/*
* Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
* Copyright 2007, 2008, 2009, 2010, 2011 Red Hat, Inc.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/cppInterpreter.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterGenerator.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "oops/arrayOop.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "stack_zero.inline.hpp"
#include "utilities/debug.hpp"
#include "utilities/macros.hpp"
#ifdef SHARK
#include "shark/shark_globals.hpp"
#endif
#ifdef CC_INTERP
#define fixup_after_potential_safepoint() \
method = istate->method()
#define CALL_VM_NOCHECK_NOFIX(func) \
thread->set_last_Java_frame(); \
func; \
thread->reset_last_Java_frame();
#define CALL_VM_NOCHECK(func) \
CALL_VM_NOCHECK_NOFIX(func) \
fixup_after_potential_safepoint()
int CppInterpreter::normal_entry(Method* method, intptr_t UNUSED, TRAPS) {
JavaThread *thread = (JavaThread *) THREAD;
// Allocate and initialize our frame.
InterpreterFrame *frame = InterpreterFrame::build(method, CHECK_0);
thread->push_zero_frame(frame);
// Execute those bytecodes!
main_loop(0, THREAD);
// No deoptimized frames on the stack
return 0;
}
void CppInterpreter::main_loop(int recurse, TRAPS) {
JavaThread *thread = (JavaThread *) THREAD;
ZeroStack *stack = thread->zero_stack();
// If we are entering from a deopt we may need to call
// ourself a few times in order to get to our frame.
if (recurse)
main_loop(recurse - 1, THREAD);
InterpreterFrame *frame = thread->top_zero_frame()->as_interpreter_frame();
interpreterState istate = frame->interpreter_state();
Method* method = istate->method();
intptr_t *result = NULL;
int result_slots = 0;
while (true) {
// We can set up the frame anchor with everything we want at
// this point as we are thread_in_Java and no safepoints can
// occur until we go to vm mode. We do have to clear flags
// on return from vm but that is it.
thread->set_last_Java_frame();
// Call the interpreter
if (JvmtiExport::can_post_interpreter_events())
BytecodeInterpreter::runWithChecks(istate);
else
BytecodeInterpreter::run(istate);
fixup_after_potential_safepoint();
// Clear the frame anchor
thread->reset_last_Java_frame();
// Examine the message from the interpreter to decide what to do
if (istate->msg() == BytecodeInterpreter::call_method) {
Method* callee = istate->callee();
// Trim back the stack to put the parameters at the top
stack->set_sp(istate->stack() + 1);
// Make the call
Interpreter::invoke_method(callee, istate->callee_entry_point(), THREAD);
fixup_after_potential_safepoint();
// Convert the result
istate->set_stack(stack->sp() - 1);
// Restore the stack
stack->set_sp(istate->stack_limit() + 1);
// Resume the interpreter
istate->set_msg(BytecodeInterpreter::method_resume);
}
else if (istate->msg() == BytecodeInterpreter::more_monitors) {
int monitor_words = frame::interpreter_frame_monitor_size();
// Allocate the space
stack->overflow_check(monitor_words, THREAD);
if (HAS_PENDING_EXCEPTION)
break;
stack->alloc(monitor_words * wordSize);
// Move the expression stack contents
for (intptr_t *p = istate->stack() + 1; p < istate->stack_base(); p++)
*(p - monitor_words) = *p;
// Move the expression stack pointers
istate->set_stack_limit(istate->stack_limit() - monitor_words);
istate->set_stack(istate->stack() - monitor_words);
istate->set_stack_base(istate->stack_base() - monitor_words);
// Zero the new monitor so the interpreter can find it.
