jdk/src/share/classes/java/util/Collection.java
author darcy
Fri, 19 Aug 2011 17:42:24 -0700
changeset 10350 6d009f117062
parent 9503 588cf31d584a
child 14342 8435a30053c1
permissions -rw-r--r--
4748706: typos in java.util.Observable documentation Reviewed-by: iris

/*
 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.util;

/**
 * The root interface in the <i>collection hierarchy</i>.  A collection
 * represents a group of objects, known as its <i>elements</i>.  Some
 * collections allow duplicate elements and others do not.  Some are ordered
 * and others unordered.  The JDK does not provide any <i>direct</i>
 * implementations of this interface: it provides implementations of more
 * specific subinterfaces like <tt>Set</tt> and <tt>List</tt>.  This interface
 * is typically used to pass collections around and manipulate them where
 * maximum generality is desired.
 *
 * <p><i>Bags</i> or <i>multisets</i> (unordered collections that may contain
 * duplicate elements) should implement this interface directly.
 *
 * <p>All general-purpose <tt>Collection</tt> implementation classes (which
 * typically implement <tt>Collection</tt> indirectly through one of its
 * subinterfaces) should provide two "standard" constructors: a void (no
 * arguments) constructor, which creates an empty collection, and a
 * constructor with a single argument of type <tt>Collection</tt>, which
 * creates a new collection with the same elements as its argument.  In
 * effect, the latter constructor allows the user to copy any collection,
 * producing an equivalent collection of the desired implementation type.
 * There is no way to enforce this convention (as interfaces cannot contain
 * constructors) but all of the general-purpose <tt>Collection</tt>
 * implementations in the Java platform libraries comply.
 *
 * <p>The "destructive" methods contained in this interface, that is, the
 * methods that modify the collection on which they operate, are specified to
 * throw <tt>UnsupportedOperationException</tt> if this collection does not
 * support the operation.  If this is the case, these methods may, but are not
 * required to, throw an <tt>UnsupportedOperationException</tt> if the
 * invocation would have no effect on the collection.  For example, invoking
 * the {@link #addAll(Collection)} method on an unmodifiable collection may,
 * but is not required to, throw the exception if the collection to be added
 * is empty.
 *
 * <p><a name="optional-restrictions"/>
 * Some collection implementations have restrictions on the elements that
 * they may contain.  For example, some implementations prohibit null elements,
 * and some have restrictions on the types of their elements.  Attempting to
 * add an ineligible element throws an unchecked exception, typically
 * <tt>NullPointerException</tt> or <tt>ClassCastException</tt>.  Attempting
 * to query the presence of an ineligible element may throw an exception,
 * or it may simply return false; some implementations will exhibit the former
 * behavior and some will exhibit the latter.  More generally, attempting an
 * operation on an ineligible element whose completion would not result in
 * the insertion of an ineligible element into the collection may throw an
 * exception or it may succeed, at the option of the implementation.
 * Such exceptions are marked as "optional" in the specification for this
 * interface.
 *
 * <p>It is up to each collection to determine its own synchronization
 * policy.  In the absence of a stronger guarantee by the
 * implementation, undefined behavior may result from the invocation
 * of any method on a collection that is being mutated by another
 * thread; this includes direct invocations, passing the collection to
 * a method that might perform invocations, and using an existing
 * iterator to examine the collection.
 *
 * <p>Many methods in Collections Framework interfaces are defined in
 * terms of the {@link Object#equals(Object) equals} method.  For example,
 * the specification for the {@link #contains(Object) contains(Object o)}
 * method says: "returns <tt>true</tt> if and only if this collection
 * contains at least one element <tt>e</tt> such that
 * <tt>(o==null ? e==null : o.equals(e))</tt>."  This specification should
 * <i>not</i> be construed to imply that invoking <tt>Collection.contains</tt>
 * with a non-null argument <tt>o</tt> will cause <tt>o.equals(e)</tt> to be
 * invoked for any element <tt>e</tt>.  Implementations are free to implement
 * optimizations whereby the <tt>equals</tt> invocation is avoided, for
 * example, by first comparing the hash codes of the two elements.  (The
 * {@link Object#hashCode()} specification guarantees that two objects with
 * unequal hash codes cannot be equal.)  More generally, implementations of
 * the various Collections Framework interfaces are free to take advantage of
 * the specified behavior of underlying {@link Object} methods wherever the
 * implementor deems it appropriate.
 *
 * <p>This interface is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @param <E> the type of elements in this collection
 *
 * @author  Josh Bloch
 * @author  Neal Gafter
 * @see     Set
 * @see     List
 * @see     Map
 * @see     SortedSet
 * @see     SortedMap
 * @see     HashSet
 * @see     TreeSet
 * @see     ArrayList
 * @see     LinkedList
 * @see     Vector
 * @see     Collections
 * @see     Arrays
 * @see     AbstractCollection
 * @since 1.2
 */

