8139293: TestGCEventMixedWithG1ConcurrentMark.java fails after JDK-8134953
Reviewed-by: ecaspole, jwilhelm
/*
* Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_SHARED_BLOCKOFFSETTABLE_HPP
#define SHARE_VM_GC_SHARED_BLOCKOFFSETTABLE_HPP
#include "gc/shared/memset_with_concurrent_readers.hpp"
#include "memory/memRegion.hpp"
#include "memory/virtualspace.hpp"
#include "runtime/globals.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/macros.hpp"
// The CollectedHeap type requires subtypes to implement a method
// "block_start". For some subtypes, notably generational
// systems using card-table-based write barriers, the efficiency of this
// operation may be important. Implementations of the "BlockOffsetArray"
// class may be useful in providing such efficient implementations.
//
// BlockOffsetTable (abstract)
// - BlockOffsetArray (abstract)
// - BlockOffsetArrayNonContigSpace
// - BlockOffsetArrayContigSpace
//
class ContiguousSpace;
//////////////////////////////////////////////////////////////////////////
// The BlockOffsetTable "interface"
//////////////////////////////////////////////////////////////////////////
class BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
friend class VMStructs;
protected:
// These members describe the region covered by the table.
// The space this table is covering.
HeapWord* _bottom; // == reserved.start
HeapWord* _end; // End of currently allocated region.
public:
// Initialize the table to cover the given space.
// The contents of the initial table are undefined.
BlockOffsetTable(HeapWord* bottom, HeapWord* end):
_bottom(bottom), _end(end) {
assert(_bottom <= _end, "arguments out of order");
}
// Note that the committed size of the covered space may have changed,
// so the table size might also wish to change.
virtual void resize(size_t new_word_size) = 0;
virtual void set_bottom(HeapWord* new_bottom) {
assert(new_bottom <= _end, "new_bottom > _end");
_bottom = new_bottom;
resize(pointer_delta(_end, _bottom));
}
// Requires "addr" to be contained by a block, and returns the address of
// the start of that block.
virtual HeapWord* block_start_unsafe(const void* addr) const = 0;
// Returns the address of the start of the block containing "addr", or
// else "null" if it is covered by no block.
HeapWord* block_start(const void* addr) const;
};
//////////////////////////////////////////////////////////////////////////
// One implementation of "BlockOffsetTable," the BlockOffsetArray,
// divides the covered region into "N"-word subregions (where
// "N" = 2^"LogN". An array with an entry for each such subregion
// indicates how far back one must go to find the start of the
// chunk that includes the first word of the subregion.
//
// Each BlockOffsetArray is owned by a Space. However, the actual array
// may be shared by several BlockOffsetArrays; this is useful
// when a single resizable area (such as a generation) is divided up into
// several spaces in which contiguous allocation takes place. (Consider,
// for example, the garbage-first generation.)
// Here is the shared array type.
//////////////////////////////////////////////////////////////////////////
// BlockOffsetSharedArray
//////////////////////////////////////////////////////////////////////////
class BlockOffsetSharedArray: public CHeapObj<mtGC> {
friend class BlockOffsetArray;
friend class BlockOffsetArrayNonContigSpace;
friend class BlockOffsetArrayContigSpace;
friend class VMStructs;
private:
enum SomePrivateConstants {
LogN = 9,
LogN_words = LogN - LogHeapWordSize,
N_bytes = 1 << LogN,
N_words = 1 << LogN_words
};
bool _init_to_zero;
// The reserved region covered by the shared array.
MemRegion _reserved;
// End of the current committed region.
HeapWord* _end;
// Array for keeping offsets for retrieving object start fast given an
// address.
VirtualSpace _vs;
u_char* _offset_array; // byte array keeping backwards offsets
void fill_range(size_t start, size_t num_cards, u_char offset) {
void* start_ptr = &_offset_array[start];
#if INCLUDE_ALL_GCS
// If collector is concurrent, special handling may be needed.
assert(!UseG1GC, "Shouldn't be here when using G1");
if (UseConcMarkSweepGC) {
memset_with_concurrent_readers(start_ptr, offset, num_cards);
return;
}
#endif // INCLUDE_ALL_GCS
memset(start_ptr, offset, num_cards);
}
protected:
// Bounds checking accessors:
// For performance these have to devolve to array accesses in product builds.
u_char offset_array(size_t index) const {
assert(index < _vs.committed_size(), "index out of range");
return _offset_array[index];
}
// An assertion-checking helper method for the set_offset_array() methods below.