((BasicObjectLock *) istate->stack_base())->set_obj(NULL);
// Resume the interpreter
istate->set_msg(BytecodeInterpreter::got_monitors);
}
else if (istate->msg() == BytecodeInterpreter::return_from_method) {
// Copy the result into the caller's frame
result_slots = type2size[result_type_of(method)];
assert(result_slots >= 0 && result_slots <= 2, "what?");
result = istate->stack() + result_slots;
break;
}
else if (istate->msg() == BytecodeInterpreter::throwing_exception) {
assert(HAS_PENDING_EXCEPTION, "should do");
break;
}
else if (istate->msg() == BytecodeInterpreter::do_osr) {
// Unwind the current frame
thread->pop_zero_frame();
// Remove any extension of the previous frame
int extra_locals = method->max_locals() - method->size_of_parameters();
stack->set_sp(stack->sp() + extra_locals);
// Jump into the OSR method
Interpreter::invoke_osr(
method, istate->osr_entry(), istate->osr_buf(), THREAD);
return;
}
else {
ShouldNotReachHere();
}
}
// Unwind the current frame
thread->pop_zero_frame();
// Pop our local variables
stack->set_sp(stack->sp() + method->max_locals());
// Push our result
for (int i = 0; i < result_slots; i++)
stack->push(result[-i]);
}
int CppInterpreter::native_entry(Method* method, intptr_t UNUSED, TRAPS) {
// Make sure method is native and not abstract
assert(method->is_native() && !method->is_abstract(), "should be");
JavaThread *thread = (JavaThread *) THREAD;
ZeroStack *stack = thread->zero_stack();
// Allocate and initialize our frame
InterpreterFrame *frame = InterpreterFrame::build(method, CHECK_0);
thread->push_zero_frame(frame);
interpreterState istate = frame->interpreter_state();
intptr_t *locals = istate->locals();
// Update the invocation counter
if ((UseCompiler || CountCompiledCalls) && !method->is_synchronized()) {
MethodCounters* mcs = method->method_counters();
if (mcs == NULL) {
CALL_VM_NOCHECK(mcs = InterpreterRuntime::build_method_counters(thread, method));
if (HAS_PENDING_EXCEPTION)
goto unwind_and_return;
}
InvocationCounter *counter = mcs->invocation_counter();
counter->increment();
if (counter->reached_InvocationLimit()) {
CALL_VM_NOCHECK(
InterpreterRuntime::frequency_counter_overflow(thread, NULL));
if (HAS_PENDING_EXCEPTION)
goto unwind_and_return;
}
}
// Lock if necessary
BasicObjectLock *monitor;
monitor = NULL;
if (method->is_synchronized()) {
monitor = (BasicObjectLock*) istate->stack_base();
oop lockee = monitor->obj();
markOop disp = lockee->mark()->set_unlocked();
monitor->lock()->set_displaced_header(disp);
if (Atomic::cmpxchg_ptr(monitor, lockee->mark_addr(), disp) != disp) {
if (thread->is_lock_owned((address) disp->clear_lock_bits())) {
monitor->lock()->set_displaced_header(NULL);
}
else {
CALL_VM_NOCHECK(InterpreterRuntime::monitorenter(thread, monitor));
if (HAS_PENDING_EXCEPTION)
goto unwind_and_return;
}
}
}
// Get the signature handler
InterpreterRuntime::SignatureHandler *handler; {
address handlerAddr = method->signature_handler();
if (handlerAddr == NULL) {
CALL_VM_NOCHECK(InterpreterRuntime::prepare_native_call(thread, method));
if (HAS_PENDING_EXCEPTION)
goto unlock_unwind_and_return;
handlerAddr = method->signature_handler();
assert(handlerAddr != NULL, "eh?");
}
if (handlerAddr == (address) InterpreterRuntime::slow_signature_handler) {
CALL_VM_NOCHECK(handlerAddr =
InterpreterRuntime::slow_signature_handler(thread, method, NULL,NULL));