public interface Collection<E> extends Iterable<E> {
    // Query Operations

    /**
     * Returns the number of elements in this collection.  If this collection
     * contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
     * <tt>Integer.MAX_VALUE</tt>.
     *
     * @return the number of elements in this collection
     */
    int size();

    /**
     * Returns <tt>true</tt> if this collection contains no elements.
     *
     * @return <tt>true</tt> if this collection contains no elements
     */
    boolean isEmpty();

    /**
     * Returns <tt>true</tt> if this collection contains the specified element.
     * More formally, returns <tt>true</tt> if and only if this collection
     * contains at least one element <tt>e</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
     *
     * @param o element whose presence in this collection is to be tested
     * @return <tt>true</tt> if this collection contains the specified
     *         element
     * @throws ClassCastException if the type of the specified element
     *         is incompatible with this collection
     *         (<a href="#optional-restrictions">optional</a>)
     * @throws NullPointerException if the specified element is null and this
     *         collection does not permit null elements
     *         (<a href="#optional-restrictions">optional</a>)
     */
    boolean contains(Object o);

    /**
     * Returns an iterator over the elements in this collection.  There are no
     * guarantees concerning the order in which the elements are returned
     * (unless this collection is an instance of some class that provides a
     * guarantee).
     *
     * @return an <tt>Iterator</tt> over the elements in this collection
     */
    Iterator<E> iterator();

    /**
     * Returns an array containing all of the elements in this collection.
     * If this collection makes any guarantees as to what order its elements
     * are returned by its iterator, this method must return the elements in
     * the same order.
     *
     * <p>The returned array will be "safe" in that no references to it are
     * maintained by this collection.  (In other words, this method must
     * allocate a new array even if this collection is backed by an array).
     * The caller is thus free to modify the returned array.
     *
     * <p>This method acts as bridge between array-based and collection-based
     * APIs.
     *
     * @return an array containing all of the elements in this collection
     */
    Object[] toArray();

    /**
     * Returns an array containing all of the elements in this collection;
     * the runtime type of the returned array is that of the specified array.
     * If the collection fits in the specified array, it is returned therein.
     * Otherwise, a new array is allocated with the runtime type of the
     * specified array and the size of this collection.
     *
     * <p>If this collection fits in the specified array with room to spare
     * (i.e., the array has more elements than this collection), the element
     * in the array immediately following the end of the collection is set to
     * <tt>null</tt>.  (This is useful in determining the length of this
     * collection <i>only</i> if the caller knows that this collection does
     * not contain any <tt>null</tt> elements.)
     *
     * <p>If this collection makes any guarantees as to what order its elements
     * are returned by its iterator, this method must return the elements in
     * the same order.
     *
     * <p>Like the {@link #toArray()} method, this method acts as bridge between
     * array-based and collection-based APIs.  Further, this method allows
     * precise control over the runtime type of the output array, and may,
     * under certain circumstances, be used to save allocation costs.
     *
     * <p>Suppose <tt>x</tt> is a collection known to contain only strings.
     * The following code can be used to dump the collection into a newly
     * allocated array of <tt>String</tt>:
     *
     * <pre>
     *     String[] y = x.toArray(new String[0]);</pre>
     *
     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
     * <tt>toArray()</tt>.
     *
     * @param a the array into which the elements of this collection are to be
     *        stored, if it is big enough; otherwise, a new array of the same
     *        runtime type is allocated for this purpose.
     * @return an array containing all of the elements in this collection
     * @throws ArrayStoreException if the runtime type of the specified array
     *         is not a supertype of the runtime type of every element in
     *         this collection
     * @throws NullPointerException if the specified array is null
     */
    <T> T[] toArray(T[] a);

