8187443: Forest Consolidation: Move files to unified layout
Reviewed-by: darcy, ihse
/*
* Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/gcId.hpp"
#include "gc/shared/workgroup.hpp"
#include "gc/shared/workerManager.hpp"
#include "memory/allocation.hpp"
#include "memory/allocation.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/os.hpp"
#include "runtime/semaphore.hpp"
#include "runtime/thread.inline.hpp"
// Definitions of WorkGang methods.
// The current implementation will exit if the allocation
// of any worker fails.
void AbstractWorkGang::initialize_workers() {
log_develop_trace(gc, workgang)("Constructing work gang %s with %u threads", name(), total_workers());
_workers = NEW_C_HEAP_ARRAY(AbstractGangWorker*, total_workers(), mtInternal);
if (_workers == NULL) {
vm_exit_out_of_memory(0, OOM_MALLOC_ERROR, "Cannot create GangWorker array.");
}
add_workers(true);
}
AbstractGangWorker* AbstractWorkGang::install_worker(uint worker_id) {
AbstractGangWorker* new_worker = allocate_worker(worker_id);
set_thread(worker_id, new_worker);
return new_worker;
}
void AbstractWorkGang::add_workers(bool initializing) {
add_workers(_active_workers, initializing);
}
void AbstractWorkGang::add_workers(uint active_workers, bool initializing) {
os::ThreadType worker_type;
if (are_ConcurrentGC_threads()) {
worker_type = os::cgc_thread;
} else {
worker_type = os::pgc_thread;
}
uint previous_created_workers = _created_workers;
_created_workers = WorkerManager::add_workers(this,
active_workers,
_total_workers,
_created_workers,
worker_type,
initializing);
_active_workers = MIN2(_created_workers, _active_workers);
WorkerManager::log_worker_creation(this, previous_created_workers, _active_workers, _created_workers, initializing);
}
AbstractGangWorker* AbstractWorkGang::worker(uint i) const {
// Array index bounds checking.
AbstractGangWorker* result = NULL;
assert(_workers != NULL, "No workers for indexing");
assert(i < total_workers(), "Worker index out of bounds");
result = _workers[i];
assert(result != NULL, "Indexing to null worker");
return result;
}
void AbstractWorkGang::print_worker_threads_on(outputStream* st) const {
uint workers = created_workers();
for (uint i = 0; i < workers; i++) {
worker(i)->print_on(st);
st->cr();
}
}
void AbstractWorkGang::threads_do(ThreadClosure* tc) const {
assert(tc != NULL, "Null ThreadClosure");
uint workers = created_workers();
for (uint i = 0; i < workers; i++) {
tc->do_thread(worker(i));
}
}
// WorkGang dispatcher implemented with semaphores.
//
// Semaphores don't require the worker threads to re-claim the lock when they wake up.
// This helps lowering the latency when starting and stopping the worker threads.
class SemaphoreGangTaskDispatcher : public GangTaskDispatcher {
// The task currently being dispatched to the GangWorkers.
AbstractGangTask* _task;
volatile uint _started;
volatile uint _not_finished;
// Semaphore used to start the GangWorkers.
Semaphore* _start_semaphore;
// Semaphore used to notify the coordinator that all workers are done.
Semaphore* _end_semaphore;
public:
SemaphoreGangTaskDispatcher() :
_task(NULL),
_started(0),
_not_finished(0),
_start_semaphore(new Semaphore()),
_end_semaphore(new Semaphore())
{ }
~SemaphoreGangTaskDispatcher() {
delete _start_semaphore;
delete _end_semaphore;
}
void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) {
// No workers are allowed to read the state variables until they have been signaled.
_task = task;
_not_finished = num_workers;
// Dispatch 'num_workers' number of tasks.
_start_semaphore->signal(num_workers);
// Wait for the last worker to signal the coordinator.
_end_semaphore->wait();
// No workers are allowed to read the state variables after the coordinator has been signaled.
assert(_not_finished == 0, "%d not finished workers?", _not_finished);
_task = NULL;
_started = 0;
}
WorkData worker_wait_for_task() {
// Wait for the coordinator to dispatch a task.
_start_semaphore->wait();
uint num_started = (uint) Atomic::add(1, (volatile jint*)&_started);
// Subtract one to get a zero-indexed worker id.
uint worker_id = num_started - 1;
return WorkData(_task, worker_id);
}
void worker_done_with_task() {
// Mark that the worker is done with the task.