if (HAS_PENDING_EXCEPTION)
goto unlock_unwind_and_return;
}
handler = \
InterpreterRuntime::SignatureHandler::from_handlerAddr(handlerAddr);
}
// Get the native function entry point
address function;
function = method->native_function();
assert(function != NULL, "should be set if signature handler is");
// Build the argument list
stack->overflow_check(handler->argument_count() * 2, THREAD);
if (HAS_PENDING_EXCEPTION)
goto unlock_unwind_and_return;
void **arguments;
void *mirror; {
arguments =
(void **) stack->alloc(handler->argument_count() * sizeof(void **));
void **dst = arguments;
void *env = thread->jni_environment();
*(dst++) = &env;
if (method->is_static()) {
istate->set_oop_temp(
method->constants()->pool_holder()->java_mirror());
mirror = istate->oop_temp_addr();
*(dst++) = &mirror;
}
intptr_t *src = locals;
for (int i = dst - arguments; i < handler->argument_count(); i++) {
ffi_type *type = handler->argument_type(i);
if (type == &ffi_type_pointer) {
if (*src) {
stack->push((intptr_t) src);
*(dst++) = stack->sp();
}
else {
*(dst++) = src;
}
src--;
}
else if (type->size == 4) {
*(dst++) = src--;
}
else if (type->size == 8) {
src--;
*(dst++) = src--;
}
else {
ShouldNotReachHere();
}
}
}
// Set up the Java frame anchor
thread->set_last_Java_frame();
// Change the thread state to _thread_in_native
ThreadStateTransition::transition_from_java(thread, _thread_in_native);
// Make the call
intptr_t result[4 - LogBytesPerWord];
ffi_call(handler->cif(), (void (*)()) function, result, arguments);
// Change the thread state back to _thread_in_Java.
// ThreadStateTransition::transition_from_native() cannot be used
// here because it does not check for asynchronous exceptions.
// We have to manage the transition ourself.
thread->set_thread_state(_thread_in_native_trans);
// Make sure new state is visible in the GC thread
if (os::is_MP()) {
if (UseMembar) {
OrderAccess::fence();
}
else {
InterfaceSupport::serialize_memory(thread);
}
}
// Handle safepoint operations, pending suspend requests,
// and pending asynchronous exceptions.
if (SafepointSynchronize::do_call_back() ||
thread->has_special_condition_for_native_trans()) {
JavaThread::check_special_condition_for_native_trans(thread);
CHECK_UNHANDLED_OOPS_ONLY(thread->clear_unhandled_oops());
}
// Finally we can change the thread state to _thread_in_Java.
thread->set_thread_state(_thread_in_Java);
fixup_after_potential_safepoint();
// Clear the frame anchor
thread->reset_last_Java_frame();
// If the result was an oop then unbox it and store it in
// oop_temp where the garbage collector can see it before
// we release the handle it might be protected by.
if (handler->result_type() == &ffi_type_pointer) {
if (result[0])
istate->set_oop_temp(*(oop *) result[0]);
else
istate->set_oop_temp(NULL);
}
// Reset handle block
thread->active_handles()->clear();
unlock_unwind_and_return:
// Unlock if necessary
if (monitor) {
BasicLock *lock = monitor->lock();
markOop header = lock->displaced_header();
oop rcvr = monitor->obj();
monitor->set_obj(NULL);
if (header != NULL) {
if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
monitor->set_obj(rcvr); {
HandleMark hm(thread);
CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(thread, monitor));
}
}
}
}
unwind_and_return:
// Unwind the current activation