    // Modification Operations

    /**
     * Ensures that this collection contains the specified element (optional
     * operation).  Returns <tt>true</tt> if this collection changed as a
     * result of the call.  (Returns <tt>false</tt> if this collection does
     * not permit duplicates and already contains the specified element.)<p>
     *
     * Collections that support this operation may place limitations on what
     * elements may be added to this collection.  In particular, some
     * collections will refuse to add <tt>null</tt> elements, and others will
     * impose restrictions on the type of elements that may be added.
     * Collection classes should clearly specify in their documentation any
     * restrictions on what elements may be added.<p>
     *
     * If a collection refuses to add a particular element for any reason
     * other than that it already contains the element, it <i>must</i> throw
     * an exception (rather than returning <tt>false</tt>).  This preserves
     * the invariant that a collection always contains the specified element
     * after this call returns.
     *
     * @param e element whose presence in this collection is to be ensured
     * @return <tt>true</tt> if this collection changed as a result of the
     *         call
     * @throws UnsupportedOperationException if the <tt>add</tt> operation
     *         is not supported by this collection
     * @throws ClassCastException if the class of the specified element
     *         prevents it from being added to this collection
     * @throws NullPointerException if the specified element is null and this
     *         collection does not permit null elements
     * @throws IllegalArgumentException if some property of the element
     *         prevents it from being added to this collection
     * @throws IllegalStateException if the element cannot be added at this
     *         time due to insertion restrictions
     */
    boolean add(E e);

    /**
     * Removes a single instance of the specified element from this
     * collection, if it is present (optional operation).  More formally,
     * removes an element <tt>e</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>, if
     * this collection contains one or more such elements.  Returns
     * <tt>true</tt> if this collection contained the specified element (or
     * equivalently, if this collection changed as a result of the call).
     *
     * @param o element to be removed from this collection, if present
     * @return <tt>true</tt> if an element was removed as a result of this call
     * @throws ClassCastException if the type of the specified element
     *         is incompatible with this collection
     *         (<a href="#optional-restrictions">optional</a>)
     * @throws NullPointerException if the specified element is null and this
     *         collection does not permit null elements
     *         (<a href="#optional-restrictions">optional</a>)
     * @throws UnsupportedOperationException if the <tt>remove</tt> operation
     *         is not supported by this collection
     */
    boolean remove(Object o);


    // Bulk Operations

    /**
     * Returns <tt>true</tt> if this collection contains all of the elements
     * in the specified collection.
     *
     * @param  c collection to be checked for containment in this collection
     * @return <tt>true</tt> if this collection contains all of the elements
     *         in the specified collection
     * @throws ClassCastException if the types of one or more elements
     *         in the specified collection are incompatible with this
     *         collection
     *         (<a href="#optional-restrictions">optional</a>)
     * @throws NullPointerException if the specified collection contains one
     *         or more null elements and this collection does not permit null
     *         elements
     *         (<a href="#optional-restrictions">optional</a>),
     *         or if the specified collection is null.
     * @see    #contains(Object)
     */
    boolean containsAll(Collection<?> c);

    /**
     * Adds all of the elements in the specified collection to this collection
     * (optional operation).  The behavior of this operation is undefined if
     * the specified collection is modified while the operation is in progress.
     * (This implies that the behavior of this call is undefined if the
     * specified collection is this collection, and this collection is
     * nonempty.)
     *
     * @param c collection containing elements to be added to this collection
     * @return <tt>true</tt> if this collection changed as a result of the call
     * @throws UnsupportedOperationException if the <tt>addAll</tt> operation
     *         is not supported by this collection
     * @throws ClassCastException if the class of an element of the specified
     *         collection prevents it from being added to this collection
     * @throws NullPointerException if the specified collection contains a
     *         null element and this collection does not permit null elements,
     *         or if the specified collection is null
     * @throws IllegalArgumentException if some property of an element of the
     *         specified collection prevents it from being added to this
     *         collection
     * @throws IllegalStateException if not all the elements can be added at
     *         this time due to insertion restrictions
     * @see #add(Object)
     */
    boolean addAll(Collection<? extends E> c);

