT\n"
"\tFNSTSW AX\n"
"\tSAHF\n"
"\tJP loop\n"
"\tFSTP_D [ESP+0]\n"
"\tMOVSD $dst,[ESP+0]\n"
"\tADD ESP,8\n"
"\tFSTP ST0\t # Restore FPU Stack"
%}
ins_cost(250);
ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
ins_pipe( pipe_slow );
%}
instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
predicate (UseSSE<=1);
match(Set dst (SinD src));
ins_cost(1800);
format %{ "DSIN $dst" %}
opcode(0xD9, 0xFE);
ins_encode( OpcP, OpcS );
ins_pipe( pipe_slow );
%}
instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
predicate (UseSSE>=2);
match(Set dst (SinD dst));
effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
ins_cost(1800);
format %{ "DSIN $dst" %}
opcode(0xD9, 0xFE);
ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
ins_pipe( pipe_slow );
%}
instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
predicate (UseSSE<=1);
match(Set dst (CosD src));
ins_cost(1800);
format %{ "DCOS $dst" %}
opcode(0xD9, 0xFF);
ins_encode( OpcP, OpcS );
ins_pipe( pipe_slow );
%}
instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
predicate (UseSSE>=2);
match(Set dst (CosD dst));
effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
ins_cost(1800);
format %{ "DCOS $dst" %}
opcode(0xD9, 0xFF);
ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
ins_pipe( pipe_slow );
%}
instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
predicate (UseSSE<=1);
match(Set dst(TanD src));
format %{ "DTAN $dst" %}
ins_encode( Opcode(0xD9), Opcode(0xF2), // fptan
Opcode(0xDD), Opcode(0xD8)); // fstp st
ins_pipe( pipe_slow );
%}
instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
predicate (UseSSE>=2);
match(Set dst(TanD dst));
effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
format %{ "DTAN $dst" %}
ins_encode( Push_SrcXD(dst),
Opcode(0xD9), Opcode(0xF2), // fptan
Opcode(0xDD), Opcode(0xD8), // fstp st
Push_ResultXD(dst) );
ins_pipe( pipe_slow );
%}
instruct atanD_reg(regD dst, regD src) %{
predicate (UseSSE<=1);
match(Set dst(AtanD dst src));
format %{ "DATA $dst,$src" %}
opcode(0xD9, 0xF3);
ins_encode( Push_Reg_D(src),
OpcP, OpcS, RegOpc(dst) );
ins_pipe( pipe_slow );
%}
instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
predicate (UseSSE>=2);
match(Set dst(AtanD dst src));
effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
format %{ "DATA $dst,$src" %}
opcode(0xD9, 0xF3);
ins_encode( Push_SrcXD(src),
OpcP, OpcS, Push_ResultXD(dst) );
ins_pipe( pipe_slow );
%}
instruct sqrtD_reg(regD dst, regD src) %{
predicate (UseSSE<=1);
match(Set dst (SqrtD src));
format %{ "DSQRT $dst,$src" %}
opcode(0xFA, 0xD9);
ins_encode( Push_Reg_D(src),
OpcS, OpcP, Pop_Reg_D(dst) );
ins_pipe( pipe_slow );
%}
instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
predicate (UseSSE<=1);
match(Set Y (PowD X Y)); // Raise X to the Yth power
effect(KILL rax, KILL rbx, KILL rcx);
format %{ "SUB ESP,8\t\t# Fast-path POW encoding\n\t"
"FLD_D $X\n\t"
"FYL2X \t\t\t# Q=Y*ln2(X)\n\t"
"FDUP \t\t\t# Q Q\n\t"
"FRNDINT\t\t\t# int(Q) Q\n\t"
"FSUB ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
"FISTP dword [ESP]\n\t"
"F2XM1 \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
"FLD1 \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
"FADDP \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
"MOV EAX,[ESP]\t# Pick up int(Q)\n\t"
"MOV ECX,0xFFFFF800\t# Overflow mask\n\t"
"ADD EAX,1023\t\t# Double exponent bias\n\t"
"MOV EBX,EAX\t\t# Preshifted biased expo\n\t"
"SHL EAX,20\t\t# Shift exponent into place\n\t"
"TEST EBX,ECX\t\t# Check for overflow\n\t"
"CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
"MOV [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
"MOV [ESP+0],0\n\t"
"FMUL ST(0),[ESP+0]\t# Scale\n\t"
"ADD ESP,8"
%}
ins_encode( push_stack_temp_qword,
Push_Reg_D(X),
Opcode(0xD9), Opcode(0xF1), // fyl2x
pow_exp_core_encoding,
pop_stack_temp_qword);
ins_pipe( pipe_slow );
%}
instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
predicate (UseSSE>=2);
match(Set dst (PowD src0 src1)); // Raise src0 to the src1'th power
effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
format %{ "SUB ESP,8\t\t# Fast-path POW encoding\n\t"
"MOVSD [ESP],$src1\n\t"
"FLD FPR1,$src1\n\t"
"MOVSD [ESP],$src0\n\t"
"FLD FPR1,$src0\n\t"
"FYL2X \t\t\t# Q=Y*ln2(X)\n\t"
"FDUP \t\t\t# Q Q\n\t"
"FRNDINT\t\t\t# int(Q) Q\n\t"
"FSUB ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
"FISTP dword [ESP]\n\t"
"F2XM1 \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
"FLD1 \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
"FADDP \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
"MOV EAX,[ESP]\t# Pick up int(Q)\n\t"
"MOV ECX,0xFFFFF800\t# Overflow mask\n\t"
"ADD EAX,1023\t\t# Double exponent bias\n\t"
"MOV EBX,EAX\t\t# Preshifted biased expo\n\t"
"SHL EAX,20\t\t# Shift exponent into place\n\t"
"TEST EBX,ECX\t\t# Check for overflow\n\t"
"CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
"MOV [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
"MOV [ESP+0],0\n\t"
"FMUL ST(0),[ESP+0]\t# Scale\n\t"
"FST_D [ESP]\n\t"
"MOVSD $dst,[ESP]\n\t"
"ADD ESP,8"
%}
ins_encode( push_stack_temp_qword,
push_xmm_to_fpr1(src1),
push_xmm_to_fpr1(src0),
Opcode(0xD9), Opcode(0xF1), // fyl2x
pow_exp_core_encoding,
Push_ResultXD(dst) );
ins_pipe( pipe_slow );
%}
instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
predicate (UseSSE<=1);
match(Set dpr1 (ExpD dpr1));
effect(KILL rax, KILL rbx, KILL rcx);
format %{ "SUB ESP,8\t\t# Fast-path EXP encoding"
"FLDL2E \t\t\t# Ld log2(e) X\n\t"
"FMULP \t\t\t# Q=X*log2(e)\n\t"
"FDUP \t\t\t# Q Q\n\t"
"FRNDINT\t\t\t# int(Q) Q\n\t"
"FSUB ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
"FISTP dword [ESP]\n\t"
"F2XM1 \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
"FLD1 \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
"FADDP \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
"MOV EAX,[ESP]\t# Pick up int(Q)\n\t"
"MOV ECX,0xFFFFF800\t# Overflow mask\n\t"
"ADD EAX,1023\t\t# Double exponent bias\n\t"
"MOV EBX,EAX\t\t# Preshifted biased expo\n\t"
"SHL EAX,20\t\t# Shift exponent into place\n\t"
"TEST EBX,ECX\t\t# Check for overflow\n\t"
"CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
"MOV [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
"MOV [ESP+0],0\n\t"
"FMUL ST(0),[ESP+0]\t# Scale\n\t"
"ADD ESP,8"
%}
ins_encode( push_stack_temp_qword,
Opcode(0xD9), Opcode(0xEA), // fldl2e
Opcode(0xDE), Opcode(0xC9), // fmulp
pow_exp_core_encoding,
pop_stack_temp_qword);
ins_pipe( pipe_slow );
%}
instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
predicate (UseSSE>=2);
match(Set dst (ExpD src));
effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
format %{ "SUB ESP,8\t\t# Fast-path EXP encoding\n\t"
"MOVSD [ESP],$src\n\t"
"FLDL2E \t\t\t# Ld log2(e) X\n\t"
"FMULP \t\t\t# Q=X*log2(e) X\n\t"
"FDUP \t\t\t# Q Q\n\t"
"FRNDINT\t\t\t# int(Q) Q\n\t"
"FSUB ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
"FISTP dword [ESP]\n\t"
"F2XM1 \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
"FLD1 \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
"FADDP \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
"MOV EAX,[ESP]\t# Pick up int(Q)\n\t"
"MOV ECX,0xFFFFF800\t# Overflow mask\n\t"
"ADD EAX,1023\t\t# Double exponent bias\n\t"
"MOV EBX,EAX\t\t# Preshifted biased expo\n\t"
"SHL EAX,20\t\t# Shift exponent into place\n\t"
"TEST EBX,ECX\t\t# Check for overflow\n\t"
"CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
"MOV [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
"MOV [ESP+0],0\n\t"
"FMUL ST(0),[ESP+0]\t# Scale\n\t"
"FST_D [ESP]\n\t"
"MOVSD $dst,[ESP]\n\t"
"ADD ESP,8"
%}
ins_encode( Push_SrcXD(src),
Opcode(0xD9), Opcode(0xEA), // fldl2e
Opcode(0xDE), Opcode(0xC9), // fmulp
pow_exp_core_encoding,
Push_ResultXD(dst) );
ins_pipe( pipe_slow );
%}
instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
predicate (UseSSE<=1);
// The source Double operand on FPU stack
match(Set dst (Log10D src));
// fldlg2 ; push log_10(2) on the FPU stack; full 80-bit number
// fxch ; swap ST(0) with ST(1)
// fyl2x ; compute log_10(2) * log_2(x)
format %{ "FLDLG2 \t\t\t#Log10\n\t"
"FXCH \n\t"
"FYL2X \t\t\t# Q=Log10*Log_2(x)"
%}
ins_encode( Opcode(0xD9), Opcode(0xEC), // fldlg2
Opcode(0xD9), Opcode(0xC9), // fxch
Opcode(0xD9), Opcode(0xF1)); // fyl2x
ins_pipe( pipe_slow );
%}
instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
predicate (UseSSE>=2);
effect(KILL cr);
match(Set dst (Log10D src));
// fldlg2 ; push log_10(2) on the FPU stack; full 80-bit number
// fyl2x ; compute log_10(2) * log_2(x)
format %{ "FLDLG2 \t\t\t#Log10\n\t"
"FYL2X \t\t\t# Q=Log10*Log_2(x)"
%}
ins_encode( Opcode(0xD9), Opcode(0xEC), // fldlg2
Push_SrcXD(src),
Opcode(0xD9), Opcode(0xF1), // fyl2x
Push_ResultXD(dst));
ins_pipe( pipe_slow );
%}
instruct logD_reg(regDPR1 dst, regDPR1 src) %{
predicate (UseSSE<=1);
// The source Double operand on FPU stack
match(Set dst (LogD src));
// fldln2 ; push log_e(2) on the FPU stack; full 80-bit number
// fxch ; swap ST(0) with ST(1)
// fyl2x ; compute log_e(2) * log_2(x)
format %{ "FLDLN2 \t\t\t#Log_e\n\t"
"FXCH \n\t"
"FYL2X \t\t\t# Q=Log_e*Log_2(x)"
%}
ins_encode( Opcode(0xD9), Opcode(0xED), // fldln2
Opcode(0xD9), Opcode(0xC9), // fxch
Opcode(0xD9), Opcode(0xF1)); // fyl2x
ins_pipe( pipe_slow );
%}
instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
predicate (UseSSE>=2);
effect(KILL cr);
// The source and result Double operands in XMM registers
match(Set dst (LogD src));
// fldln2 ; push log_e(2) on the FPU stack; full 80-bit number
// fyl2x ; compute log_e(2) * log_2(x)
format %{ "FLDLN2 \t\t\t#Log_e\n\t"
"FYL2X \t\t\t# Q=Log_e*Log_2(x)"
%}
ins_encode( Opcode(0xD9), Opcode(0xED), // fldln2
Push_SrcXD(src),
Opcode(0xD9), Opcode(0xF1), // fyl2x
Push_ResultXD(dst));
ins_pipe( pipe_slow );
%}
//-------------Float Instructions-------------------------------
// Float Math
// Code for float compare:
// fcompp();
// fwait(); fnstsw_ax();
// sahf();
// movl(dst, unordered_result);
// jcc(Assembler::parity, exit);
// movl(dst, less_result);
// jcc(Assembler::below, exit);
// movl(dst, equal_result);
// jcc(Assembler::equal, exit);
// movl(dst, greater_result);
// exit:
// P6 version of float compare, sets condition codes in EFLAGS
instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
predicate(VM_Version::supports_cmov() && UseSSE == 0);
match(Set cr (CmpF src1 src2));
effect(KILL rax);
ins_cost(150);
format %{ "FLD $src1\n\t"
"FUCOMIP ST,$src2 // P6 instruction\n\t"