void check_reducing_assertion(bool reducing);
void set_offset_array(size_t index, u_char offset, bool reducing = false) {
check_reducing_assertion(reducing);
assert(index < _vs.committed_size(), "index out of range");
assert(!reducing || _offset_array[index] >= offset, "Not reducing");
_offset_array[index] = offset;
}
void set_offset_array(size_t index, HeapWord* high, HeapWord* low, bool reducing = false) {
check_reducing_assertion(reducing);
assert(index < _vs.committed_size(), "index out of range");
assert(high >= low, "addresses out of order");
assert(pointer_delta(high, low) <= N_words, "offset too large");
assert(!reducing || _offset_array[index] >= (u_char)pointer_delta(high, low),
"Not reducing");
_offset_array[index] = (u_char)pointer_delta(high, low);
}
void set_offset_array(HeapWord* left, HeapWord* right, u_char offset, bool reducing = false) {
check_reducing_assertion(reducing);
assert(index_for(right - 1) < _vs.committed_size(),
"right address out of range");
assert(left < right, "Heap addresses out of order");
size_t num_cards = pointer_delta(right, left) >> LogN_words;
fill_range(index_for(left), num_cards, offset);
}
void set_offset_array(size_t left, size_t right, u_char offset, bool reducing = false) {
check_reducing_assertion(reducing);
assert(right < _vs.committed_size(), "right address out of range");
assert(left <= right, "indexes out of order");
size_t num_cards = right - left + 1;
fill_range(left, num_cards, offset);
}
void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
assert(index < _vs.committed_size(), "index out of range");
assert(high >= low, "addresses out of order");
assert(pointer_delta(high, low) <= N_words, "offset too large");
assert(_offset_array[index] == pointer_delta(high, low),
"Wrong offset");
}
bool is_card_boundary(HeapWord* p) const;
// Return the number of slots needed for an offset array
// that covers mem_region_words words.
// We always add an extra slot because if an object
// ends on a card boundary we put a 0 in the next
// offset array slot, so we want that slot always
// to be reserved.
size_t compute_size(size_t mem_region_words) {
size_t number_of_slots = (mem_region_words / N_words) + 1;
return ReservedSpace::allocation_align_size_up(number_of_slots);
}
public:
// Initialize the table to cover from "base" to (at least)
// "base + init_word_size". In the future, the table may be expanded
// (see "resize" below) up to the size of "_reserved" (which must be at
// least "init_word_size".) The contents of the initial table are
// undefined; it is the responsibility of the constituent
// BlockOffsetTable(s) to initialize cards.
BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
// Notes a change in the committed size of the region covered by the
// table. The "new_word_size" may not be larger than the size of the
// reserved region this table covers.
void resize(size_t new_word_size);
void set_bottom(HeapWord* new_bottom);
// Whether entries should be initialized to zero. Used currently only for
// error checking.
void set_init_to_zero(bool val) { _init_to_zero = val; }
bool init_to_zero() { return _init_to_zero; }
// Updates all the BlockOffsetArray's sharing this shared array to
// reflect the current "top"'s of their spaces.
void update_offset_arrays(); // Not yet implemented!
// Return the appropriate index into "_offset_array" for "p".
size_t index_for(const void* p) const;
// Return the address indicating the start of the region corresponding to
// "index" in "_offset_array".
HeapWord* address_for_index(size_t index) const;
};
//////////////////////////////////////////////////////////////////////////
// The BlockOffsetArray whose subtypes use the BlockOffsetSharedArray.
//////////////////////////////////////////////////////////////////////////
class BlockOffsetArray: public BlockOffsetTable {
friend class VMStructs;
friend class G1BlockOffsetArray; // temp. until we restructure and cleanup
protected:
// The following enums are used by do_block_internal() below
enum Action {
Action_single, // BOT records a single block (see single_block())
Action_mark, // BOT marks the start of a block (see mark_block())
Action_check // Check that BOT records block correctly
// (see verify_single_block()).
};
enum SomePrivateConstants {
N_words = BlockOffsetSharedArray::N_words,
LogN = BlockOffsetSharedArray::LogN,
// entries "e" of at least N_words mean "go back by Base^(e-N_words)."
// All entries are less than "N_words + N_powers".
LogBase = 4,
Base = (1 << LogBase),
N_powers = 14
};
static size_t power_to_cards_back(uint i) {
return (size_t)1 << (LogBase * i);
}
static size_t power_to_words_back(uint i) {
return power_to_cards_back(i) * N_words;
}
static size_t entry_to_cards_back(u_char entry) {
assert(entry >= N_words, "Precondition");
return power_to_cards_back(entry - N_words);
}
static size_t entry_to_words_back(u_char entry) {
assert(entry >= N_words, "Precondition");
return power_to_words_back(entry - N_words);
}
// The shared array, which is shared with other BlockOffsetArray's
// corresponding to different spaces within a generation or span of
// memory.