    /**
     * Removes all of this collection's elements that are also contained in the
     * specified collection (optional operation).  After this call returns,
     * this collection will contain no elements in common with the specified
     * collection.
     *
     * @param c collection containing elements to be removed from this collection
     * @return <tt>true</tt> if this collection changed as a result of the
     *         call
     * @throws UnsupportedOperationException if the <tt>removeAll</tt> method
     *         is not supported by this collection
     * @throws ClassCastException if the types of one or more elements
     *         in this collection are incompatible with the specified
     *         collection
     *         (<a href="#optional-restrictions">optional</a>)
     * @throws NullPointerException if this collection contains one or more
     *         null elements and the specified collection does not support
     *         null elements
     *         (<a href="#optional-restrictions">optional</a>),
     *         or if the specified collection is null
     * @see #remove(Object)
     * @see #contains(Object)
     */
    boolean removeAll(Collection<?> c);

    /**
     * Retains only the elements in this collection that are contained in the
     * specified collection (optional operation).  In other words, removes from
     * this collection all of its elements that are not contained in the
     * specified collection.
     *
     * @param c collection containing elements to be retained in this collection
     * @return <tt>true</tt> if this collection changed as a result of the call
     * @throws UnsupportedOperationException if the <tt>retainAll</tt> operation
     *         is not supported by this collection
     * @throws ClassCastException if the types of one or more elements
     *         in this collection are incompatible with the specified
     *         collection
     *         (<a href="#optional-restrictions">optional</a>)
     * @throws NullPointerException if this collection contains one or more
     *         null elements and the specified collection does not permit null
     *         elements
     *         (<a href="#optional-restrictions">optional</a>),
     *         or if the specified collection is null
     * @see #remove(Object)
     * @see #contains(Object)
     */
    boolean retainAll(Collection<?> c);

    /**
     * Removes all of the elements from this collection (optional operation).
     * The collection will be empty after this method returns.
     *
     * @throws UnsupportedOperationException if the <tt>clear</tt> operation
     *         is not supported by this collection
     */
    void clear();


    // Comparison and hashing

    /**
     * Compares the specified object with this collection for equality. <p>
     *
     * While the <tt>Collection</tt> interface adds no stipulations to the
     * general contract for the <tt>Object.equals</tt>, programmers who
     * implement the <tt>Collection</tt> interface "directly" (in other words,
     * create a class that is a <tt>Collection</tt> but is not a <tt>Set</tt>
     * or a <tt>List</tt>) must exercise care if they choose to override the
     * <tt>Object.equals</tt>.  It is not necessary to do so, and the simplest
     * course of action is to rely on <tt>Object</tt>'s implementation, but
     * the implementor may wish to implement a "value comparison" in place of
     * the default "reference comparison."  (The <tt>List</tt> and
     * <tt>Set</tt> interfaces mandate such value comparisons.)<p>
     *
     * The general contract for the <tt>Object.equals</tt> method states that
     * equals must be symmetric (in other words, <tt>a.equals(b)</tt> if and
     * only if <tt>b.equals(a)</tt>).  The contracts for <tt>List.equals</tt>
     * and <tt>Set.equals</tt> state that lists are only equal to other lists,
     * and sets to other sets.  Thus, a custom <tt>equals</tt> method for a
     * collection class that implements neither the <tt>List</tt> nor
     * <tt>Set</tt> interface must return <tt>false</tt> when this collection
     * is compared to any list or set.  (By the same logic, it is not possible
     * to write a class that correctly implements both the <tt>Set</tt> and
     * <tt>List</tt> interfaces.)
     *
     * @param o object to be compared for equality with this collection
     * @return <tt>true</tt> if the specified object is equal to this
     * collection
     *
     * @see Object#equals(Object)
     * @see Set#equals(Object)
     * @see List#equals(Object)
     */
    boolean equals(Object o);

    /**
     * Returns the hash code value for this collection.  While the
     * <tt>Collection</tt> interface adds no stipulations to the general
     * contract for the <tt>Object.hashCode</tt> method, programmers should
     * take note that any class that overrides the <tt>Object.equals</tt>
     * method must also override the <tt>Object.hashCode</tt> method in order
     * to satisfy the general contract for the <tt>Object.hashCode</tt> method.
     * In particular, <tt>c1.equals(c2)</tt> implies that
     * <tt>c1.hashCode()==c2.hashCode()</tt>.
     *
     * @return the hash code value for this collection
     *
     * @see Object#hashCode()
     * @see Object#equals(Object)
     */
    int hashCode();
}