"JNP exit\n\t"
"MOV ah,1 // saw a NaN, set CF (treat as LT)\n\t"
"SAHF\n"
"exit:\tNOP // avoid branch to branch" %}
opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
ins_encode( Push_Reg_D(src1),
OpcP, RegOpc(src2),
cmpF_P6_fixup );
ins_pipe( pipe_slow );
%}
// Compare & branch
instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
predicate(UseSSE == 0);
match(Set cr (CmpF src1 src2));
effect(KILL rax);
ins_cost(200);
format %{ "FLD $src1\n\t"
"FCOMp $src2\n\t"
"FNSTSW AX\n\t"
"TEST AX,0x400\n\t"
"JZ,s flags\n\t"
"MOV AH,1\t# unordered treat as LT\n"
"flags:\tSAHF" %}
opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
ins_encode( Push_Reg_D(src1),
OpcP, RegOpc(src2),
fpu_flags);
ins_pipe( pipe_slow );
%}
// Compare vs zero into -1,0,1
instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
predicate(UseSSE == 0);
match(Set dst (CmpF3 src1 zero));
effect(KILL cr, KILL rax);
ins_cost(280);
format %{ "FTSTF $dst,$src1" %}
opcode(0xE4, 0xD9);
ins_encode( Push_Reg_D(src1),
OpcS, OpcP, PopFPU,
CmpF_Result(dst));
ins_pipe( pipe_slow );
%}
// Compare into -1,0,1
instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
predicate(UseSSE == 0);
match(Set dst (CmpF3 src1 src2));
effect(KILL cr, KILL rax);
ins_cost(300);
format %{ "FCMPF $dst,$src1,$src2" %}
opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
ins_encode( Push_Reg_D(src1),
OpcP, RegOpc(src2),
CmpF_Result(dst));
ins_pipe( pipe_slow );
%}
// float compare and set condition codes in EFLAGS by XMM regs
instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
predicate(UseSSE>=1);
match(Set cr (CmpF dst src));
effect(KILL rax);
ins_cost(145);
format %{ "COMISS $dst,$src\n"
"\tJNP exit\n"
"\tMOV ah,1 // saw a NaN, set CF\n"
"\tSAHF\n"
"exit:\tNOP // avoid branch to branch" %}
opcode(0x0F, 0x2F);
ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
ins_pipe( pipe_slow );
%}
// float compare and set condition codes in EFLAGS by XMM regs
instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
predicate(UseSSE>=1);
match(Set cr (CmpF dst (LoadF src)));
effect(KILL rax);
ins_cost(165);
format %{ "COMISS $dst,$src\n"
"\tJNP exit\n"
"\tMOV ah,1 // saw a NaN, set CF\n"
"\tSAHF\n"
"exit:\tNOP // avoid branch to branch" %}
opcode(0x0F, 0x2F);
ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
ins_pipe( pipe_slow );
%}
// Compare into -1,0,1 in XMM
instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
predicate(UseSSE>=1);
match(Set dst (CmpF3 src1 src2));
effect(KILL cr);
ins_cost(255);
format %{ "XOR $dst,$dst\n"
"\tCOMISS $src1,$src2\n"
"\tJP,s nan\n"
"\tJEQ,s exit\n"
"\tJA,s inc\n"
"nan:\tDEC $dst\n"
"\tJMP,s exit\n"
"inc:\tINC $dst\n"
"exit:"
%}
opcode(0x0F, 0x2F);
ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
ins_pipe( pipe_slow );
%}
// Compare into -1,0,1 in XMM and memory
instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
predicate(UseSSE>=1);
match(Set dst (CmpF3 src1 (LoadF mem)));
effect(KILL cr);
ins_cost(275);
format %{ "COMISS $src1,$mem\n"
"\tMOV $dst,0\t\t# do not blow flags\n"
"\tJP,s nan\n"
"\tJEQ,s exit\n"
"\tJA,s inc\n"
"nan:\tDEC $dst\n"
"\tJMP,s exit\n"
"inc:\tINC $dst\n"
"exit:"
%}
opcode(0x0F, 0x2F);
ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
ins_pipe( pipe_slow );
%}
// Spill to obtain 24-bit precision
instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
match(Set dst (SubF src1 src2));
format %{ "FSUB $dst,$src1 - $src2" %}
opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
ins_encode( Push_Reg_F(src1),
OpcReg_F(src2),
Pop_Mem_F(dst) );
ins_pipe( fpu_mem_reg_reg );
%}
//
// This instruction does not round to 24-bits
instruct subF_reg(regF dst, regF src) %{
predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
match(Set dst (SubF dst src));
format %{ "FSUB $dst,$src" %}
opcode(0xDE, 0x5); /* DE E8+i or DE /5 */
ins_encode( Push_Reg_F(src),
OpcP, RegOpc(dst) );
ins_pipe( fpu_reg_reg );
%}
// Spill to obtain 24-bit precision
instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
match(Set dst (AddF src1 src2));
format %{ "FADD $dst,$src1,$src2" %}
opcode(0xD8, 0x0); /* D8 C0+i */
ins_encode( Push_Reg_F(src2),
OpcReg_F(src1),
Pop_Mem_F(dst) );
ins_pipe( fpu_mem_reg_reg );
%}
//
// This instruction does not round to 24-bits
instruct addF_reg(regF dst, regF src) %{
predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
match(Set dst (AddF dst src));
format %{ "FLD $src\n\t"
"FADDp $dst,ST" %}
opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
ins_encode( Push_Reg_F(src),
OpcP, RegOpc(dst) );
ins_pipe( fpu_reg_reg );
%}
// Add two single precision floating point values in xmm
instruct addX_reg(regX dst, regX src) %{
predicate(UseSSE>=1);
match(Set dst (AddF dst src));
format %{ "ADDSS $dst,$src" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
ins_pipe( pipe_slow );
%}
instruct addX_imm(regX dst, immXF con) %{
predicate(UseSSE>=1);
match(Set dst (AddF dst con));
format %{ "ADDSS $dst,[$con]" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
ins_pipe( pipe_slow );
%}
instruct addX_mem(regX dst, memory mem) %{
predicate(UseSSE>=1);
match(Set dst (AddF dst (LoadF mem)));
format %{ "ADDSS $dst,$mem" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
ins_pipe( pipe_slow );
%}
// Subtract two single precision floating point values in xmm
instruct subX_reg(regX dst, regX src) %{
predicate(UseSSE>=1);
match(Set dst (SubF dst src));
format %{ "SUBSS $dst,$src" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
ins_pipe( pipe_slow );
%}
instruct subX_imm(regX dst, immXF con) %{
predicate(UseSSE>=1);
match(Set dst (SubF dst con));
format %{ "SUBSS $dst,[$con]" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
ins_pipe( pipe_slow );
%}
instruct subX_mem(regX dst, memory mem) %{
predicate(UseSSE>=1);
match(Set dst (SubF dst (LoadF mem)));
format %{ "SUBSS $dst,$mem" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
ins_pipe( pipe_slow );
%}
// Multiply two single precision floating point values in xmm
instruct mulX_reg(regX dst, regX src) %{
predicate(UseSSE>=1);
match(Set dst (MulF dst src));
format %{ "MULSS $dst,$src" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
ins_pipe( pipe_slow );
%}
instruct mulX_imm(regX dst, immXF con) %{
predicate(UseSSE>=1);
match(Set dst (MulF dst con));
format %{ "MULSS $dst,[$con]" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
ins_pipe( pipe_slow );
%}
instruct mulX_mem(regX dst, memory mem) %{
predicate(UseSSE>=1);
match(Set dst (MulF dst (LoadF mem)));
format %{ "MULSS $dst,$mem" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
ins_pipe( pipe_slow );
%}
// Divide two single precision floating point values in xmm
instruct divX_reg(regX dst, regX src) %{
predicate(UseSSE>=1);
match(Set dst (DivF dst src));
format %{ "DIVSS $dst,$src" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
ins_pipe( pipe_slow );
%}
instruct divX_imm(regX dst, immXF con) %{
predicate(UseSSE>=1);
match(Set dst (DivF dst con));
format %{ "DIVSS $dst,[$con]" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
ins_pipe( pipe_slow );
%}
instruct divX_mem(regX dst, memory mem) %{
predicate(UseSSE>=1);
match(Set dst (DivF dst (LoadF mem)));
format %{ "DIVSS $dst,$mem" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
ins_pipe( pipe_slow );
%}
// Get the square root of a single precision floating point values in xmm
instruct sqrtX_reg(regX dst, regX src) %{
predicate(UseSSE>=1);
match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
format %{ "SQRTSS $dst,$src" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
ins_pipe( pipe_slow );
%}
instruct sqrtX_mem(regX dst, memory mem) %{
predicate(UseSSE>=1);
match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
format %{ "SQRTSS $dst,$mem" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
ins_pipe( pipe_slow );
%}
// Get the square root of a double precision floating point values in xmm
instruct sqrtXD_reg(regXD dst, regXD src) %{
predicate(UseSSE>=2);
match(Set dst (SqrtD src));
format %{ "SQRTSD $dst,$src" %}
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
ins_pipe( pipe_slow );
%}
instruct sqrtXD_mem(regXD dst, memory mem) %{
predicate(UseSSE>=2);
match(Set dst (SqrtD (LoadD mem)));
format %{ "SQRTSD $dst,$mem" %}
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
ins_pipe( pipe_slow );
%}
instruct absF_reg(regFPR1 dst, regFPR1 src) %{
predicate(UseSSE==0);
match(Set dst (AbsF src));
ins_cost(100);
format %{ "FABS" %}
opcode(0xE1, 0xD9);
ins_encode( OpcS, OpcP );
ins_pipe( fpu_reg_reg );
%}
instruct absX_reg(regX dst ) %{
predicate(UseSSE>=1);
match(Set dst (AbsF dst));
format %{ "ANDPS $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
ins_encode( AbsXF_encoding(dst));
ins_pipe( pipe_slow );
%}
instruct negF_reg(regFPR1 dst, regFPR1 src) %{
predicate(UseSSE==0);
match(Set dst (NegF src));
ins_cost(100);
format %{ "FCHS" %}
opcode(0xE0, 0xD9);
ins_encode( OpcS, OpcP );
ins_pipe( fpu_reg_reg );
%}
instruct negX_reg( regX dst ) %{
predicate(UseSSE>=1);
match(Set dst (NegF dst));
format %{ "XORPS $dst,[0x80000000]\t# CHS F by sign flipping" %}
ins_encode( NegXF_encoding(dst));
ins_pipe( pipe_slow );
%}
// Cisc-alternate to addF_reg
// Spill to obtain 24-bit precision
instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
match(Set dst (AddF src1 (LoadF src2)));
format %{ "FLD $src2\n\t"
"FADD ST,$src1\n\t"
"FSTP_S $dst" %}
opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */ /* LoadF D9 /0 */
ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
OpcReg_F(src1),
Pop_Mem_F(dst) );
ins_pipe( fpu_mem_reg_mem );
%}
//
// Cisc-alternate to addF_reg
// This instruction does not round to 24-bits
instruct addF_reg_mem(regF dst, memory src) %{
predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
match(Set dst (AddF dst (LoadF src)));
format %{ "FADD $dst,$src" %}
opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/ /* LoadF D9 /0 */
ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
OpcP, RegOpc(dst) );
ins_pipe( fpu_reg_mem );
%}
// // Following two instructions for _222_mpegaudio
// Spill to obtain 24-bit precision
instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
match(Set dst (AddF src1 src2));
format %{ "FADD $dst,$src1,$src2" %}
opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */ /* LoadF D9 /0 */
ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
OpcReg_F(src2),
Pop_Mem_F(dst) );
ins_pipe( fpu_mem_reg_mem );
%}
