8202676: AArch64: Missing enter/leave around barrier leads to infinite loop
Reviewed-by: aph, eosterlund
/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "gc/g1/c1/g1BarrierSetC1.hpp"
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1BarrierSetAssembler.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/thread.hpp"
#include "interpreter/interp_masm.hpp"
#include "runtime/sharedRuntime.hpp"
#define __ masm->
void G1BarrierSetAssembler::gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count, RegSet saved_regs) {
bool dest_uninitialized = (decorators & AS_DEST_NOT_INITIALIZED) != 0;
if (!dest_uninitialized) {
__ push(saved_regs, sp);
if (count == c_rarg0) {
if (addr == c_rarg1) {
// exactly backwards!!
__ mov(rscratch1, c_rarg0);
__ mov(c_rarg0, c_rarg1);
__ mov(c_rarg1, rscratch1);
} else {
__ mov(c_rarg1, count);
__ mov(c_rarg0, addr);
}
} else {
__ mov(c_rarg0, addr);
__ mov(c_rarg1, count);
}
if (UseCompressedOops) {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, G1BarrierSet::write_ref_array_pre_narrow_oop_entry), 2);
} else {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, G1BarrierSet::write_ref_array_pre_oop_entry), 2);
}
__ pop(saved_regs, sp);
}
}
void G1BarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register start, Register end, Register scratch, RegSet saved_regs) {
__ push(saved_regs, sp);
// must compute element count unless barrier set interface is changed (other platforms supply count)
assert_different_registers(start, end, scratch);
__ lea(scratch, Address(end, BytesPerHeapOop));
__ sub(scratch, scratch, start); // subtract start to get #bytes
__ lsr(scratch, scratch, LogBytesPerHeapOop); // convert to element count
__ mov(c_rarg0, start);
__ mov(c_rarg1, scratch);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, G1BarrierSet::write_ref_array_post_entry), 2);
__ pop(saved_regs, sp);
}
void G1BarrierSetAssembler::g1_write_barrier_pre(MacroAssembler* masm,
Register obj,
Register pre_val,
Register thread,
Register tmp,
bool tosca_live,
bool expand_call) {
// If expand_call is true then we expand the call_VM_leaf macro
// directly to skip generating the check by
// InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
assert(thread == rthread, "must be");
Label done;
Label runtime;
assert_different_registers(obj, pre_val, tmp, rscratch1);
assert(pre_val != noreg && tmp != noreg, "expecting a register");
Address in_progress(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()));
Address index(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()));
Address buffer(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset()));
// Is marking active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
__ ldrw(tmp, in_progress);
} else {
assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
__ ldrb(tmp, in_progress);
}
__ cbzw(tmp, done);
// Do we need to load the previous value?
if (obj != noreg) {
__ load_heap_oop(pre_val, Address(obj, 0));
}
// Is the previous value null?
__ cbz(pre_val, done);
// Can we store original value in the thread's buffer?
// Is index == 0?
// (The index field is typed as size_t.)
__ ldr(tmp, index); // tmp := *index_adr
__ cbz(tmp, runtime); // tmp == 0?
// If yes, goto runtime
__ sub(tmp, tmp, wordSize); // tmp := tmp - wordSize
__ str(tmp, index); // *index_adr := tmp
__ ldr(rscratch1, buffer);
__ add(tmp, tmp, rscratch1); // tmp := tmp + *buffer_adr
// Record the previous value
__ str(pre_val, Address(tmp, 0));
__ b(done);
__ bind(runtime);
// save the live input values
RegSet saved = RegSet::of(pre_val);
if (tosca_live) saved += RegSet::of(r0);
if (obj != noreg) saved += RegSet::of(obj);
__ push(saved, sp);
// Calling the runtime using the regular call_VM_leaf mechanism generates
// code (generated by InterpreterMacroAssember::call_VM_leaf_base)
// that checks that the *(rfp+frame::interpreter_frame_last_sp) == NULL.
//
// If we care generating the pre-barrier without a frame (e.g. in the
// intrinsified Reference.get() routine) then ebp might be pointing to
// the caller frame and so this check will most likely fail at runtime.
//
// Expanding the call directly bypasses the generation of the check.