// The worker is not allowed to read the state variables after this line.
uint not_finished = (uint) Atomic::add(-1, (volatile jint*)&_not_finished);
// The last worker signals to the coordinator that all work is completed.
if (not_finished == 0) {
_end_semaphore->signal();
}
}
};
class MutexGangTaskDispatcher : public GangTaskDispatcher {
AbstractGangTask* _task;
volatile uint _started;
volatile uint _finished;
volatile uint _num_workers;
Monitor* _monitor;
public:
MutexGangTaskDispatcher()
: _task(NULL),
_monitor(new Monitor(Monitor::leaf, "WorkGang dispatcher lock", false, Monitor::_safepoint_check_never)),
_started(0),
_finished(0),
_num_workers(0) {}
~MutexGangTaskDispatcher() {
delete _monitor;
}
void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) {
MutexLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
_task = task;
_num_workers = num_workers;
// Tell the workers to get to work.
_monitor->notify_all();
// Wait for them to finish.
while (_finished < _num_workers) {
_monitor->wait(/* no_safepoint_check */ true);
}
_task = NULL;
_num_workers = 0;
_started = 0;
_finished = 0;
}
WorkData worker_wait_for_task() {
MonitorLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
while (_num_workers == 0 || _started == _num_workers) {
_monitor->wait(/* no_safepoint_check */ true);
}
_started++;
// Subtract one to get a zero-indexed worker id.
uint worker_id = _started - 1;
return WorkData(_task, worker_id);
}
void worker_done_with_task() {
MonitorLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
_finished++;
if (_finished == _num_workers) {
// This will wake up all workers and not only the coordinator.
_monitor->notify_all();
}
}
};
static GangTaskDispatcher* create_dispatcher() {
if (UseSemaphoreGCThreadsSynchronization) {
return new SemaphoreGangTaskDispatcher();
}
return new MutexGangTaskDispatcher();
}
WorkGang::WorkGang(const char* name,
uint workers,
bool are_GC_task_threads,
bool are_ConcurrentGC_threads) :
AbstractWorkGang(name, workers, are_GC_task_threads, are_ConcurrentGC_threads),
_dispatcher(create_dispatcher())
{ }
AbstractGangWorker* WorkGang::allocate_worker(uint worker_id) {
return new GangWorker(this, worker_id);
}
void WorkGang::run_task(AbstractGangTask* task) {
run_task(task, active_workers());
}
void WorkGang::run_task(AbstractGangTask* task, uint num_workers) {
guarantee(num_workers <= total_workers(),
"Trying to execute task %s with %u workers which is more than the amount of total workers %u.",
task->name(), num_workers, total_workers());
guarantee(num_workers > 0, "Trying to execute task %s with zero workers", task->name());
uint old_num_workers = _active_workers;
update_active_workers(num_workers);
_dispatcher->coordinator_execute_on_workers(task, num_workers);
update_active_workers(old_num_workers);
}
AbstractGangWorker::AbstractGangWorker(AbstractWorkGang* gang, uint id) {
_gang = gang;
set_id(id);
set_name("%s#%d", gang->name(), id);
}
void AbstractGangWorker::run() {
initialize();
loop();
}
void AbstractGangWorker::initialize() {
this->record_stack_base_and_size();
this->initialize_named_thread();
assert(_gang != NULL, "No gang to run in");
os::set_priority(this, NearMaxPriority);
log_develop_trace(gc, workgang)("Running gang worker for gang %s id %u", gang()->name(), id());
// The VM thread should not execute here because MutexLocker's are used
// as (opposed to MutexLockerEx's).
assert(!Thread::current()->is_VM_thread(), "VM thread should not be part"
" of a work gang");
}
bool AbstractGangWorker::is_GC_task_thread() const {
return gang()->are_GC_task_threads();
}
bool AbstractGangWorker::is_ConcurrentGC_thread() const {
return gang()->are_ConcurrentGC_threads();
}
void AbstractGangWorker::print_on(outputStream* st) const {
st->print("\"%s\" ", name());
Thread::print_on(st);
st->cr();
}
WorkData GangWorker::wait_for_task() {
return gang()->dispatcher()->worker_wait_for_task();
}
void GangWorker::signal_task_done() {
gang()->dispatcher()->worker_done_with_task();
}
void GangWorker::run_task(WorkData data) {
GCIdMark gc_id_mark(data._task->gc_id());
log_develop_trace(gc, workgang)("Running work gang: %s task: %s worker: %u", name(), data._task->name(), data._worker_id);
data._task->work(data._worker_id);
log_develop_trace(gc, workgang)("Finished work gang: %s task: %s worker: %u thread: " PTR_FORMAT,
name(), data._task->name(), data._worker_id, p2i(Thread::current()));
}
void GangWorker::loop() {
while (true) {
WorkData data = wait_for_task();
run_task(data);
signal_task_done();
}
}
// *** WorkGangBarrierSync
WorkGangBarrierSync::WorkGangBarrierSync()
: _monitor(Mutex::safepoint, "work gang barrier sync", true,
Monitor::_safepoint_check_never),
_n_workers(0), _n_completed(0), _should_reset(false), _aborted(false) {
}
WorkGangBarrierSync::WorkGangBarrierSync(uint n_workers, const char* name)
: _monitor(Mutex::safepoint, name, true, Monitor::_safepoint_check_never),
_n_workers(n_workers), _n_completed(0), _should_reset(false), _aborted(false) {
}
void WorkGangBarrierSync::set_n_workers(uint n_workers) {
_n_workers = n_workers;
_n_completed = 0;
_should_reset = false;
_aborted = false;
}
bool WorkGangBarrierSync::enter() {
MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag);
if (should_reset()) {
// The should_reset() was set and we are the first worker to enter
// the sync barrier. We will zero the n_completed() count which
// effectively resets the barrier.