// Cisc-spill variant
// Spill to obtain 24-bit precision
instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
match(Set dst (AddF src1 (LoadF src2)));
format %{ "FADD $dst,$src1,$src2 cisc" %}
opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */ /* LoadF D9 /0 */
ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
set_instruction_start,
OpcP, RMopc_Mem(secondary,src1),
Pop_Mem_F(dst) );
ins_pipe( fpu_mem_mem_mem );
%}
// Spill to obtain 24-bit precision
instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
match(Set dst (AddF src1 src2));
format %{ "FADD $dst,$src1,$src2" %}
opcode(0xD8, 0x0, 0xD9); /* D8 /0 */ /* LoadF D9 /0 */
ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
set_instruction_start,
OpcP, RMopc_Mem(secondary,src1),
Pop_Mem_F(dst) );
ins_pipe( fpu_mem_mem_mem );
%}
// Spill to obtain 24-bit precision
instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
match(Set dst (AddF src1 src2));
format %{ "FLD $src1\n\t"
"FADD $src2\n\t"
"FSTP_S $dst" %}
opcode(0xD8, 0x00); /* D8 /0 */
ins_encode( Push_Reg_F(src1),
Opc_MemImm_F(src2),
Pop_Mem_F(dst));
ins_pipe( fpu_mem_reg_con );
%}
//
// This instruction does not round to 24-bits
instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
match(Set dst (AddF src1 src2));
format %{ "FLD $src1\n\t"
"FADD $src2\n\t"
"FSTP_S $dst" %}
opcode(0xD8, 0x00); /* D8 /0 */
ins_encode( Push_Reg_F(src1),
Opc_MemImm_F(src2),
Pop_Reg_F(dst));
ins_pipe( fpu_reg_reg_con );
%}
// Spill to obtain 24-bit precision
instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
match(Set dst (MulF src1 src2));
format %{ "FLD $src1\n\t"
"FMUL $src2\n\t"
"FSTP_S $dst" %}
opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
ins_encode( Push_Reg_F(src1),
OpcReg_F(src2),
Pop_Mem_F(dst) );
ins_pipe( fpu_mem_reg_reg );
%}
//
// This instruction does not round to 24-bits
instruct mulF_reg(regF dst, regF src1, regF src2) %{
predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
match(Set dst (MulF src1 src2));
format %{ "FLD $src1\n\t"
"FMUL $src2\n\t"
"FSTP_S $dst" %}
opcode(0xD8, 0x1); /* D8 C8+i */
ins_encode( Push_Reg_F(src2),
OpcReg_F(src1),
Pop_Reg_F(dst) );
ins_pipe( fpu_reg_reg_reg );
%}
// Spill to obtain 24-bit precision
// Cisc-alternate to reg-reg multiply
instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
match(Set dst (MulF src1 (LoadF src2)));
format %{ "FLD_S $src2\n\t"
"FMUL $src1\n\t"
"FSTP_S $dst" %}
opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/ /* LoadF D9 /0 */
ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
OpcReg_F(src1),
Pop_Mem_F(dst) );
ins_pipe( fpu_mem_reg_mem );
%}
//
// This instruction does not round to 24-bits
// Cisc-alternate to reg-reg multiply
instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
match(Set dst (MulF src1 (LoadF src2)));
format %{ "FMUL $dst,$src1,$src2" %}
opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */ /* LoadF D9 /0 */
ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
OpcReg_F(src1),
Pop_Reg_F(dst) );
ins_pipe( fpu_reg_reg_mem );
%}
// Spill to obtain 24-bit precision
instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
match(Set dst (MulF src1 src2));
format %{ "FMUL $dst,$src1,$src2" %}
opcode(0xD8, 0x1, 0xD9); /* D8 /1 */ /* LoadF D9 /0 */
ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
set_instruction_start,
OpcP, RMopc_Mem(secondary,src1),
Pop_Mem_F(dst) );
ins_pipe( fpu_mem_mem_mem );
%}
// Spill to obtain 24-bit precision
instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
match(Set dst (MulF src1 src2));
format %{ "FMULc $dst,$src1,$src2" %}
opcode(0xD8, 0x1); /* D8 /1*/
ins_encode( Push_Reg_F(src1),
Opc_MemImm_F(src2),
Pop_Mem_F(dst));
ins_pipe( fpu_mem_reg_con );
%}
//
// This instruction does not round to 24-bits
instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
match(Set dst (MulF src1 src2));
format %{ "FMULc $dst. $src1, $src2" %}
opcode(0xD8, 0x1); /* D8 /1*/
ins_encode( Push_Reg_F(src1),
Opc_MemImm_F(src2),
Pop_Reg_F(dst));
ins_pipe( fpu_reg_reg_con );
%}
//
// MACRO1 -- subsume unshared load into mulF
// This instruction does not round to 24-bits
instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
match(Set dst (MulF (LoadF mem1) src));
format %{ "FLD $mem1 ===MACRO1===\n\t"
"FMUL ST,$src\n\t"
"FSTP $dst" %}
opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */ /* LoadF D9 /0 */
ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
OpcReg_F(src),
Pop_Reg_F(dst) );
ins_pipe( fpu_reg_reg_mem );
%}
//
// MACRO2 -- addF a mulF which subsumed an unshared load
// This instruction does not round to 24-bits
instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
ins_cost(95);
format %{ "FLD $mem1 ===MACRO2===\n\t"
"FMUL ST,$src1 subsume mulF left load\n\t"
"FADD ST,$src2\n\t"
"FSTP $dst" %}
opcode(0xD9); /* LoadF D9 /0 */
ins_encode( OpcP, RMopc_Mem(0x00,mem1),
FMul_ST_reg(src1),
FAdd_ST_reg(src2),
Pop_Reg_F(dst) );
ins_pipe( fpu_reg_mem_reg_reg );
%}
// MACRO3 -- addF a mulF
// This instruction does not round to 24-bits. It is a '2-address'
// instruction in that the result goes back to src2. This eliminates
// a move from the macro; possibly the register allocator will have
// to add it back (and maybe not).
instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
match(Set src2 (AddF (MulF src0 src1) src2));
format %{ "FLD $src0 ===MACRO3===\n\t"
"FMUL ST,$src1\n\t"
"FADDP $src2,ST" %}
opcode(0xD9); /* LoadF D9 /0 */
ins_encode( Push_Reg_F(src0),
FMul_ST_reg(src1),
FAddP_reg_ST(src2) );
ins_pipe( fpu_reg_reg_reg );
%}
// MACRO4 -- divF subF
// This instruction does not round to 24-bits
instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
match(Set dst (DivF (SubF src2 src1) src3));
format %{ "FLD $src2 ===MACRO4===\n\t"
"FSUB ST,$src1\n\t"
"FDIV ST,$src3\n\t"
"FSTP $dst" %}
opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
ins_encode( Push_Reg_F(src2),
subF_divF_encode(src1,src3),
Pop_Reg_F(dst) );
ins_pipe( fpu_reg_reg_reg_reg );
%}
// Spill to obtain 24-bit precision
instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
match(Set dst (DivF src1 src2));
format %{ "FDIV $dst,$src1,$src2" %}
opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
ins_encode( Push_Reg_F(src1),
OpcReg_F(src2),
Pop_Mem_F(dst) );
ins_pipe( fpu_mem_reg_reg );
%}
//
// This instruction does not round to 24-bits
instruct divF_reg(regF dst, regF src) %{
predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
match(Set dst (DivF dst src));
format %{ "FDIV $dst,$src" %}
opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
ins_encode( Push_Reg_F(src),
OpcP, RegOpc(dst) );
ins_pipe( fpu_reg_reg );
%}
// Spill to obtain 24-bit precision
instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
match(Set dst (ModF src1 src2));
effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
format %{ "FMOD $dst,$src1,$src2" %}
ins_encode( Push_Reg_Mod_D(src1, src2),
emitModD(),
Push_Result_Mod_D(src2),
Pop_Mem_F(dst));
ins_pipe( pipe_slow );
%}
//
// This instruction does not round to 24-bits
instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
match(Set dst (ModF dst src));
effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
format %{ "FMOD $dst,$src" %}
ins_encode(Push_Reg_Mod_D(dst, src),
emitModD(),
Push_Result_Mod_D(src),
Pop_Reg_F(dst));
ins_pipe( pipe_slow );
%}
instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
predicate(UseSSE>=1);
match(Set dst (ModF src0 src1));
effect(KILL rax, KILL cr);
format %{ "SUB ESP,4\t # FMOD\n"
"\tMOVSS [ESP+0],$src1\n"
"\tFLD_S [ESP+0]\n"
"\tMOVSS [ESP+0],$src0\n"
"\tFLD_S [ESP+0]\n"
"loop:\tFPREM\n"
"\tFWAIT\n"
"\tFNSTSW AX\n"
"\tSAHF\n"
"\tJP loop\n"
"\tFSTP_S [ESP+0]\n"
"\tMOVSS $dst,[ESP+0]\n"
"\tADD ESP,4\n"
"\tFSTP ST0\t # Restore FPU Stack"
%}
ins_cost(250);
ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
ins_pipe( pipe_slow );
%}
//----------Arithmetic Conversion Instructions---------------------------------
// The conversions operations are all Alpha sorted. Please keep it that way!
instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
predicate(UseSSE==0);
match(Set dst (RoundFloat src));
ins_cost(125);
format %{ "FST_S $dst,$src\t# F-round" %}
ins_encode( Pop_Mem_Reg_F(dst, src) );
ins_pipe( fpu_mem_reg );
%}
instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
predicate(UseSSE<=1);
match(Set dst (RoundDouble src));
ins_cost(125);
format %{ "FST_D $dst,$src\t# D-round" %}
ins_encode( Pop_Mem_Reg_D(dst, src) );
ins_pipe( fpu_mem_reg );
%}
// Force rounding to 24-bit precision and 6-bit exponent
instruct convD2F_reg(stackSlotF dst, regD src) %{
predicate(UseSSE==0);
match(Set dst (ConvD2F src));
format %{ "FST_S $dst,$src\t# F-round" %}
expand %{
roundFloat_mem_reg(dst,src);
%}
%}
// Force rounding to 24-bit precision and 6-bit exponent
instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
predicate(UseSSE==1);
match(Set dst (ConvD2F src));
effect( KILL cr );
format %{ "SUB ESP,4\n\t"
"FST_S [ESP],$src\t# F-round\n\t"
"MOVSS $dst,[ESP]\n\t"
"ADD ESP,4" %}
ins_encode( D2X_encoding(dst, src) );
ins_pipe( pipe_slow );
%}
// Force rounding double precision to single precision
instruct convXD2X_reg(regX dst, regXD src) %{
predicate(UseSSE>=2);
match(Set dst (ConvD2F src));
format %{ "CVTSD2SS $dst,$src\t# F-round" %}
opcode(0xF2, 0x0F, 0x5A);
ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
ins_pipe( pipe_slow );
%}
instruct convF2D_reg_reg(regD dst, regF src) %{
predicate(UseSSE==0);
match(Set dst (ConvF2D src));
format %{ "FST_S $dst,$src\t# D-round" %}
ins_encode( Pop_Reg_Reg_D(dst, src));
ins_pipe( fpu_reg_reg );
%}
instruct convF2D_reg(stackSlotD dst, regF src) %{
predicate(UseSSE==1);
match(Set dst (ConvF2D src));
format %{ "FST_D $dst,$src\t# D-round" %}
expand %{
roundDouble_mem_reg(dst,src);
%}
%}
instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
predicate(UseSSE==1);
match(Set dst (ConvF2D src));
effect( KILL cr );
format %{ "SUB ESP,4\n\t"
"MOVSS [ESP] $src\n\t"
"FLD_S [ESP]\n\t"
"ADD ESP,4\n\t"
"FSTP $dst\t# D-round" %}
ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
ins_pipe( pipe_slow );
%}
instruct convX2XD_reg(regXD dst, regX src) %{
predicate(UseSSE>=2);
match(Set dst (ConvF2D src));
format %{ "CVTSS2SD $dst,$src\t# D-round" %}
opcode(0xF3, 0x0F, 0x5A);
ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
ins_pipe( pipe_slow );
%}
// Convert a double to an int. If the double is a NAN, stuff a zero in instead.
instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
predicate(UseSSE<=1);
match(Set dst (ConvD2I src));
effect( KILL tmp, KILL cr );
format %{ "FLD $src\t# Convert double to int \n\t"
"FLDCW trunc mode\n\t"
"SUB ESP,4\n\t"
"FISTp [ESP + #0]\n\t"
"FLDCW std/24-bit mode\n\t"
"POP EAX\n\t"
"CMP EAX,0x80000000\n\t"
"JNE,s fast\n\t"
"FLD_D $src\n\t"
"CALL d2i_wrapper\n"
"fast:" %}
ins_encode( Push_Reg_D(src), D2I_encoding(src) );
ins_pipe( pipe_slow );
%}
// Convert a double to an int. If the double is a NAN, stuff a zero in instead.
instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
predicate(UseSSE>=2);
match(Set dst (ConvD2I src));
effect( KILL tmp, KILL cr );
format %{ "CVTTSD2SI $dst, $src\n\t"
"CMP $dst,0x80000000\n\t"
"JNE,s fast\n\t"
"SUB ESP, 8\n\t"
"MOVSD [ESP], $src\n\t"
"FLD_D [ESP]\n\t"
"ADD ESP, 8\n\t"
"CALL d2i_wrapper\n"
"fast:" %}
opcode(0x1); // double-precision conversion
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
ins_pipe( pipe_slow );
%}
instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
predicate(UseSSE<=1);
match(Set dst (ConvD2L src));
effect( KILL cr );
format %{ "FLD $src\t# Convert double to long\n\t"
"FLDCW trunc mode\n\t"
"SUB ESP,8\n\t"
"FISTp [ESP + #0]\n\t"
"FLDCW std/24-bit mode\n\t"
"POP EAX\n\t"
"POP EDX\n\t"
"CMP EDX,0x80000000\n\t"
"JNE,s fast\n\t"
"TEST EAX,EAX\n\t"
"JNE,s fast\n\t"
"FLD $src\n\t"
"CALL d2l_wrapper\n"
"fast:" %}
ins_encode( Push_Reg_D(src), D2L_encoding(src) );
ins_pipe( pipe_slow );
%}
// XMM lacks a float/double->long conversion, so use the old FPU stack.
instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
predicate (UseSSE>=2);
match(Set dst (ConvD2L src));
effect( KILL cr );
format %{ "SUB ESP,8\t# Convert double to long\n\t"
"MOVSD [ESP],$src\n\t"
"FLD_D [ESP]\n\t"
"FLDCW trunc mode\n\t"
"FISTp [ESP + #0]\n\t"
"FLDCW std/24-bit mode\n\t"
"POP EAX\n\t"
"POP EDX\n\t"
"CMP EDX,0x80000000\n\t"
"JNE,s fast\n\t"
"TEST EAX,EAX\n\t"
"JNE,s fast\n\t"
"SUB ESP,8\n\t"
"MOVSD [ESP],$src\n\t"
"FLD_D [ESP]\n\t"
"CALL d2l_wrapper\n"
"fast:" %}
ins_encode( XD2L_encoding(src) );
ins_pipe( pipe_slow );
%}
// Convert a double to an int. Java semantics require we do complex
// manglations in the corner cases. So we set the rounding mode to
// 'zero', store the darned double down as an int, and reset the
// rounding mode to 'nearest'. The hardware stores a flag value down
// if we would overflow or converted a NAN; we check for this and
// and go the slow path if needed.
instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
predicate(UseSSE==0);
match(Set dst (ConvF2I src));
effect( KILL tmp, KILL cr );
format %{ "FLD $src\t# Convert float to int \n\t"
"FLDCW trunc mode\n\t"
"SUB ESP,4\n\t"
"FISTp [ESP + #0]\n\t"
"FLDCW std/24-bit mode\n\t"
"POP EAX\n\t"
"CMP EAX,0x80000000\n\t"
"JNE,s fast\n\t"
"FLD $src\n\t"
"CALL d2i_wrapper\n"
"fast:" %}
// D2I_encoding works for F2I
ins_encode( Push_Reg_F(src), D2I_encoding(src) );
ins_pipe( pipe_slow );
%}
// Convert a float in xmm to an int reg.
instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
predicate(UseSSE>=1);
match(Set dst (ConvF2I src));
effect( KILL tmp, KILL cr );
format %{ "CVTTSS2SI $dst, $src\n\t"
"CMP $dst,0x80000000\n\t"
"JNE,s fast\n\t"
"SUB ESP, 4\n\t"
"MOVSS [ESP], $src\n\t"
"FLD [ESP]\n\t"
"ADD ESP, 4\n\t"
"CALL d2i_wrapper\n"
"fast:" %}
opcode(0x0); // single-precision conversion
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
ins_pipe( pipe_slow );
%}
instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
predicate(UseSSE==0);
match(Set dst (ConvF2L src));
effect( KILL cr );
format %{ "FLD $src\t# Convert float to long\n\t"
"FLDCW trunc mode\n\t"
"SUB ESP,8\n\t"
"FISTp [ESP + #0]\n\t"
"FLDCW std/24-bit mode\n\t"
"POP EAX\n\t"
"POP EDX\n\t"
"CMP EDX,0x80000000\n\t"
"JNE,s fast\n\t"
"TEST EAX,EAX\n\t"
"JNE,s fast\n\t"
"FLD $src\n\t"
"CALL d2l_wrapper\n"
"fast:" %}
// D2L_encoding works for F2L
ins_encode( Push_Reg_F(src), D2L_encoding(src) );
ins_pipe( pipe_slow );
%}
// XMM lacks a float/double->long conversion, so use the old FPU stack.
instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
predicate (UseSSE>=1);
match(Set dst (ConvF2L src));
effect( KILL cr );
format %{ "SUB ESP,8\t# Convert float to long\n\t"
"MOVSS [ESP],$src\n\t"
"FLD_S [ESP]\n\t"
"FLDCW trunc mode\n\t"
"FISTp [ESP + #0]\n\t"
"FLDCW std/24-bit mode\n\t"
"POP EAX\n\t"
"POP EDX\n\t"
"CMP EDX,0x80000000\n\t"
"JNE,s fast\n\t"
"TEST EAX,EAX\n\t"
"JNE,s fast\n\t"
"SUB ESP,4\t# Convert float to long\n\t"
"MOVSS [ESP],$src\n\t"
"FLD_S [ESP]\n\t"
"ADD ESP,4\n\t"
"CALL d2l_wrapper\n"
"fast:" %}
ins_encode( X2L_encoding(src) );
ins_pipe( pipe_slow );
%}
instruct convI2D_reg(regD dst, stackSlotI src) %{
predicate( UseSSE<=1 );
match(Set dst (ConvI2D src));
format %{ "FILD $src\n\t"
"FSTP $dst" %}
opcode(0xDB, 0x0); /* DB /0 */
ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
ins_pipe( fpu_reg_mem );
%}
instruct convI2XD_reg(regXD dst, eRegI src) %{
predicate( UseSSE>=2 && !UseXmmI2D );
match(Set dst (ConvI2D src));
format %{ "CVTSI2SD $dst,$src" %}
opcode(0xF2, 0x0F, 0x2A);
ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
ins_pipe( pipe_slow );
%}
instruct convI2XD_mem(regXD dst, memory mem) %{
predicate( UseSSE>=2 );
match(Set dst (ConvI2D (LoadI mem)));
format %{ "CVTSI2SD $dst,$mem" %}
opcode(0xF2, 0x0F, 0x2A);
ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
ins_pipe( pipe_slow );
%}
instruct convXI2XD_reg(regXD dst, eRegI src)
%{
predicate( UseSSE>=2 && UseXmmI2D );
match(Set dst (ConvI2D src));
format %{ "MOVD $dst,$src\n\t"
"CVTDQ2PD $dst,$dst\t# i2d" %}
ins_encode %{
__ movdl($dst$$XMMRegister, $src$$Register);
__ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
%}
ins_pipe(pipe_slow); // XXX
%}
instruct convI2D_mem(regD dst, memory mem) %{
predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
match(Set dst (ConvI2D (LoadI mem)));
format %{ "FILD $mem\n\t"
"FSTP $dst" %}
opcode(0xDB); /* DB /0 */
ins_encode( OpcP, RMopc_Mem(0x00,mem),
Pop_Reg_D(dst));
ins_pipe( fpu_reg_mem );
%}
// Convert a byte to a float; no rounding step needed.
instruct conv24I2F_reg(regF dst, stackSlotI src) %{
predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
match(Set dst (ConvI2F src));
format %{ "FILD $src\n\t"
"FSTP $dst" %}
opcode(0xDB, 0x0); /* DB /0 */
ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
ins_pipe( fpu_reg_mem );
%}
// In 24-bit mode, force exponent rounding by storing back out
instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
match(Set dst (ConvI2F src));
ins_cost(200);
format %{ "FILD $src\n\t"
"FSTP_S $dst" %}
opcode(0xDB, 0x0); /* DB /0 */
ins_encode( Push_Mem_I(src),
Pop_Mem_F(dst));
ins_pipe( fpu_mem_mem );
%}
// In 24-bit mode, force exponent rounding by storing back out
instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
match(Set dst (ConvI2F (LoadI mem)));
ins_cost(200);
format %{ "FILD $mem\n\t"
"FSTP_S $dst" %}
opcode(0xDB); /* DB /0 */
ins_encode( OpcP, RMopc_Mem(0x00,mem),
Pop_Mem_F(dst));
ins_pipe( fpu_mem_mem );
%}
// This instruction does not round to 24-bits
instruct convI2F_reg(regF dst, stackSlotI src) %{
predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
match(Set dst (ConvI2F src));
format %{ "FILD $src\n\t"
"FSTP $dst" %}
opcode(0xDB, 0x0); /* DB /0 */
ins_encode( Push_Mem_I(src),
Pop_Reg_F(dst));
ins_pipe( fpu_reg_mem );
%}
// This instruction does not round to 24-bits
instruct convI2F_mem(regF dst, memory mem) %{
predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
match(Set dst (ConvI2F (LoadI mem)));
format %{ "FILD $mem\n\t"
"FSTP $dst" %}
opcode(0xDB); /* DB /0 */
ins_encode( OpcP, RMopc_Mem(0x00,mem),
Pop_Reg_F(dst));
ins_pipe( fpu_reg_mem );
%}
// Convert an int to a float in xmm; no rounding step needed.