thread->pop_zero_frame();
// Pop our parameters
stack->set_sp(stack->sp() + method->size_of_parameters());
// Push our result
if (!HAS_PENDING_EXCEPTION) {
BasicType type = result_type_of(method);
stack->set_sp(stack->sp() - type2size[type]);
switch (type) {
case T_VOID:
break;
case T_BOOLEAN:
#ifndef VM_LITTLE_ENDIAN
result[0] <<= (BitsPerWord - BitsPerByte);
#endif
SET_LOCALS_INT(*(jboolean *) result != 0, 0);
break;
case T_CHAR:
#ifndef VM_LITTLE_ENDIAN
result[0] <<= (BitsPerWord - BitsPerShort);
#endif
SET_LOCALS_INT(*(jchar *) result, 0);
break;
case T_BYTE:
#ifndef VM_LITTLE_ENDIAN
result[0] <<= (BitsPerWord - BitsPerByte);
#endif
SET_LOCALS_INT(*(jbyte *) result, 0);
break;
case T_SHORT:
#ifndef VM_LITTLE_ENDIAN
result[0] <<= (BitsPerWord - BitsPerShort);
#endif
SET_LOCALS_INT(*(jshort *) result, 0);
break;
case T_INT:
#ifndef VM_LITTLE_ENDIAN
result[0] <<= (BitsPerWord - BitsPerInt);
#endif
SET_LOCALS_INT(*(jint *) result, 0);
break;
case T_LONG:
SET_LOCALS_LONG(*(jlong *) result, 0);
break;
case T_FLOAT:
SET_LOCALS_FLOAT(*(jfloat *) result, 0);
break;
case T_DOUBLE:
SET_LOCALS_DOUBLE(*(jdouble *) result, 0);
break;
case T_OBJECT:
case T_ARRAY:
SET_LOCALS_OBJECT(istate->oop_temp(), 0);
break;
default:
ShouldNotReachHere();
}
}
// No deoptimized frames on the stack
return 0;
}
int CppInterpreter::accessor_entry(Method* method, intptr_t UNUSED, TRAPS) {
JavaThread *thread = (JavaThread *) THREAD;
ZeroStack *stack = thread->zero_stack();
intptr_t *locals = stack->sp();
// Drop into the slow path if we need a safepoint check
if (SafepointSynchronize::do_call_back()) {
return normal_entry(method, 0, THREAD);
}
// Load the object pointer and drop into the slow path
// if we have a NullPointerException
oop object = LOCALS_OBJECT(0);
if (object == NULL) {
return normal_entry(method, 0, THREAD);
}
// Read the field index from the bytecode, which looks like this:
// 0: aload_0
// 1: getfield
// 2: index
// 3: index
// 4: ireturn/areturn
// NB this is not raw bytecode: index is in machine order
u1 *code = method->code_base();
assert(code[0] == Bytecodes::_aload_0 &&
code[1] == Bytecodes::_getfield &&
(code[4] == Bytecodes::_ireturn ||
code[4] == Bytecodes::_areturn), "should do");
u2 index = Bytes::get_native_u2(&code[2]);
// Get the entry from the constant pool cache, and drop into
// the slow path if it has not been resolved
ConstantPoolCache* cache = method->constants()->cache();
ConstantPoolCacheEntry* entry = cache->entry_at(index);
if (!entry->is_resolved(Bytecodes::_getfield)) {
return normal_entry(method, 0, THREAD);
}
// Get the result and push it onto the stack
switch (entry->flag_state()) {
case ltos:
case dtos:
stack->overflow_check(1, CHECK_0);
stack->alloc(wordSize);
break;
}
if (entry->is_volatile()) {
switch (entry->flag_state()) {
case ctos:
SET_LOCALS_INT(object->char_field_acquire(entry->f2_as_index()), 0);
break;
case btos:
SET_LOCALS_INT(object->byte_field_acquire(entry->f2_as_index()), 0);
break;
case stos:
SET_LOCALS_INT(object->short_field_acquire(entry->f2_as_index()), 0);
break;
case itos:
SET_LOCALS_INT(object->int_field_acquire(entry->f2_as_index()), 0);
break;
case ltos:
SET_LOCALS_LONG(object->long_field_acquire(entry->f2_as_index()), 0);
break;
case ftos:
SET_LOCALS_FLOAT(object->float_field_acquire(entry->f2_as_index()), 0);
break;
case dtos:
SET_LOCALS_DOUBLE(object->double_field_acquire(entry->f2_as_index()), 0);
break;
case atos:
SET_LOCALS_OBJECT(object->obj_field_acquire(entry->f2_as_index()), 0);
break;
default:
ShouldNotReachHere();
}
}
else {
switch (entry->flag_state()) {
case ctos:
SET_LOCALS_INT(object->char_field(entry->f2_as_index()), 0);
break;
case btos:
SET_LOCALS_INT(object->byte_field(entry->f2_as_index()), 0);
break;
case stos:
SET_LOCALS_INT(object->short_field(entry->f2_as_index()), 0);
break;
case itos:
SET_LOCALS_INT(object->int_field(entry->f2_as_index()), 0);
break;
case ltos:
SET_LOCALS_LONG(object->long_field(entry->f2_as_index()), 0);
break;
case ftos:
SET_LOCALS_FLOAT(object->float_field(entry->f2_as_index()), 0);
break;
case dtos:
SET_LOCALS_DOUBLE(object->double_field(entry->f2_as_index()), 0);
break;
case atos:
SET_LOCALS_OBJECT(object->obj_field(entry->f2_as_index()), 0);
break;
default:
ShouldNotReachHere();
}
}
// No deoptimized frames on the stack
return 0;
}
int CppInterpreter::empty_entry(Method* method, intptr_t UNUSED, TRAPS) {
JavaThread *thread = (JavaThread *) THREAD;
ZeroStack *stack = thread->zero_stack();
// Drop into the slow path if we need a safepoint check
if (SafepointSynchronize::do_call_back()) {
return normal_entry(method, 0, THREAD);
}
// Pop our parameters
stack->set_sp(stack->sp() + method->size_of_parameters());
// No deoptimized frames on the stack
return 0;
}
// The new slots will be inserted before slot insert_before.
// Slots < insert_before will have the same slot number after the insert.
// Slots >= insert_before will become old_slot + num_slots.
void CppInterpreter::insert_vmslots(int insert_before, int num_slots, TRAPS) {
JavaThread *thread = (JavaThread *) THREAD;
ZeroStack *stack = thread->zero_stack();
// Allocate the space
stack->overflow_check(num_slots, CHECK);
stack->alloc(num_slots * wordSize);
intptr_t *vmslots = stack->sp();
// Shuffle everything up
for (int i = 0; i < insert_before; i++)
SET_VMSLOTS_SLOT(VMSLOTS_SLOT(i + num_slots), i);
}
void CppInterpreter::remove_vmslots(int first_slot, int num_slots, TRAPS) {
JavaThread *thread = (JavaThread *) THREAD;
ZeroStack *stack = thread->zero_stack();
intptr_t *vmslots = stack->sp();
// Move everything down
for (int i = first_slot - 1; i >= 0; i--)
SET_VMSLOTS_SLOT(VMSLOTS_SLOT(i), i + num_slots);
// Deallocate the space
stack->set_sp(stack->sp() + num_slots);
}
BasicType CppInterpreter::result_type_of_handle(oop method_handle) {
oop method_type = java_lang_invoke_MethodHandle::type(method_handle);
oop return_type = java_lang_invoke_MethodType::rtype(method_type);
return java_lang_Class::as_BasicType(return_type, (Klass* *) NULL);
}
intptr_t* CppInterpreter::calculate_unwind_sp(ZeroStack* stack,
oop method_handle) {
oop method_type = java_lang_invoke_MethodHandle::type(method_handle);
int argument_slots = java_lang_invoke_MethodType::ptype_slot_count(method_type);
return stack->sp() + argument_slots;
}
IRT_ENTRY(void, CppInterpreter::throw_exception(JavaThread* thread,
Symbol* name,
char* message))
THROW_MSG(name, message);
IRT_END
InterpreterFrame *InterpreterFrame::build(Method* const method, TRAPS) {
JavaThread *thread = (JavaThread *) THREAD;
ZeroStack *stack = thread->zero_stack();
// Calculate the size of the frame we'll build, including
// any adjustments to the caller's frame that we'll make.