zero_completed();
set_should_reset(false);
}
inc_completed();
if (n_completed() == n_workers()) {
// At this point we would like to reset the barrier to be ready in
// case it is used again. However, we cannot set n_completed() to
// 0, even after the notify_all(), given that some other workers
// might still be waiting for n_completed() to become ==
// n_workers(). So, if we set n_completed() to 0, those workers
// will get stuck (as they will wake up, see that n_completed() !=
// n_workers() and go back to sleep). Instead, we raise the
// should_reset() flag and the barrier will be reset the first
// time a worker enters it again.
set_should_reset(true);
monitor()->notify_all();
} else {
while (n_completed() != n_workers() && !aborted()) {
monitor()->wait(/* no_safepoint_check */ true);
}
}
return !aborted();
}
void WorkGangBarrierSync::abort() {
MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag);
set_aborted();
monitor()->notify_all();
}
// SubTasksDone functions.
SubTasksDone::SubTasksDone(uint n) :
_n_tasks(n), _tasks(NULL) {
_tasks = NEW_C_HEAP_ARRAY(uint, n, mtInternal);
guarantee(_tasks != NULL, "alloc failure");
clear();
}
bool SubTasksDone::valid() {
return _tasks != NULL;
}
void SubTasksDone::clear() {
for (uint i = 0; i < _n_tasks; i++) {
_tasks[i] = 0;
}
_threads_completed = 0;
#ifdef ASSERT
_claimed = 0;
#endif
}
bool SubTasksDone::is_task_claimed(uint t) {
assert(t < _n_tasks, "bad task id.");
uint old = _tasks[t];
if (old == 0) {
old = Atomic::cmpxchg(1u, &_tasks[t], 0u);
}
assert(_tasks[t] == 1, "What else?");
bool res = old != 0;
#ifdef ASSERT
if (!res) {
assert(_claimed < _n_tasks, "Too many tasks claimed; missing clear?");
Atomic::inc((volatile jint*) &_claimed);
}
#endif
return res;
}
void SubTasksDone::all_tasks_completed(uint n_threads) {
uint observed = _threads_completed;
uint old;
do {
old = observed;
observed = Atomic::cmpxchg(old+1, &_threads_completed, old);
} while (observed != old);
// If this was the last thread checking in, clear the tasks.
uint adjusted_thread_count = (n_threads == 0 ? 1 : n_threads);
if (observed + 1 == adjusted_thread_count) {
clear();
}
}
SubTasksDone::~SubTasksDone() {
if (_tasks != NULL) FREE_C_HEAP_ARRAY(jint, _tasks);
}
// *** SequentialSubTasksDone
void SequentialSubTasksDone::clear() {
_n_tasks = _n_claimed = 0;
_n_threads = _n_completed = 0;
}
bool SequentialSubTasksDone::valid() {
return _n_threads > 0;
}
bool SequentialSubTasksDone::is_task_claimed(uint& t) {
t = _n_claimed;
while (t < _n_tasks) {
uint res = Atomic::cmpxchg(t+1, &_n_claimed, t);
if (res == t) {
return false;
}
t = res;
}
return true;
}
bool SequentialSubTasksDone::all_tasks_completed() {
uint complete = _n_completed;
while (true) {
uint res = Atomic::cmpxchg(complete+1, &_n_completed, complete);
if (res == complete) {
break;
}
complete = res;
}
if (complete+1 == _n_threads) {
clear();
return true;
}
return false;
}