instruct convI2X_reg(regX dst, eRegI src) %{
predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
match(Set dst (ConvI2F src));
format %{ "CVTSI2SS $dst, $src" %}
opcode(0xF3, 0x0F, 0x2A); /* F3 0F 2A /r */
ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
ins_pipe( pipe_slow );
%}
instruct convXI2X_reg(regX dst, eRegI src)
%{
predicate( UseSSE>=2 && UseXmmI2F );
match(Set dst (ConvI2F src));
format %{ "MOVD $dst,$src\n\t"
"CVTDQ2PS $dst,$dst\t# i2f" %}
ins_encode %{
__ movdl($dst$$XMMRegister, $src$$Register);
__ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
%}
ins_pipe(pipe_slow); // XXX
%}
instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
match(Set dst (ConvI2L src));
effect(KILL cr);
format %{ "MOV $dst.lo,$src\n\t"
"MOV $dst.hi,$src\n\t"
"SAR $dst.hi,31" %}
ins_encode(convert_int_long(dst,src));
ins_pipe( ialu_reg_reg_long );
%}
// Zero-extend convert int to long
instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
match(Set dst (AndL (ConvI2L src) mask) );
effect( KILL flags );
format %{ "MOV $dst.lo,$src\n\t"
"XOR $dst.hi,$dst.hi" %}
opcode(0x33); // XOR
ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
ins_pipe( ialu_reg_reg_long );
%}
// Zero-extend long
instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
match(Set dst (AndL src mask) );
effect( KILL flags );
format %{ "MOV $dst.lo,$src.lo\n\t"
"XOR $dst.hi,$dst.hi\n\t" %}
opcode(0x33); // XOR
ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
ins_pipe( ialu_reg_reg_long );
%}
instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
predicate (UseSSE<=1);
match(Set dst (ConvL2D src));
effect( KILL cr );
format %{ "PUSH $src.hi\t# Convert long to double\n\t"
"PUSH $src.lo\n\t"
"FILD ST,[ESP + #0]\n\t"
"ADD ESP,8\n\t"
"FSTP_D $dst\t# D-round" %}
opcode(0xDF, 0x5); /* DF /5 */
ins_encode(convert_long_double(src), Pop_Mem_D(dst));
ins_pipe( pipe_slow );
%}
instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
predicate (UseSSE>=2);
match(Set dst (ConvL2D src));
effect( KILL cr );
format %{ "PUSH $src.hi\t# Convert long to double\n\t"
"PUSH $src.lo\n\t"
"FILD_D [ESP]\n\t"
"FSTP_D [ESP]\n\t"
"MOVSD $dst,[ESP]\n\t"
"ADD ESP,8" %}
opcode(0xDF, 0x5); /* DF /5 */
ins_encode(convert_long_double2(src), Push_ResultXD(dst));
ins_pipe( pipe_slow );
%}
instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
predicate (UseSSE>=1);
match(Set dst (ConvL2F src));
effect( KILL cr );
format %{ "PUSH $src.hi\t# Convert long to single float\n\t"
"PUSH $src.lo\n\t"
"FILD_D [ESP]\n\t"
"FSTP_S [ESP]\n\t"
"MOVSS $dst,[ESP]\n\t"
"ADD ESP,8" %}
opcode(0xDF, 0x5); /* DF /5 */
ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
ins_pipe( pipe_slow );
%}
instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
match(Set dst (ConvL2F src));
effect( KILL cr );
format %{ "PUSH $src.hi\t# Convert long to single float\n\t"
"PUSH $src.lo\n\t"
"FILD ST,[ESP + #0]\n\t"
"ADD ESP,8\n\t"
"FSTP_S $dst\t# F-round" %}
opcode(0xDF, 0x5); /* DF /5 */
ins_encode(convert_long_double(src), Pop_Mem_F(dst));
ins_pipe( pipe_slow );
%}
instruct convL2I_reg( eRegI dst, eRegL src ) %{
match(Set dst (ConvL2I src));
effect( DEF dst, USE src );
format %{ "MOV $dst,$src.lo" %}
ins_encode(enc_CopyL_Lo(dst,src));
ins_pipe( ialu_reg_reg );
%}
instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
match(Set dst (MoveF2I src));
effect( DEF dst, USE src );
ins_cost(100);
format %{ "MOV $dst,$src\t# MoveF2I_stack_reg" %}
opcode(0x8B);
ins_encode( OpcP, RegMem(dst,src));
ins_pipe( ialu_reg_mem );
%}
instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
predicate(UseSSE==0);
match(Set dst (MoveF2I src));
effect( DEF dst, USE src );
ins_cost(125);
format %{ "FST_S $dst,$src\t# MoveF2I_reg_stack" %}
ins_encode( Pop_Mem_Reg_F(dst, src) );
ins_pipe( fpu_mem_reg );
%}
instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
predicate(UseSSE>=1);
match(Set dst (MoveF2I src));
effect( DEF dst, USE src );
ins_cost(95);
format %{ "MOVSS $dst,$src\t# MoveF2I_reg_stack_sse" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
ins_pipe( pipe_slow );
%}
instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
predicate(UseSSE>=2);
match(Set dst (MoveF2I src));
effect( DEF dst, USE src );
ins_cost(85);
format %{ "MOVD $dst,$src\t# MoveF2I_reg_reg_sse" %}
ins_encode( MovX2I_reg(dst, src));
ins_pipe( pipe_slow );
%}
instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
match(Set dst (MoveI2F src));
effect( DEF dst, USE src );
ins_cost(100);
format %{ "MOV $dst,$src\t# MoveI2F_reg_stack" %}
opcode(0x89);
ins_encode( OpcPRegSS( dst, src ) );
ins_pipe( ialu_mem_reg );
%}
instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
predicate(UseSSE==0);
match(Set dst (MoveI2F src));
effect(DEF dst, USE src);
ins_cost(125);
format %{ "FLD_S $src\n\t"
"FSTP $dst\t# MoveI2F_stack_reg" %}
opcode(0xD9); /* D9 /0, FLD m32real */
ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
Pop_Reg_F(dst) );
ins_pipe( fpu_reg_mem );
%}
instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
predicate(UseSSE>=1);
match(Set dst (MoveI2F src));
effect( DEF dst, USE src );
ins_cost(95);
format %{ "MOVSS $dst,$src\t# MoveI2F_stack_reg_sse" %}
ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
ins_pipe( pipe_slow );
%}
instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
predicate(UseSSE>=2);
match(Set dst (MoveI2F src));
effect( DEF dst, USE src );
ins_cost(85);
format %{ "MOVD $dst,$src\t# MoveI2F_reg_reg_sse" %}
ins_encode( MovI2X_reg(dst, src) );
ins_pipe( pipe_slow );
%}
instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
match(Set dst (MoveD2L src));
effect(DEF dst, USE src);
ins_cost(250);
format %{ "MOV $dst.lo,$src\n\t"
"MOV $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
opcode(0x8B, 0x8B);
ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
ins_pipe( ialu_mem_long_reg );
%}
instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
predicate(UseSSE<=1);
match(Set dst (MoveD2L src));
effect(DEF dst, USE src);
ins_cost(125);
format %{ "FST_D $dst,$src\t# MoveD2L_reg_stack" %}
ins_encode( Pop_Mem_Reg_D(dst, src) );
ins_pipe( fpu_mem_reg );
%}
instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
predicate(UseSSE>=2);
match(Set dst (MoveD2L src));
effect(DEF dst, USE src);
ins_cost(95);
format %{ "MOVSD $dst,$src\t# MoveD2L_reg_stack_sse" %}
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
ins_pipe( pipe_slow );
%}
instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
predicate(UseSSE>=2);
match(Set dst (MoveD2L src));
effect(DEF dst, USE src, TEMP tmp);
ins_cost(85);
format %{ "MOVD $dst.lo,$src\n\t"
"PSHUFLW $tmp,$src,0x4E\n\t"
"MOVD $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
ins_encode( MovXD2L_reg(dst, src, tmp) );
ins_pipe( pipe_slow );
%}
instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
match(Set dst (MoveL2D src));
effect(DEF dst, USE src);
ins_cost(200);
format %{ "MOV $dst,$src.lo\n\t"
"MOV $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
opcode(0x89, 0x89);
ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
ins_pipe( ialu_mem_long_reg );
%}
instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
predicate(UseSSE<=1);
match(Set dst (MoveL2D src));
effect(DEF dst, USE src);
ins_cost(125);
format %{ "FLD_D $src\n\t"
"FSTP $dst\t# MoveL2D_stack_reg" %}
opcode(0xDD); /* DD /0, FLD m64real */
ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
Pop_Reg_D(dst) );
ins_pipe( fpu_reg_mem );
%}
instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
match(Set dst (MoveL2D src));
effect(DEF dst, USE src);
ins_cost(95);
format %{ "MOVSD $dst,$src\t# MoveL2D_stack_reg_sse" %}
ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
ins_pipe( pipe_slow );
%}
instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
match(Set dst (MoveL2D src));
effect(DEF dst, USE src);
ins_cost(95);
format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
ins_pipe( pipe_slow );
%}
instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
predicate(UseSSE>=2);
match(Set dst (MoveL2D src));
effect(TEMP dst, USE src, TEMP tmp);
ins_cost(85);
format %{ "MOVD $dst,$src.lo\n\t"
"MOVD $tmp,$src.hi\n\t"
"PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
ins_encode( MovL2XD_reg(dst, src, tmp) );
ins_pipe( pipe_slow );
%}
// Replicate scalar to packed byte (1 byte) values in xmm
instruct Repl8B_reg(regXD dst, regXD src) %{
predicate(UseSSE>=2);
match(Set dst (Replicate8B src));
format %{ "MOVDQA $dst,$src\n\t"
"PUNPCKLBW $dst,$dst\n\t"
"PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
ins_encode( pshufd_8x8(dst, src));
ins_pipe( pipe_slow );
%}
// Replicate scalar to packed byte (1 byte) values in xmm
instruct Repl8B_eRegI(regXD dst, eRegI src) %{
predicate(UseSSE>=2);
match(Set dst (Replicate8B src));
format %{ "MOVD $dst,$src\n\t"
"PUNPCKLBW $dst,$dst\n\t"
"PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
ins_pipe( pipe_slow );
%}
// Replicate scalar zero to packed byte (1 byte) values in xmm
instruct Repl8B_immI0(regXD dst, immI0 zero) %{
predicate(UseSSE>=2);
match(Set dst (Replicate8B zero));
format %{ "PXOR $dst,$dst\t! replicate8B" %}
ins_encode( pxor(dst, dst));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed shore (2 byte) values in xmm
instruct Repl4S_reg(regXD dst, regXD src) %{
predicate(UseSSE>=2);
match(Set dst (Replicate4S src));
format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
ins_encode( pshufd_4x16(dst, src));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed shore (2 byte) values in xmm
instruct Repl4S_eRegI(regXD dst, eRegI src) %{
predicate(UseSSE>=2);
match(Set dst (Replicate4S src));
format %{ "MOVD $dst,$src\n\t"
"PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar zero to packed short (2 byte) values in xmm
instruct Repl4S_immI0(regXD dst, immI0 zero) %{
predicate(UseSSE>=2);
match(Set dst (Replicate4S zero));
format %{ "PXOR $dst,$dst\t! replicate4S" %}
ins_encode( pxor(dst, dst));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed char (2 byte) values in xmm
instruct Repl4C_reg(regXD dst, regXD src) %{
predicate(UseSSE>=2);
match(Set dst (Replicate4C src));
format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
ins_encode( pshufd_4x16(dst, src));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed char (2 byte) values in xmm
instruct Repl4C_eRegI(regXD dst, eRegI src) %{
predicate(UseSSE>=2);
match(Set dst (Replicate4C src));
format %{ "MOVD $dst,$src\n\t"
"PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar zero to packed char (2 byte) values in xmm
instruct Repl4C_immI0(regXD dst, immI0 zero) %{
predicate(UseSSE>=2);
match(Set dst (Replicate4C zero));
format %{ "PXOR $dst,$dst\t! replicate4C" %}
ins_encode( pxor(dst, dst));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed integer (4 byte) values in xmm
instruct Repl2I_reg(regXD dst, regXD src) %{
predicate(UseSSE>=2);
match(Set dst (Replicate2I src));
format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
ins_encode( pshufd(dst, src, 0x00));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed integer (4 byte) values in xmm
instruct Repl2I_eRegI(regXD dst, eRegI src) %{
predicate(UseSSE>=2);
match(Set dst (Replicate2I src));
format %{ "MOVD $dst,$src\n\t"
"PSHUFD $dst,$dst,0x00\t! replicate2I" %}
ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar zero to packed integer (2 byte) values in xmm
instruct Repl2I_immI0(regXD dst, immI0 zero) %{
predicate(UseSSE>=2);
match(Set dst (Replicate2I zero));
format %{ "PXOR $dst,$dst\t! replicate2I" %}
ins_encode( pxor(dst, dst));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed single precision floating point values in xmm
instruct Repl2F_reg(regXD dst, regXD src) %{