int extra_locals = 0;
int monitor_words = 0;
int stack_words = 0;
if (!method->is_native()) {
extra_locals = method->max_locals() - method->size_of_parameters();
stack_words = method->max_stack();
}
if (method->is_synchronized()) {
monitor_words = frame::interpreter_frame_monitor_size();
}
stack->overflow_check(
extra_locals + header_words + monitor_words + stack_words, CHECK_NULL);
// Adjust the caller's stack frame to accomodate any additional
// local variables we have contiguously with our parameters.
for (int i = 0; i < extra_locals; i++)
stack->push(0);
intptr_t *locals;
if (method->is_native())
locals = stack->sp() + (method->size_of_parameters() - 1);
else
locals = stack->sp() + (method->max_locals() - 1);
stack->push(0); // next_frame, filled in later
intptr_t *fp = stack->sp();
assert(fp - stack->sp() == next_frame_off, "should be");
stack->push(INTERPRETER_FRAME);
assert(fp - stack->sp() == frame_type_off, "should be");
interpreterState istate =
(interpreterState) stack->alloc(sizeof(BytecodeInterpreter));
assert(fp - stack->sp() == istate_off, "should be");
istate->set_locals(locals);
istate->set_method(method);
istate->set_self_link(istate);
istate->set_prev_link(NULL);
istate->set_thread(thread);
istate->set_bcp(method->is_native() ? NULL : method->code_base());
istate->set_constants(method->constants()->cache());
istate->set_msg(BytecodeInterpreter::method_entry);
istate->set_oop_temp(NULL);
istate->set_mdx(NULL);
istate->set_callee(NULL);
istate->set_monitor_base((BasicObjectLock *) stack->sp());
if (method->is_synchronized()) {
BasicObjectLock *monitor =
(BasicObjectLock *) stack->alloc(monitor_words * wordSize);
oop object;
if (method->is_static())
object = method->constants()->pool_holder()->java_mirror();
else
object = (oop) locals[0];
monitor->set_obj(object);
}
istate->set_stack_base(stack->sp());
istate->set_stack(stack->sp() - 1);
if (stack_words)
stack->alloc(stack_words * wordSize);
istate->set_stack_limit(stack->sp() - 1);
return (InterpreterFrame *) fp;
}
int AbstractInterpreter::BasicType_as_index(BasicType type) {
int i = 0;
switch (type) {
case T_BOOLEAN: i = 0; break;
case T_CHAR : i = 1; break;
case T_BYTE : i = 2; break;
case T_SHORT : i = 3; break;
case T_INT : i = 4; break;
case T_LONG : i = 5; break;
case T_VOID : i = 6; break;
case T_FLOAT : i = 7; break;
case T_DOUBLE : i = 8; break;
case T_OBJECT : i = 9; break;
case T_ARRAY : i = 9; break;
default : ShouldNotReachHere();
}
assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
"index out of bounds");
return i;
}
BasicType CppInterpreter::result_type_of(Method* method) {
BasicType t;
switch (method->result_index()) {
case 0 : t = T_BOOLEAN; break;
case 1 : t = T_CHAR; break;
case 2 : t = T_BYTE; break;
case 3 : t = T_SHORT; break;
case 4 : t = T_INT; break;
case 5 : t = T_LONG; break;
case 6 : t = T_VOID; break;
case 7 : t = T_FLOAT; break;
case 8 : t = T_DOUBLE; break;
case 9 : t = T_OBJECT; break;
default: ShouldNotReachHere();
}
assert(AbstractInterpreter::BasicType_as_index(t) == method->result_index(),
"out of step with AbstractInterpreter::BasicType_as_index");
return t;
}
address InterpreterGenerator::generate_empty_entry() {
if (!UseFastEmptyMethods)
return NULL;
return generate_entry((address) CppInterpreter::empty_entry);
}
address InterpreterGenerator::generate_accessor_entry() {
if (!UseFastAccessorMethods)
return NULL;
return generate_entry((address) CppInterpreter::accessor_entry);
}
address InterpreterGenerator::generate_Reference_get_entry(void) {
#if INCLUDE_ALL_GCS
if (UseG1GC) {
// We need to generate have a routine that generates code to:
// * load the value in the referent field
// * passes that value to the pre-barrier.