BlockOffsetSharedArray* _array;
// The space that owns this subregion.
Space* _sp;
// If true, array entries are initialized to 0; otherwise, they are
// initialized to point backwards to the beginning of the covered region.
bool _init_to_zero;
// An assertion-checking helper method for the set_remainder*() methods below.
void check_reducing_assertion(bool reducing) { _array->check_reducing_assertion(reducing); }
// Sets the entries
// corresponding to the cards starting at "start" and ending at "end"
// to point back to the card before "start": the interval [start, end)
// is right-open. The last parameter, reducing, indicates whether the
// updates to individual entries always reduce the entry from a higher
// to a lower value. (For example this would hold true during a temporal
// regime during which only block splits were updating the BOT.
void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing = false);
// Same as above, except that the args here are a card _index_ interval
// that is closed: [start_index, end_index]
void set_remainder_to_point_to_start_incl(size_t start, size_t end, bool reducing = false);
// A helper function for BOT adjustment/verification work
void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action, bool reducing = false);
public:
// The space may not have its bottom and top set yet, which is why the
// region is passed as a parameter. If "init_to_zero" is true, the
// elements of the array are initialized to zero. Otherwise, they are
// initialized to point backwards to the beginning.
BlockOffsetArray(BlockOffsetSharedArray* array, MemRegion mr,
bool init_to_zero_);
// Note: this ought to be part of the constructor, but that would require
// "this" to be passed as a parameter to a member constructor for
// the containing concrete subtype of Space.
// This would be legal C++, but MS VC++ doesn't allow it.
void set_space(Space* sp) { _sp = sp; }
// Resets the covered region to the given "mr".
void set_region(MemRegion mr) {
_bottom = mr.start();
_end = mr.end();
}
// Note that the committed size of the covered space may have changed,
// so the table size might also wish to change.
virtual void resize(size_t new_word_size) {
HeapWord* new_end = _bottom + new_word_size;
if (_end < new_end && !init_to_zero()) {
// verify that the old and new boundaries are also card boundaries
assert(_array->is_card_boundary(_end),
"_end not a card boundary");
assert(_array->is_card_boundary(new_end),
"new _end would not be a card boundary");
// set all the newly added cards
_array->set_offset_array(_end, new_end, N_words);
}
_end = new_end; // update _end
}
// Adjust the BOT to show that it has a single block in the
// range [blk_start, blk_start + size). All necessary BOT
// cards are adjusted, but _unallocated_block isn't.
void single_block(HeapWord* blk_start, HeapWord* blk_end);
void single_block(HeapWord* blk, size_t size) {
single_block(blk, blk + size);
}
// When the alloc_block() call returns, the block offset table should
// have enough information such that any subsequent block_start() call
// with an argument equal to an address that is within the range
// [blk_start, blk_end) would return the value blk_start, provided
// there have been no calls in between that reset this information
// (e.g. see BlockOffsetArrayNonContigSpace::single_block() call
// for an appropriate range covering the said interval).
// These methods expect to be called with [blk_start, blk_end)
// representing a block of memory in the heap.
virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
void alloc_block(HeapWord* blk, size_t size) {
alloc_block(blk, blk + size);
}
// If true, initialize array slots with no allocated blocks to zero.
// Otherwise, make them point back to the front.
bool init_to_zero() { return _init_to_zero; }
// Corresponding setter
void set_init_to_zero(bool val) {
_init_to_zero = val;
assert(_array != NULL, "_array should be non-NULL");
_array->set_init_to_zero(val);
}
// Debugging
// Return the index of the last entry in the "active" region.
virtual size_t last_active_index() const = 0;
// Verify the block offset table
void verify() const;
void check_all_cards(size_t left_card, size_t right_card) const;
};
////////////////////////////////////////////////////////////////////////////
// A subtype of BlockOffsetArray that takes advantage of the fact
// that its underlying space is a NonContiguousSpace, so that some
// specialized interfaces can be made available for spaces that
// manipulate the table.
////////////////////////////////////////////////////////////////////////////
class BlockOffsetArrayNonContigSpace: public BlockOffsetArray {
friend class VMStructs;
private:
// The portion [_unallocated_block, _sp.end()) of the space that
// is a single block known not to contain any objects.
// NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
HeapWord* _unallocated_block;
public:
BlockOffsetArrayNonContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
BlockOffsetArray(array, mr, false),
_unallocated_block(_bottom) { }
// Accessor
HeapWord* unallocated_block() const {
assert(BlockOffsetArrayUseUnallocatedBlock,
"_unallocated_block is not being maintained");
return _unallocated_block;
}
void set_unallocated_block(HeapWord* block) {
assert(BlockOffsetArrayUseUnallocatedBlock,
"_unallocated_block is not being maintained");
assert(block >= _bottom && block <= _end, "out of range");
_unallocated_block = block;
}
// These methods expect to be called with [blk_start, blk_end)
// representing a block of memory in the heap.
void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
void alloc_block(HeapWord* blk, size_t size) {
alloc_block(blk, blk + size);
}
// The following methods are useful and optimized for a
// non-contiguous space.