predicate(UseSSE>=2);
match(Set dst (Replicate2F src));
format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
ins_encode( pshufd(dst, src, 0xe0));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed single precision floating point values in xmm
instruct Repl2F_regX(regXD dst, regX src) %{
predicate(UseSSE>=2);
match(Set dst (Replicate2F src));
format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
ins_encode( pshufd(dst, src, 0xe0));
ins_pipe( fpu_reg_reg );
%}
// Replicate scalar to packed single precision floating point values in xmm
instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
predicate(UseSSE>=2);
match(Set dst (Replicate2F zero));
format %{ "PXOR $dst,$dst\t! replicate2F" %}
ins_encode( pxor(dst, dst));
ins_pipe( fpu_reg_reg );
%}
// =======================================================================
// fast clearing of an array
instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
match(Set dummy (ClearArray cnt base));
effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
format %{ "SHL ECX,1\t# Convert doublewords to words\n\t"
"XOR EAX,EAX\n\t"
"REP STOS\t# store EAX into [EDI++] while ECX--" %}
opcode(0,0x4);
ins_encode( Opcode(0xD1), RegOpc(ECX),
OpcRegReg(0x33,EAX,EAX),
Opcode(0xF3), Opcode(0xAB) );
ins_pipe( pipe_slow );
%}
instruct string_compare(eDIRegP str1, eSIRegP str2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result, eFlagsReg cr) %{
match(Set result (StrComp str1 str2));
effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL cr);
//ins_cost(300);
format %{ "String Compare $str1,$str2 -> $result // KILL EAX, EBX" %}
ins_encode( enc_String_Compare() );
ins_pipe( pipe_slow );
%}
// fast array equals
instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result, eFlagsReg cr) %{
match(Set result (AryEq ary1 ary2));
effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL cr);
//ins_cost(300);
format %{ "Array Equals $ary1,$ary2 -> $result // KILL EAX, EBX" %}
ins_encode( enc_Array_Equals(ary1, ary2, tmp1, tmp2, result) );
ins_pipe( pipe_slow );
%}
//----------Control Flow Instructions------------------------------------------
// Signed compare Instructions
instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
match(Set cr (CmpI op1 op2));
effect( DEF cr, USE op1, USE op2 );
format %{ "CMP $op1,$op2" %}
opcode(0x3B); /* Opcode 3B /r */
ins_encode( OpcP, RegReg( op1, op2) );
ins_pipe( ialu_cr_reg_reg );
%}
instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
match(Set cr (CmpI op1 op2));
effect( DEF cr, USE op1 );
format %{ "CMP $op1,$op2" %}
opcode(0x81,0x07); /* Opcode 81 /7 */
// ins_encode( RegImm( op1, op2) ); /* Was CmpImm */
ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
ins_pipe( ialu_cr_reg_imm );
%}
// Cisc-spilled version of cmpI_eReg
instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
match(Set cr (CmpI op1 (LoadI op2)));
format %{ "CMP $op1,$op2" %}
ins_cost(500);
opcode(0x3B); /* Opcode 3B /r */
ins_encode( OpcP, RegMem( op1, op2) );
ins_pipe( ialu_cr_reg_mem );
%}
instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
match(Set cr (CmpI src zero));
effect( DEF cr, USE src );
format %{ "TEST $src,$src" %}
opcode(0x85);
ins_encode( OpcP, RegReg( src, src ) );
ins_pipe( ialu_cr_reg_imm );
%}
instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
match(Set cr (CmpI (AndI src con) zero));
format %{ "TEST $src,$con" %}
opcode(0xF7,0x00);
ins_encode( OpcP, RegOpc(src), Con32(con) );
ins_pipe( ialu_cr_reg_imm );
%}
instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
match(Set cr (CmpI (AndI src mem) zero));
format %{ "TEST $src,$mem" %}
opcode(0x85);
ins_encode( OpcP, RegMem( src, mem ) );
ins_pipe( ialu_cr_reg_mem );
%}
// Unsigned compare Instructions; really, same as signed except they
// produce an eFlagsRegU instead of eFlagsReg.
instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
match(Set cr (CmpU op1 op2));
format %{ "CMPu $op1,$op2" %}
opcode(0x3B); /* Opcode 3B /r */
ins_encode( OpcP, RegReg( op1, op2) );
ins_pipe( ialu_cr_reg_reg );
%}
instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
match(Set cr (CmpU op1 op2));
format %{ "CMPu $op1,$op2" %}
opcode(0x81,0x07); /* Opcode 81 /7 */
ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
ins_pipe( ialu_cr_reg_imm );
%}
// // Cisc-spilled version of cmpU_eReg
instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
match(Set cr (CmpU op1 (LoadI op2)));
format %{ "CMPu $op1,$op2" %}
ins_cost(500);
opcode(0x3B); /* Opcode 3B /r */
ins_encode( OpcP, RegMem( op1, op2) );
ins_pipe( ialu_cr_reg_mem );
%}
// // Cisc-spilled version of cmpU_eReg
//instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
// match(Set cr (CmpU (LoadI op1) op2));
//
// format %{ "CMPu $op1,$op2" %}
// ins_cost(500);
// opcode(0x39); /* Opcode 39 /r */
// ins_encode( OpcP, RegMem( op1, op2) );
//%}
instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
match(Set cr (CmpU src zero));
format %{ "TESTu $src,$src" %}
opcode(0x85);
ins_encode( OpcP, RegReg( src, src ) );
ins_pipe( ialu_cr_reg_imm );
%}
// Unsigned pointer compare Instructions
instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
match(Set cr (CmpP op1 op2));
format %{ "CMPu $op1,$op2" %}
opcode(0x3B); /* Opcode 3B /r */
ins_encode( OpcP, RegReg( op1, op2) );
ins_pipe( ialu_cr_reg_reg );
%}
instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
match(Set cr (CmpP op1 op2));
format %{ "CMPu $op1,$op2" %}
opcode(0x81,0x07); /* Opcode 81 /7 */
ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
ins_pipe( ialu_cr_reg_imm );
%}
// // Cisc-spilled version of cmpP_eReg
instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
match(Set cr (CmpP op1 (LoadP op2)));
format %{ "CMPu $op1,$op2" %}
ins_cost(500);
opcode(0x3B); /* Opcode 3B /r */
ins_encode( OpcP, RegMem( op1, op2) );
ins_pipe( ialu_cr_reg_mem );
%}
// // Cisc-spilled version of cmpP_eReg
//instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
// match(Set cr (CmpP (LoadP op1) op2));
//
// format %{ "CMPu $op1,$op2" %}
// ins_cost(500);
// opcode(0x39); /* Opcode 39 /r */
// ins_encode( OpcP, RegMem( op1, op2) );
//%}
// Compare raw pointer (used in out-of-heap check).
// Only works because non-oop pointers must be raw pointers
// and raw pointers have no anti-dependencies.
instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
match(Set cr (CmpP op1 (LoadP op2)));
format %{ "CMPu $op1,$op2" %}
opcode(0x3B); /* Opcode 3B /r */
ins_encode( OpcP, RegMem( op1, op2) );
ins_pipe( ialu_cr_reg_mem );
%}
//
// This will generate a signed flags result. This should be ok
// since any compare to a zero should be eq/neq.
instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
match(Set cr (CmpP src zero));
format %{ "TEST $src,$src" %}
opcode(0x85);
ins_encode( OpcP, RegReg( src, src ) );
ins_pipe( ialu_cr_reg_imm );
%}
// Cisc-spilled version of testP_reg
// This will generate a signed flags result. This should be ok
// since any compare to a zero should be eq/neq.
instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
match(Set cr (CmpP (LoadP op) zero));
format %{ "TEST $op,0xFFFFFFFF" %}
ins_cost(500);
opcode(0xF7); /* Opcode F7 /0 */
ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
ins_pipe( ialu_cr_reg_imm );
%}
// Yanked all unsigned pointer compare operations.
// Pointer compares are done with CmpP which is already unsigned.
//----------Max and Min--------------------------------------------------------
// Min Instructions
////
// *** Min and Max using the conditional move are slower than the
// *** branch version on a Pentium III.
// // Conditional move for min
//instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
// effect( USE_DEF op2, USE op1, USE cr );
// format %{ "CMOVlt $op2,$op1\t! min" %}
// opcode(0x4C,0x0F);
// ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
// ins_pipe( pipe_cmov_reg );
//%}
//
//// Min Register with Register (P6 version)
//instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
// predicate(VM_Version::supports_cmov() );
// match(Set op2 (MinI op1 op2));
// ins_cost(200);
// expand %{
// eFlagsReg cr;
// compI_eReg(cr,op1,op2);
// cmovI_reg_lt(op2,op1,cr);
// %}
//%}
// Min Register with Register (generic version)
instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
match(Set dst (MinI dst src));
effect(KILL flags);
ins_cost(300);
format %{ "MIN $dst,$src" %}
opcode(0xCC);
ins_encode( min_enc(dst,src) );
ins_pipe( pipe_slow );
%}
// Max Register with Register
// *** Min and Max using the conditional move are slower than the
// *** branch version on a Pentium III.
// // Conditional move for max
//instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
// effect( USE_DEF op2, USE op1, USE cr );
// format %{ "CMOVgt $op2,$op1\t! max" %}
// opcode(0x4F,0x0F);
// ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
// ins_pipe( pipe_cmov_reg );
//%}
//
// // Max Register with Register (P6 version)
//instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
// predicate(VM_Version::supports_cmov() );
// match(Set op2 (MaxI op1 op2));
// ins_cost(200);
// expand %{
// eFlagsReg cr;
// compI_eReg(cr,op1,op2);
// cmovI_reg_gt(op2,op1,cr);
// %}
//%}
// Max Register with Register (generic version)
instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
match(Set dst (MaxI dst src));
effect(KILL flags);
ins_cost(300);
format %{ "MAX $dst,$src" %}
opcode(0xCC);
ins_encode( max_enc(dst,src) );
ins_pipe( pipe_slow );
%}
// ============================================================================
// Branch Instructions
// Jump Table
instruct jumpXtnd(eRegI switch_val) %{
match(Jump switch_val);
ins_cost(350);
format %{ "JMP [table_base](,$switch_val,1)\n\t" %}
ins_encode %{
address table_base = __ address_table_constant(_index2label);
// Jump to Address(table_base + switch_reg)
InternalAddress table(table_base);
Address index(noreg, $switch_val$$Register, Address::times_1);
__ jump(ArrayAddress(table, index));
%}
ins_pc_relative(1);
ins_pipe(pipe_jmp);
%}
// Jump Direct - Label defines a relative address from JMP+1
instruct jmpDir(label labl) %{
match(Goto);
effect(USE labl);
ins_cost(300);
format %{ "JMP $labl" %}
size(5);
opcode(0xE9);
ins_encode( OpcP, Lbl( labl ) );
ins_pipe( pipe_jmp );
ins_pc_relative(1);
%}
// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
match(If cop cr);
effect(USE labl);
ins_cost(300);
format %{ "J$cop $labl" %}
size(6);
opcode(0x0F, 0x80);
ins_encode( Jcc( cop, labl) );
ins_pipe( pipe_jcc );
ins_pc_relative(1);
%}
// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
match(CountedLoopEnd cop cr);
effect(USE labl);
ins_cost(300);
format %{ "J$cop $labl\t# Loop end" %}
size(6);
opcode(0x0F, 0x80);
ins_encode( Jcc( cop, labl) );
ins_pipe( pipe_jcc );
ins_pc_relative(1);
%}
// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
match(CountedLoopEnd cop cmp);
effect(USE labl);
ins_cost(300);
format %{ "J$cop,u $labl\t# Loop end" %}
size(6);
opcode(0x0F, 0x80);
ins_encode( Jcc( cop, labl) );
ins_pipe( pipe_jcc );
ins_pc_relative(1);
%}
// Jump Direct Conditional - using unsigned comparison
instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
match(If cop cmp);
effect(USE labl);
ins_cost(300);
format %{ "J$cop,u $labl" %}
size(6);
opcode(0x0F, 0x80);
ins_encode( Jcc( cop, labl) );
ins_pipe( pipe_jcc );
ins_pc_relative(1);
%}
// ============================================================================
// The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
// array for an instance of the superklass. Set a hidden internal cache on a
// hit (cache is checked with exposed code in gen_subtype_check()). Return
// NZ for a miss or zero for a hit. The encoding ALSO sets flags.
instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
match(Set result (PartialSubtypeCheck sub super));
effect( KILL rcx, KILL cr );
ins_cost(1100); // slightly larger than the next version
format %{ "CMPL EAX,ESI\n\t"
"JEQ,s hit\n\t"
"MOV EDI,[$sub+Klass::secondary_supers]\n\t"
"MOV ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
"ADD EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
"REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
"JNE,s miss\t\t# Missed: EDI not-zero\n\t"
"MOV [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
"hit:\n\t"
"XOR $result,$result\t\t Hit: EDI zero\n\t"
"miss:\t" %}
opcode(0x1); // Force a XOR of EDI
ins_encode( enc_PartialSubtypeCheck() );
ins_pipe( pipe_slow );
%}
instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
effect( KILL rcx, KILL result );
ins_cost(1000);
format %{ "CMPL EAX,ESI\n\t"
"JEQ,s miss\t# Actually a hit; we are done.\n\t"
"MOV EDI,[$sub+Klass::secondary_supers]\n\t"
"MOV ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
"ADD EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
"REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
"JNE,s miss\t\t# Missed: flags NZ\n\t"
"MOV [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
"miss:\t" %}
opcode(0x0); // No need to XOR EDI
ins_encode( enc_PartialSubtypeCheck() );
ins_pipe( pipe_slow );
%}
// ============================================================================
// Branch Instructions -- short offset versions
//
// These instructions are used to replace jumps of a long offset (the default
// match) with jumps of a shorter offset. These instructions are all tagged
// with the ins_short_branch attribute, which causes the ADLC to suppress the
// match rules in general matching. Instead, the ADLC generates a conversion
// method in the MachNode which can be used to do in-place replacement of the
// long variant with the shorter variant. The compiler will determine if a
// branch can be taken by the is_short_branch_offset() predicate in the machine
// specific code section of the file.
// Jump Direct - Label defines a relative address from JMP+1
instruct jmpDir_short(label labl) %{
match(Goto);
effect(USE labl);
ins_cost(300);
format %{ "JMP,s $labl" %}
size(2);
opcode(0xEB);
ins_encode( OpcP, LblShort( labl ) );
ins_pipe( pipe_jmp );
ins_pc_relative(1);
ins_short_branch(1);
%}
// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
match(If cop cr);
effect(USE labl);
ins_cost(300);
format %{ "J$cop,s $labl" %}
size(2);
opcode(0x70);
ins_encode( JccShort( cop, labl) );
ins_pipe( pipe_jcc );
ins_pc_relative(1);
ins_short_branch(1);
%}
// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
match(CountedLoopEnd cop cr);
effect(USE labl);
ins_cost(300);
format %{ "J$cop,s $labl" %}
size(2);
opcode(0x70);
ins_encode( JccShort( cop, labl) );
ins_pipe( pipe_jcc );
ins_pc_relative(1);
ins_short_branch(1);
%}
// Jump Direct Conditional - Label defines a relative address from Jcc+1
instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
match(CountedLoopEnd cop cmp);
effect(USE labl);
ins_cost(300);
format %{ "J$cop,us $labl" %}
size(2);
opcode(0x70);
ins_encode( JccShort( cop, labl) );
ins_pipe( pipe_jcc );
ins_pc_relative(1);
ins_short_branch(1);
%}
// Jump Direct Conditional - using unsigned comparison
instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
match(If cop cmp);
effect(USE labl);
ins_cost(300);
format %{ "J$cop,us $labl" %}
size(2);
opcode(0x70);
ins_encode( JccShort( cop, labl) );
ins_pipe( pipe_jcc );
ins_pc_relative(1);
ins_short_branch(1);
%}
// ============================================================================
// Long Compare
//
// Currently we hold longs in 2 registers. Comparing such values efficiently
// is tricky. The flavor of compare used depends on whether we are testing
// for LT, LE, or EQ. For a simple LT test we can check just the sign bit.
// The GE test is the negated LT test. The LE test can be had by commuting
// the operands (yielding a GE test) and then negating; negate again for the
// GT test. The EQ test is done by ORcc'ing the high and low halves, and the
// NE test is negated from that.
// Due to a shortcoming in the ADLC, it mixes up expressions like:
// (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)). Note the
// difference between 'Y' and '0L'. The tree-matches for the CmpI sections
// are collapsed internally in the ADLC's dfa-gen code. The match for
// (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
// foo match ends up with the wrong leaf. One fix is to not match both
// reg-reg and reg-zero forms of long-compare. This is unfortunate because
// both forms beat the trinary form of long-compare and both are very useful
// on Intel which has so few registers.
// Manifest a CmpL result in an integer register. Very painful.
// This is the test to avoid.
instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
match(Set dst (CmpL3 src1 src2));
effect( KILL flags );
ins_cost(1000);
format %{ "XOR $dst,$dst\n\t"
"CMP $src1.hi,$src2.hi\n\t"
"JLT,s m_one\n\t"
"JGT,s p_one\n\t"
"CMP $src1.lo,$src2.lo\n\t"
"JB,s m_one\n\t"
"JEQ,s done\n"
"p_one:\tINC $dst\n\t"
"JMP,s done\n"
"m_one:\tDEC $dst\n"
"done:" %}
ins_encode %{
Label p_one, m_one, done;
__ xorptr($dst$$Register, $dst$$Register);
__ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
__ jccb(Assembler::less, m_one);
__ jccb(Assembler::greater, p_one);
__ cmpl($src1$$Register, $src2$$Register);
__ jccb(Assembler::below, m_one);
__ jccb(Assembler::equal, done);
__ bind(p_one);
__ incrementl($dst$$Register);
__ jmpb(done);
__ bind(m_one);
__ decrementl($dst$$Register);
__ bind(done);
%}
ins_pipe( pipe_slow );
%}
//======
// Manifest a CmpL result in the normal flags. Only good for LT or GE
// compares. Can be used for LE or GT compares by reversing arguments.
// NOT GOOD FOR EQ/NE tests.
instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
match( Set flags (CmpL src zero ));
ins_cost(100);
format %{ "TEST $src.hi,$src.hi" %}
opcode(0x85);
ins_encode( OpcP, RegReg_Hi2( src, src ) );
ins_pipe( ialu_cr_reg_reg );
%}
// Manifest a CmpL result in the normal flags. Only good for LT or GE
// compares. Can be used for LE or GT compares by reversing arguments.
// NOT GOOD FOR EQ/NE tests.
instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
match( Set flags (CmpL src1 src2 ));
effect( TEMP tmp );
ins_cost(300);
format %{ "CMP $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
"MOV $tmp,$src1.hi\n\t"
"SBB $tmp,$src2.hi\t! Compute flags for long compare" %}
ins_encode( long_cmp_flags2( src1, src2, tmp ) );
ins_pipe( ialu_cr_reg_reg );
%}
// Long compares reg < zero/req OR reg >= zero/req.
// Just a wrapper for a normal branch, plus the predicate test.
instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
match(If cmp flags);
effect(USE labl);
predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
expand %{
jmpCon(cmp,flags,labl); // JLT or JGE...
%}
%}
// Compare 2 longs and CMOVE longs.
instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
ins_cost(400);
format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
"CMOV$cmp $dst.hi,$src.hi" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
ins_pipe( pipe_cmov_reg_long );
%}
instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
ins_cost(500);
format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
"CMOV$cmp $dst.hi,$src.hi" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
ins_pipe( pipe_cmov_reg_long );
%}
// Compare 2 longs and CMOVE ints.
instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
ins_cost(200);
format %{ "CMOV$cmp $dst,$src" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
ins_pipe( pipe_cmov_reg );
%}
instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
ins_cost(250);
format %{ "CMOV$cmp $dst,$src" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
ins_pipe( pipe_cmov_mem );
%}
// Compare 2 longs and CMOVE ints.
instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
ins_cost(200);
format %{ "CMOV$cmp $dst,$src" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
ins_pipe( pipe_cmov_reg );
%}
// Compare 2 longs and CMOVE doubles
instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
ins_cost(200);
expand %{
fcmovD_regS(cmp,flags,dst,src);
%}
%}
// Compare 2 longs and CMOVE doubles
instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
ins_cost(200);
expand %{
fcmovXD_regS(cmp,flags,dst,src);
%}
%}
instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
ins_cost(200);
expand %{
fcmovF_regS(cmp,flags,dst,src);
%}
%}
instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
ins_cost(200);
expand %{
fcmovX_regS(cmp,flags,dst,src);
%}
%}
//======
// Manifest a CmpL result in the normal flags. Only good for EQ/NE compares.
instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
match( Set flags (CmpL src zero ));
effect(TEMP tmp);
ins_cost(200);
format %{ "MOV $tmp,$src.lo\n\t"
"OR $tmp,$src.hi\t! Long is EQ/NE 0?" %}
ins_encode( long_cmp_flags0( src, tmp ) );
ins_pipe( ialu_reg_reg_long );
%}
// Manifest a CmpL result in the normal flags. Only good for EQ/NE compares.
instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
match( Set flags (CmpL src1 src2 ));
ins_cost(200+300);
format %{ "CMP $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
"JNE,s skip\n\t"
"CMP $src1.hi,$src2.hi\n\t"
"skip:\t" %}
ins_encode( long_cmp_flags1( src1, src2 ) );
ins_pipe( ialu_cr_reg_reg );
%}
// Long compare reg == zero/reg OR reg != zero/reg
// Just a wrapper for a normal branch, plus the predicate test.
instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
match(If cmp flags);
effect(USE labl);
predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
expand %{
jmpCon(cmp,flags,labl); // JEQ or JNE...
%}
%}
// Compare 2 longs and CMOVE longs.
instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
ins_cost(400);
format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
"CMOV$cmp $dst.hi,$src.hi" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
ins_pipe( pipe_cmov_reg_long );
%}
instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
ins_cost(500);
format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
"CMOV$cmp $dst.hi,$src.hi" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
ins_pipe( pipe_cmov_reg_long );
%}
// Compare 2 longs and CMOVE ints.
instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
ins_cost(200);
format %{ "CMOV$cmp $dst,$src" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
ins_pipe( pipe_cmov_reg );
%}
instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
ins_cost(250);
format %{ "CMOV$cmp $dst,$src" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
ins_pipe( pipe_cmov_mem );
%}
// Compare 2 longs and CMOVE ints.
instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
ins_cost(200);
format %{ "CMOV$cmp $dst,$src" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
ins_pipe( pipe_cmov_reg );
%}
// Compare 2 longs and CMOVE doubles
instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
ins_cost(200);
expand %{
fcmovD_regS(cmp,flags,dst,src);
%}
%}
// Compare 2 longs and CMOVE doubles
instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
ins_cost(200);
expand %{
fcmovXD_regS(cmp,flags,dst,src);
%}
%}
instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
ins_cost(200);
expand %{
fcmovF_regS(cmp,flags,dst,src);
%}
%}
instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
ins_cost(200);
expand %{
fcmovX_regS(cmp,flags,dst,src);
%}
%}
//======
// Manifest a CmpL result in the normal flags. Only good for LE or GT compares.