//
// In the case of G1 this will record the value of the
// referent in an SATB buffer if marking is active.
// This will cause concurrent marking to mark the referent
// field as live.
Unimplemented();
}
#endif // INCLUDE_ALL_GCS
// If G1 is not enabled then attempt to go through the accessor entry point
// Reference.get is an accessor
return generate_accessor_entry();
}
address InterpreterGenerator::generate_native_entry(bool synchronized) {
assert(synchronized == false, "should be");
return generate_entry((address) CppInterpreter::native_entry);
}
address InterpreterGenerator::generate_normal_entry(bool synchronized) {
assert(synchronized == false, "should be");
return generate_entry((address) CppInterpreter::normal_entry);
}
address AbstractInterpreterGenerator::generate_method_entry(
AbstractInterpreter::MethodKind kind) {
address entry_point = NULL;
switch (kind) {
case Interpreter::zerolocals:
case Interpreter::zerolocals_synchronized:
break;
case Interpreter::native:
entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false);
break;
case Interpreter::native_synchronized:
entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false);
break;
case Interpreter::empty:
entry_point = ((InterpreterGenerator*) this)->generate_empty_entry();
break;
case Interpreter::accessor:
entry_point = ((InterpreterGenerator*) this)->generate_accessor_entry();
break;
case Interpreter::abstract:
entry_point = ((InterpreterGenerator*) this)->generate_abstract_entry();
break;
case Interpreter::java_lang_math_sin:
case Interpreter::java_lang_math_cos:
case Interpreter::java_lang_math_tan:
case Interpreter::java_lang_math_abs:
case Interpreter::java_lang_math_log:
case Interpreter::java_lang_math_log10:
case Interpreter::java_lang_math_sqrt:
case Interpreter::java_lang_math_pow:
case Interpreter::java_lang_math_exp:
entry_point = ((InterpreterGenerator*) this)->generate_math_entry(kind);
break;
case Interpreter::java_lang_ref_reference_get:
entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry();
break;
default:
ShouldNotReachHere();
}
if (entry_point == NULL)
entry_point = ((InterpreterGenerator*) this)->generate_normal_entry(false);
return entry_point;
}
InterpreterGenerator::InterpreterGenerator(StubQueue* code)
: CppInterpreterGenerator(code) {
generate_all();
}
// Deoptimization helpers
InterpreterFrame *InterpreterFrame::build(int size, TRAPS) {
ZeroStack *stack = ((JavaThread *) THREAD)->zero_stack();
int size_in_words = size >> LogBytesPerWord;
assert(size_in_words * wordSize == size, "unaligned");
assert(size_in_words >= header_words, "too small");
stack->overflow_check(size_in_words, CHECK_NULL);
stack->push(0); // next_frame, filled in later
intptr_t *fp = stack->sp();
assert(fp - stack->sp() == next_frame_off, "should be");
stack->push(INTERPRETER_FRAME);
assert(fp - stack->sp() == frame_type_off, "should be");
interpreterState istate =
(interpreterState) stack->alloc(sizeof(BytecodeInterpreter));
assert(fp - stack->sp() == istate_off, "should be");
istate->set_self_link(NULL); // mark invalid
stack->alloc((size_in_words - header_words) * wordSize);
return (InterpreterFrame *) fp;
}
int AbstractInterpreter::layout_activation(Method* method,
int tempcount,
int popframe_extra_args,
int moncount,
int caller_actual_parameters,
int callee_param_count,
int callee_locals,
frame* caller,
frame* interpreter_frame,
bool is_top_frame,
bool is_bottom_frame) {
assert(popframe_extra_args == 0, "what to do?");
assert(!is_top_frame || (!callee_locals && !callee_param_count),
"top frame should have no caller");
// This code must exactly match what InterpreterFrame::build
// does (the full InterpreterFrame::build, that is, not the
// one that creates empty frames for the deoptimizer).