// So when we do not have have a full interpreter frame on the stack
// expand_call should be passed true.
if (expand_call) {
assert(pre_val != c_rarg1, "smashed arg");
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
} else {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
}
__ pop(saved, sp);
__ bind(done);
}
void G1BarrierSetAssembler::g1_write_barrier_post(MacroAssembler* masm,
Register store_addr,
Register new_val,
Register thread,
Register tmp,
Register tmp2) {
assert(thread == rthread, "must be");
assert_different_registers(store_addr, new_val, thread, tmp, tmp2,
rscratch1);
assert(store_addr != noreg && new_val != noreg && tmp != noreg
&& tmp2 != noreg, "expecting a register");
Address queue_index(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()));
Address buffer(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset()));
BarrierSet* bs = BarrierSet::barrier_set();
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(bs);
CardTable* ct = ctbs->card_table();
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
Label done;
Label runtime;
// Does store cross heap regions?
__ eor(tmp, store_addr, new_val);
__ lsr(tmp, tmp, HeapRegion::LogOfHRGrainBytes);
__ cbz(tmp, done);
// crosses regions, storing NULL?
__ cbz(new_val, done);
// storing region crossing non-NULL, is card already dirty?
ExternalAddress cardtable((address) ct->byte_map_base());
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
const Register card_addr = tmp;
__ lsr(card_addr, store_addr, CardTable::card_shift);
// get the address of the card
__ load_byte_map_base(tmp2);
__ add(card_addr, card_addr, tmp2);
__ ldrb(tmp2, Address(card_addr));
__ cmpw(tmp2, (int)G1CardTable::g1_young_card_val());
__ br(Assembler::EQ, done);
assert((int)CardTable::dirty_card_val() == 0, "must be 0");
__ membar(Assembler::StoreLoad);
__ ldrb(tmp2, Address(card_addr));
__ cbzw(tmp2, done);
// storing a region crossing, non-NULL oop, card is clean.
// dirty card and log.
__ strb(zr, Address(card_addr));
__ ldr(rscratch1, queue_index);
__ cbz(rscratch1, runtime);
__ sub(rscratch1, rscratch1, wordSize);
__ str(rscratch1, queue_index);
__ ldr(tmp2, buffer);
__ str(card_addr, Address(tmp2, rscratch1));
__ b(done);
__ bind(runtime);
// save the live input values
RegSet saved = RegSet::of(store_addr, new_val);
__ push(saved, sp);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
__ pop(saved, sp);
__ bind(done);
}
void G1BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register dst, Address src, Register tmp1, Register tmp_thread) {
bool on_oop = type == T_OBJECT || type == T_ARRAY;
bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0;
bool on_reference = on_weak || on_phantom;
ModRefBarrierSetAssembler::load_at(masm, decorators, type, dst, src, tmp1, tmp_thread);
if (on_oop && on_reference) {
// LR is live. It must be saved around calls.
__ enter(); // barrier may call runtime
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer.
g1_write_barrier_pre(masm /* masm */,
noreg /* obj */,
dst /* pre_val */,
rthread /* thread */,
tmp1 /* tmp */,
true /* tosca_live */,
true /* expand_call */);
__ leave();
}
}
void G1BarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2) {
// flatten object address if needed
if (dst.index() == noreg && dst.offset() == 0) {
if (dst.base() != r3) {
__ mov(r3, dst.base());
}
} else {
__ lea(r3, dst);
}
g1_write_barrier_pre(masm,
r3 /* obj */,
tmp2 /* pre_val */,
rthread /* thread */,
tmp1 /* tmp */,
val != noreg /* tosca_live */,
false /* expand_call */);
if (val == noreg) {
__ store_heap_oop_null(Address(r3, 0));
} else {
// G1 barrier needs uncompressed oop for region cross check.
Register new_val = val;
if (UseCompressedOops) {
new_val = rscratch2;
__ mov(new_val, val);
}
__ store_heap_oop(Address(r3, 0), val);
g1_write_barrier_post(masm,
r3 /* store_adr */,
new_val /* new_val */,
rthread /* thread */,
tmp1 /* tmp */,
tmp2 /* tmp2 */);
}
}
#ifdef COMPILER1
#undef __
#define __ ce->masm()->
void G1BarrierSetAssembler::gen_pre_barrier_stub(LIR_Assembler* ce, G1PreBarrierStub* stub) {
G1BarrierSetC1* bs = (G1BarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1();
// At this point we know that marking is in progress.
// If do_load() is true then we have to emit the
// load of the previous value; otherwise it has already
// been loaded into _pre_val.