// Same as cmpL_reg_flags_LEGT except must negate src
instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
match( Set flags (CmpL src zero ));
effect( TEMP tmp );
ins_cost(300);
format %{ "XOR $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
"CMP $tmp,$src.lo\n\t"
"SBB $tmp,$src.hi\n\t" %}
ins_encode( long_cmp_flags3(src, tmp) );
ins_pipe( ialu_reg_reg_long );
%}
// Manifest a CmpL result in the normal flags. Only good for LE or GT compares.
// Same as cmpL_reg_flags_LTGE except operands swapped. Swapping operands
// requires a commuted test to get the same result.
instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
match( Set flags (CmpL src1 src2 ));
effect( TEMP tmp );
ins_cost(300);
format %{ "CMP $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
"MOV $tmp,$src2.hi\n\t"
"SBB $tmp,$src1.hi\t! Compute flags for long compare" %}
ins_encode( long_cmp_flags2( src2, src1, tmp ) );
ins_pipe( ialu_cr_reg_reg );
%}
// Long compares reg < zero/req OR reg >= zero/req.
// Just a wrapper for a normal branch, plus the predicate test
instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
match(If cmp flags);
effect(USE labl);
predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
ins_cost(300);
expand %{
jmpCon(cmp,flags,labl); // JGT or JLE...
%}
%}
// Compare 2 longs and CMOVE longs.
instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
ins_cost(400);
format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
"CMOV$cmp $dst.hi,$src.hi" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
ins_pipe( pipe_cmov_reg_long );
%}
instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
ins_cost(500);
format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
"CMOV$cmp $dst.hi,$src.hi+4" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
ins_pipe( pipe_cmov_reg_long );
%}
// Compare 2 longs and CMOVE ints.
instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
ins_cost(200);
format %{ "CMOV$cmp $dst,$src" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
ins_pipe( pipe_cmov_reg );
%}
instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
ins_cost(250);
format %{ "CMOV$cmp $dst,$src" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
ins_pipe( pipe_cmov_mem );
%}
// Compare 2 longs and CMOVE ptrs.
instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
ins_cost(200);
format %{ "CMOV$cmp $dst,$src" %}
opcode(0x0F,0x40);
ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
ins_pipe( pipe_cmov_reg );
%}
// Compare 2 longs and CMOVE doubles
instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
ins_cost(200);
expand %{
fcmovD_regS(cmp,flags,dst,src);
%}
%}
// Compare 2 longs and CMOVE doubles
instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
ins_cost(200);
expand %{
fcmovXD_regS(cmp,flags,dst,src);
%}
%}
instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
ins_cost(200);
expand %{
fcmovF_regS(cmp,flags,dst,src);
%}
%}
instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
ins_cost(200);
expand %{
fcmovX_regS(cmp,flags,dst,src);
%}
%}
// ============================================================================
// Procedure Call/Return Instructions
// Call Java Static Instruction
// Note: If this code changes, the corresponding ret_addr_offset() and
// compute_padding() functions will have to be adjusted.
instruct CallStaticJavaDirect(method meth) %{
match(CallStaticJava);
effect(USE meth);
ins_cost(300);
format %{ "CALL,static " %}
opcode(0xE8); /* E8 cd */
ins_encode( pre_call_FPU,
Java_Static_Call( meth ),
call_epilog,
post_call_FPU );
ins_pipe( pipe_slow );
ins_pc_relative(1);
ins_alignment(4);
%}
// Call Java Dynamic Instruction
// Note: If this code changes, the corresponding ret_addr_offset() and
// compute_padding() functions will have to be adjusted.
instruct CallDynamicJavaDirect(method meth) %{
match(CallDynamicJava);
effect(USE meth);
ins_cost(300);
format %{ "MOV EAX,(oop)-1\n\t"
"CALL,dynamic" %}
opcode(0xE8); /* E8 cd */
ins_encode( pre_call_FPU,
Java_Dynamic_Call( meth ),
call_epilog,
post_call_FPU );
ins_pipe( pipe_slow );
ins_pc_relative(1);
ins_alignment(4);
%}
// Call Runtime Instruction
instruct CallRuntimeDirect(method meth) %{
match(CallRuntime );
effect(USE meth);
ins_cost(300);
format %{ "CALL,runtime " %}
opcode(0xE8); /* E8 cd */
// Use FFREEs to clear entries in float stack
ins_encode( pre_call_FPU,
FFree_Float_Stack_All,
Java_To_Runtime( meth ),
post_call_FPU );
ins_pipe( pipe_slow );
ins_pc_relative(1);
%}
// Call runtime without safepoint
instruct CallLeafDirect(method meth) %{
match(CallLeaf);
effect(USE meth);
ins_cost(300);
format %{ "CALL_LEAF,runtime " %}
opcode(0xE8); /* E8 cd */
ins_encode( pre_call_FPU,
FFree_Float_Stack_All,
Java_To_Runtime( meth ),
Verify_FPU_For_Leaf, post_call_FPU );
ins_pipe( pipe_slow );
ins_pc_relative(1);
%}
instruct CallLeafNoFPDirect(method meth) %{
match(CallLeafNoFP);
effect(USE meth);
ins_cost(300);
format %{ "CALL_LEAF_NOFP,runtime " %}
opcode(0xE8); /* E8 cd */
ins_encode(Java_To_Runtime(meth));
ins_pipe( pipe_slow );
ins_pc_relative(1);
%}
// Return Instruction
// Remove the return address & jump to it.
instruct Ret() %{
match(Return);
format %{ "RET" %}
opcode(0xC3);
ins_encode(OpcP);
ins_pipe( pipe_jmp );
%}
// Tail Call; Jump from runtime stub to Java code.
// Also known as an 'interprocedural jump'.
// Target of jump will eventually return to caller.
// TailJump below removes the return address.
instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
match(TailCall jump_target method_oop );
ins_cost(300);
format %{ "JMP $jump_target \t# EBX holds method oop" %}
opcode(0xFF, 0x4); /* Opcode FF /4 */
ins_encode( OpcP, RegOpc(jump_target) );
ins_pipe( pipe_jmp );
%}
// Tail Jump; remove the return address; jump to target.
// TailCall above leaves the return address around.
instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
match( TailJump jump_target ex_oop );
ins_cost(300);
format %{ "POP EDX\t# pop return address into dummy\n\t"
"JMP $jump_target " %}
opcode(0xFF, 0x4); /* Opcode FF /4 */
ins_encode( enc_pop_rdx,
OpcP, RegOpc(jump_target) );
ins_pipe( pipe_jmp );
%}
// Create exception oop: created by stack-crawling runtime code.
// Created exception is now available to this handler, and is setup
// just prior to jumping to this handler. No code emitted.
instruct CreateException( eAXRegP ex_oop )
%{
match(Set ex_oop (CreateEx));
size(0);
// use the following format syntax
format %{ "# exception oop is in EAX; no code emitted" %}
ins_encode();
ins_pipe( empty );
%}
// Rethrow exception:
// The exception oop will come in the first argument position.
// Then JUMP (not call) to the rethrow stub code.
instruct RethrowException()
%{
match(Rethrow);
// use the following format syntax
format %{ "JMP rethrow_stub" %}
ins_encode(enc_rethrow);
ins_pipe( pipe_jmp );
%}
// inlined locking and unlocking
instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
match( Set cr (FastLock object box) );
effect( TEMP tmp, TEMP scr );
ins_cost(300);
format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
ins_encode( Fast_Lock(object,box,tmp,scr) );
ins_pipe( pipe_slow );
ins_pc_relative(1);
%}
instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
match( Set cr (FastUnlock object box) );
effect( TEMP tmp );
ins_cost(300);
format %{ "FASTUNLOCK $object, $box, $tmp" %}
ins_encode( Fast_Unlock(object,box,tmp) );
ins_pipe( pipe_slow );
ins_pc_relative(1);
%}
// ============================================================================
// Safepoint Instruction
instruct safePoint_poll(eFlagsReg cr) %{
match(SafePoint);
effect(KILL cr);
// TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
// On SPARC that might be acceptable as we can generate the address with
// just a sethi, saving an or. By polling at offset 0 we can end up
// putting additional pressure on the index-0 in the D$. Because of
// alignment (just like the situation at hand) the lower indices tend
// to see more traffic. It'd be better to change the polling address
// to offset 0 of the last $line in the polling page.
format %{ "TSTL #polladdr,EAX\t! Safepoint: poll for GC" %}
ins_cost(125);
size(6) ;
ins_encode( Safepoint_Poll() );
ins_pipe( ialu_reg_mem );
%}
//----------PEEPHOLE RULES-----------------------------------------------------
// These must follow all instruction definitions as they use the names
// defined in the instructions definitions.
//
// peepmatch ( root_instr_name [preceeding_instruction]* );
//
// peepconstraint %{
// (instruction_number.operand_name relational_op instruction_number.operand_name
// [, ...] );
// // instruction numbers are zero-based using left to right order in peepmatch
//
// peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
// // provide an instruction_number.operand_name for each operand that appears
// // in the replacement instruction's match rule
//
// ---------VM FLAGS---------------------------------------------------------
//
// All peephole optimizations can be turned off using -XX:-OptoPeephole
//
// Each peephole rule is given an identifying number starting with zero and
// increasing by one in the order seen by the parser. An individual peephole
// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
// on the command-line.
//
// ---------CURRENT LIMITATIONS----------------------------------------------
//
// Only match adjacent instructions in same basic block
// Only equality constraints
// Only constraints between operands, not (0.dest_reg == EAX_enc)
// Only one replacement instruction
//
// ---------EXAMPLE----------------------------------------------------------
//
// // pertinent parts of existing instructions in architecture description
// instruct movI(eRegI dst, eRegI src) %{
// match(Set dst (CopyI src));
// %}
//
// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
// match(Set dst (AddI dst src));
// effect(KILL cr);
// %}
//
// // Change (inc mov) to lea
// peephole %{
// // increment preceeded by register-register move
// peepmatch ( incI_eReg movI );
// // require that the destination register of the increment
// // match the destination register of the move
// peepconstraint ( 0.dst == 1.dst );
// // construct a replacement instruction that sets
// // the destination to ( move's source register + one )
// peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
// %}
//
// Implementation no longer uses movX instructions since
// machine-independent system no longer uses CopyX nodes.
//
// peephole %{
// peepmatch ( incI_eReg movI );
// peepconstraint ( 0.dst == 1.dst );
// peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
// %}
//
// peephole %{
// peepmatch ( decI_eReg movI );
// peepconstraint ( 0.dst == 1.dst );
// peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
// %}
//
// peephole %{
// peepmatch ( addI_eReg_imm movI );
// peepconstraint ( 0.dst == 1.dst );
// peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
// %}
//
// peephole %{
// peepmatch ( addP_eReg_imm movP );
// peepconstraint ( 0.dst == 1.dst );
// peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
// %}
// // Change load of spilled value to only a spill
// instruct storeI(memory mem, eRegI src) %{
// match(Set mem (StoreI mem src));
// %}
//
// instruct loadI(eRegI dst, memory mem) %{
// match(Set dst (LoadI mem));
// %}
//
peephole %{
peepmatch ( loadI storeI );
peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
peepreplace ( storeI( 1.mem 1.mem 1.src ) );
%}
//----------SMARTSPILL RULES---------------------------------------------------
// These must follow all instruction definitions as they use the names
// defined in the instructions definitions.