//
// If interpreter_frame is not NULL then it will be filled in.
// It's size is determined by a previous call to this method,
// so it should be correct.
//
// Note that tempcount is the current size of the expression
// stack. For top most frames we will allocate a full sized
// expression stack and not the trimmed version that non-top
// frames have.
int header_words = InterpreterFrame::header_words;
int monitor_words = moncount * frame::interpreter_frame_monitor_size();
int stack_words = is_top_frame ? method->max_stack() : tempcount;
int callee_extra_locals = callee_locals - callee_param_count;
if (interpreter_frame) {
intptr_t *locals = interpreter_frame->fp() + method->max_locals();
interpreterState istate = interpreter_frame->get_interpreterState();
intptr_t *monitor_base = (intptr_t*) istate;
intptr_t *stack_base = monitor_base - monitor_words;
intptr_t *stack = stack_base - tempcount - 1;
BytecodeInterpreter::layout_interpreterState(istate,
caller,
NULL,
method,
locals,
stack,
stack_base,
monitor_base,
NULL,
is_top_frame);
}
return header_words + monitor_words + stack_words + callee_extra_locals;
}
void BytecodeInterpreter::layout_interpreterState(interpreterState istate,
frame* caller,
frame* current,
Method* method,
intptr_t* locals,
intptr_t* stack,
intptr_t* stack_base,
intptr_t* monitor_base,
intptr_t* frame_bottom,
bool is_top_frame) {
istate->set_locals(locals);
istate->set_method(method);
istate->set_self_link(istate);
istate->set_prev_link(NULL);
// thread will be set by a hacky repurposing of frame::patch_pc()
// bcp will be set by vframeArrayElement::unpack_on_stack()
istate->set_constants(method->constants()->cache());
istate->set_msg(BytecodeInterpreter::method_resume);
istate->set_bcp_advance(0);
istate->set_oop_temp(NULL);
istate->set_mdx(NULL);
if (caller->is_interpreted_frame()) {
interpreterState prev = caller->get_interpreterState();
prev->set_callee(method);
if (*prev->bcp() == Bytecodes::_invokeinterface)
prev->set_bcp_advance(5);
else
prev->set_bcp_advance(3);
}
istate->set_callee(NULL);
istate->set_monitor_base((BasicObjectLock *) monitor_base);
istate->set_stack_base(stack_base);
istate->set_stack(stack);
istate->set_stack_limit(stack_base - method->max_stack() - 1);
}
address CppInterpreter::return_entry(TosState state, int length) {
ShouldNotCallThis();
}
address CppInterpreter::deopt_entry(TosState state, int length) {
return NULL;
}
// Helper for (runtime) stack overflow checks
int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
return 0;
}
// Helper for figuring out if frames are interpreter frames
bool CppInterpreter::contains(address pc) {
return false; // make frame::print_value_on work
}
// Result handlers and convertors
address CppInterpreterGenerator::generate_result_handler_for(
BasicType type) {
assembler()->advance(1);
return ShouldNotCallThisStub();
}
address CppInterpreterGenerator::generate_tosca_to_stack_converter(
BasicType type) {
assembler()->advance(1);
return ShouldNotCallThisStub();
}
address CppInterpreterGenerator::generate_stack_to_stack_converter(
BasicType type) {
assembler()->advance(1);
return ShouldNotCallThisStub();
}
address CppInterpreterGenerator::generate_stack_to_native_abi_converter(
BasicType type) {
assembler()->advance(1);
return ShouldNotCallThisStub();
}
#endif // CC_INTERP