__ bind(*stub->entry());
assert(stub->pre_val()->is_register(), "Precondition.");
Register pre_val_reg = stub->pre_val()->as_register();
if (stub->do_load()) {
ce->mem2reg(stub->addr(), stub->pre_val(), T_OBJECT, stub->patch_code(), stub->info(), false /*wide*/, false /*unaligned*/);
}
__ cbz(pre_val_reg, *stub->continuation());
ce->store_parameter(stub->pre_val()->as_register(), 0);
__ far_call(RuntimeAddress(bs->pre_barrier_c1_runtime_code_blob()->code_begin()));
__ b(*stub->continuation());
}
void G1BarrierSetAssembler::gen_post_barrier_stub(LIR_Assembler* ce, G1PostBarrierStub* stub) {
G1BarrierSetC1* bs = (G1BarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1();
__ bind(*stub->entry());
assert(stub->addr()->is_register(), "Precondition.");
assert(stub->new_val()->is_register(), "Precondition.");
Register new_val_reg = stub->new_val()->as_register();
__ cbz(new_val_reg, *stub->continuation());
ce->store_parameter(stub->addr()->as_pointer_register(), 0);
__ far_call(RuntimeAddress(bs->post_barrier_c1_runtime_code_blob()->code_begin()));
__ b(*stub->continuation());
}
#undef __
#define __ sasm->
void G1BarrierSetAssembler::generate_c1_pre_barrier_runtime_stub(StubAssembler* sasm) {
__ prologue("g1_pre_barrier", false);
// arg0 : previous value of memory
BarrierSet* bs = BarrierSet::barrier_set();
const Register pre_val = r0;
const Register thread = rthread;
const Register tmp = rscratch1;
Address in_progress(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()));
Address queue_index(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()));
Address buffer(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset()));
Label done;
Label runtime;
// Is marking still active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
__ ldrw(tmp, in_progress);
} else {
assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
__ ldrb(tmp, in_progress);
}
__ cbzw(tmp, done);
// Can we store original value in the thread's buffer?
__ ldr(tmp, queue_index);
__ cbz(tmp, runtime);
__ sub(tmp, tmp, wordSize);
__ str(tmp, queue_index);
__ ldr(rscratch2, buffer);
__ add(tmp, tmp, rscratch2);
__ load_parameter(0, rscratch2);
__ str(rscratch2, Address(tmp, 0));
__ b(done);
__ bind(runtime);
__ push_call_clobbered_registers();
__ load_parameter(0, pre_val);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
__ pop_call_clobbered_registers();
__ bind(done);
__ epilogue();
}
void G1BarrierSetAssembler::generate_c1_post_barrier_runtime_stub(StubAssembler* sasm) {
__ prologue("g1_post_barrier", false);
// arg0: store_address
Address store_addr(rfp, 2*BytesPerWord);
BarrierSet* bs = BarrierSet::barrier_set();
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(bs);
CardTable* ct = ctbs->card_table();
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
Label done;
Label runtime;
// At this point we know new_value is non-NULL and the new_value crosses regions.
// Must check to see if card is already dirty
const Register thread = rthread;
Address queue_index(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()));
Address buffer(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset()));
const Register card_offset = rscratch2;
// LR is free here, so we can use it to hold the byte_map_base.
const Register byte_map_base = lr;
assert_different_registers(card_offset, byte_map_base, rscratch1);
__ load_parameter(0, card_offset);
__ lsr(card_offset, card_offset, CardTable::card_shift);
__ load_byte_map_base(byte_map_base);
__ ldrb(rscratch1, Address(byte_map_base, card_offset));
__ cmpw(rscratch1, (int)G1CardTable::g1_young_card_val());
__ br(Assembler::EQ, done);
assert((int)CardTable::dirty_card_val() == 0, "must be 0");
__ membar(Assembler::StoreLoad);
__ ldrb(rscratch1, Address(byte_map_base, card_offset));
__ cbzw(rscratch1, done);
// storing region crossing non-NULL, card is clean.
// dirty card and log.
__ strb(zr, Address(byte_map_base, card_offset));
// Convert card offset into an address in card_addr
Register card_addr = card_offset;
__ add(card_addr, byte_map_base, card_addr);
__ ldr(rscratch1, queue_index);
__ cbz(rscratch1, runtime);
__ sub(rscratch1, rscratch1, wordSize);
__ str(rscratch1, queue_index);
// Reuse LR to hold buffer_addr
const Register buffer_addr = lr;
__ ldr(buffer_addr, buffer);
__ str(card_addr, Address(buffer_addr, rscratch1));
__ b(done);
__ bind(runtime);
__ push_call_clobbered_registers();
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
__ pop_call_clobbered_registers();
__ bind(done);
__ epilogue();
}
#undef __
#endif // COMPILER1