// Given a block [blk_start, blk_start + full_blk_size), and
// a left_blk_size < full_blk_size, adjust the BOT to show two
// blocks [blk_start, blk_start + left_blk_size) and
// [blk_start + left_blk_size, blk_start + full_blk_size).
// It is assumed (and verified in the non-product VM) that the
// BOT was correct for the original block.
void split_block(HeapWord* blk_start, size_t full_blk_size,
size_t left_blk_size);
// Adjust BOT to show that it has a block in the range
// [blk_start, blk_start + size). Only the first card
// of BOT is touched. It is assumed (and verified in the
// non-product VM) that the remaining cards of the block
// are correct.
void mark_block(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false);
void mark_block(HeapWord* blk, size_t size, bool reducing = false) {
mark_block(blk, blk + size, reducing);
}
// Adjust _unallocated_block to indicate that a particular
// block has been newly allocated or freed. It is assumed (and
// verified in the non-product VM) that the BOT is correct for
// the given block.
void allocated(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false) {
// Verify that the BOT shows [blk, blk + blk_size) to be one block.
verify_single_block(blk_start, blk_end);
if (BlockOffsetArrayUseUnallocatedBlock) {
_unallocated_block = MAX2(_unallocated_block, blk_end);
}
}
void allocated(HeapWord* blk, size_t size, bool reducing = false) {
allocated(blk, blk + size, reducing);
}
void freed(HeapWord* blk_start, HeapWord* blk_end);
void freed(HeapWord* blk, size_t size);
HeapWord* block_start_unsafe(const void* addr) const;
// Requires "addr" to be the start of a card and returns the
// start of the block that contains the given address.
HeapWord* block_start_careful(const void* addr) const;
// Verification & debugging: ensure that the offset table reflects
// the fact that the block [blk_start, blk_end) or [blk, blk + size)
// is a single block of storage. NOTE: can't const this because of
// call to non-const do_block_internal() below.
void verify_single_block(HeapWord* blk_start, HeapWord* blk_end)
PRODUCT_RETURN;
void verify_single_block(HeapWord* blk, size_t size) PRODUCT_RETURN;
// Verify that the given block is before _unallocated_block
void verify_not_unallocated(HeapWord* blk_start, HeapWord* blk_end)
const PRODUCT_RETURN;
void verify_not_unallocated(HeapWord* blk, size_t size)
const PRODUCT_RETURN;
// Debugging support
virtual size_t last_active_index() const;
};
////////////////////////////////////////////////////////////////////////////
// A subtype of BlockOffsetArray that takes advantage of the fact
// that its underlying space is a ContiguousSpace, so that its "active"
// region can be more efficiently tracked (than for a non-contiguous space).
////////////////////////////////////////////////////////////////////////////
class BlockOffsetArrayContigSpace: public BlockOffsetArray {
friend class VMStructs;
private:
// allocation boundary at which offset array must be updated
HeapWord* _next_offset_threshold;
size_t _next_offset_index; // index corresponding to that boundary
// Work function when allocation start crosses threshold.
void alloc_block_work(HeapWord* blk_start, HeapWord* blk_end);
public:
BlockOffsetArrayContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
BlockOffsetArray(array, mr, true) {
_next_offset_threshold = NULL;
_next_offset_index = 0;
}
void set_contig_space(ContiguousSpace* sp) { set_space((Space*)sp); }
// Initialize the threshold for an empty heap.
HeapWord* initialize_threshold();
// Zero out the entry for _bottom (offset will be zero)
void zero_bottom_entry();
// Return the next threshold, the point at which the table should be
// updated.
HeapWord* threshold() const { return _next_offset_threshold; }
// In general, these methods expect to be called with
// [blk_start, blk_end) representing a block of memory in the heap.
// In this implementation, however, we are OK even if blk_start and/or
// blk_end are NULL because NULL is represented as 0, and thus
// never exceeds the "_next_offset_threshold".
void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
if (blk_end > _next_offset_threshold) {
alloc_block_work(blk_start, blk_end);
}
}
void alloc_block(HeapWord* blk, size_t size) {
alloc_block(blk, blk + size);
}
HeapWord* block_start_unsafe(const void* addr) const;
// Debugging support
virtual size_t last_active_index() const;
};
#endif // SHARE_VM_GC_SHARED_BLOCKOFFSETTABLE_HPP