8154745: Move default G1 pause time target setup to argument parsing
Reviewed-by: ehelin, sjohanss
/*
* Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/collectorPolicy.hpp"
#include "gc/shared/genCollectedHeap.hpp"
#include "gc/shared/threadLocalAllocBuffer.hpp"
#include "runtime/arguments.hpp"
#include "runtime/commandLineFlagConstraintsGC.hpp"
#include "runtime/commandLineFlagRangeList.hpp"
#include "runtime/globals.hpp"
#include "runtime/globals_extension.hpp"
#include "runtime/thread.inline.hpp"
#include "utilities/defaultStream.hpp"
#if INCLUDE_ALL_GCS
#include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
#include "gc/g1/g1_globals.hpp"
#include "gc/g1/heapRegionBounds.inline.hpp"
#include "gc/shared/plab.hpp"
#endif // INCLUDE_ALL_GCS
#ifdef COMPILER1
#include "c1/c1_globals.hpp"
#endif // COMPILER1
#ifdef COMPILER2
#include "opto/c2_globals.hpp"
#endif // COMPILER2
// Some flags that have default values that indicate that the
// JVM should automatically determine an appropriate value
// for that flag. In those cases it is only appropriate for the
// constraint checking to be done if the user has specified the
// value(s) of the flag(s) on the command line. In the constraint
// checking functions, FLAG_IS_CMDLINE() is used to check if
// the flag has been set by the user and so should be checked.
#if INCLUDE_ALL_GCS
static Flag::Error ParallelGCThreadsAndCMSWorkQueueDrainThreshold(uint threads, uintx threshold, bool verbose) {
// CMSWorkQueueDrainThreshold is verified to be less than max_juint
if (UseConcMarkSweepGC && (threads > (uint)(max_jint / (uint)threshold))) {
CommandLineError::print(verbose,
"ParallelGCThreads (" UINT32_FORMAT ") or CMSWorkQueueDrainThreshold ("
UINTX_FORMAT ") is too large\n",
threads, threshold);
return Flag::VIOLATES_CONSTRAINT;
}
return Flag::SUCCESS;
}
#endif
// As ParallelGCThreads differs among GC modes, we need constraint function.
Flag::Error ParallelGCThreadsConstraintFunc(uint value, bool verbose) {
Flag::Error status = Flag::SUCCESS;
#if INCLUDE_ALL_GCS
// Parallel GC passes ParallelGCThreads when creating GrowableArray as 'int' type parameter.
// So can't exceed with "max_jint"
if (UseParallelGC && (value > (uint)max_jint)) {
CommandLineError::print(verbose,
"ParallelGCThreads (" UINT32_FORMAT ") must be "
"less than or equal to " UINT32_FORMAT " for Parallel GC\n",
value, max_jint);
return Flag::VIOLATES_CONSTRAINT;
}
// To avoid overflow at ParScanClosure::do_oop_work.
if (UseConcMarkSweepGC && (value > (max_jint / 10))) {
CommandLineError::print(verbose,
"ParallelGCThreads (" UINT32_FORMAT ") must be "
"less than or equal to " UINT32_FORMAT " for CMS GC\n",
value, (max_jint / 10));
return Flag::VIOLATES_CONSTRAINT;
}
status = ParallelGCThreadsAndCMSWorkQueueDrainThreshold(value, CMSWorkQueueDrainThreshold, verbose);
#endif
return status;
}
// As ConcGCThreads should be smaller than ParallelGCThreads,
// we need constraint function.
Flag::Error ConcGCThreadsConstraintFunc(uint value, bool verbose) {
#if INCLUDE_ALL_GCS
// CMS and G1 GCs use ConcGCThreads.
if ((UseConcMarkSweepGC || UseG1GC) && (value > ParallelGCThreads)) {
CommandLineError::print(verbose,
"ConcGCThreads (" UINT32_FORMAT ") must be "
"less than or equal to ParallelGCThreads (" UINT32_FORMAT ")\n",
value, ParallelGCThreads);
return Flag::VIOLATES_CONSTRAINT;
}
#endif
return Flag::SUCCESS;
}
static Flag::Error MinPLABSizeBounds(const char* name, size_t value, bool verbose) {
#if INCLUDE_ALL_GCS
if ((UseConcMarkSweepGC || UseG1GC || UseParallelGC) && (value < PLAB::min_size())) {
CommandLineError::print(verbose,
"%s (" SIZE_FORMAT ") must be "
"greater than or equal to ergonomic PLAB minimum size (" SIZE_FORMAT ")\n",
name, value, PLAB::min_size());
return Flag::VIOLATES_CONSTRAINT;
}
#endif // INCLUDE_ALL_GCS
return Flag::SUCCESS;
}
static Flag::Error MaxPLABSizeBounds(const char* name, size_t value, bool verbose) {
#if INCLUDE_ALL_GCS
if ((UseConcMarkSweepGC || UseG1GC || UseParallelGC) && (value > PLAB::max_size())) {
CommandLineError::print(verbose,
"%s (" SIZE_FORMAT ") must be "
"less than or equal to ergonomic PLAB maximum size (" SIZE_FORMAT ")\n",
name, value, PLAB::max_size());
return Flag::VIOLATES_CONSTRAINT;
}
#endif // INCLUDE_ALL_GCS
return Flag::SUCCESS;
}
static Flag::Error MinMaxPLABSizeBounds(const char* name, size_t value, bool verbose) {
Flag::Error status = MinPLABSizeBounds(name, value, verbose);
if (status == Flag::SUCCESS) {
return MaxPLABSizeBounds(name, value, verbose);
}
return status;
}
Flag::Error YoungPLABSizeConstraintFunc(size_t value, bool verbose) {
return MinMaxPLABSizeBounds("YoungPLABSize", value, verbose);
}
Flag::Error OldPLABSizeConstraintFunc(size_t value, bool verbose) {
Flag::Error status = Flag::SUCCESS;
#if INCLUDE_ALL_GCS
if (UseConcMarkSweepGC) {
if (value == 0) {
CommandLineError::print(verbose,
"OldPLABSize (" SIZE_FORMAT ") must be greater than 0",
value);
return Flag::VIOLATES_CONSTRAINT;
}
// For CMS, OldPLABSize is the number of free blocks of a given size that are used when
// replenishing the local per-worker free list caches.
// For more details, please refer to Arguments::set_cms_and_parnew_gc_flags().
status = MaxPLABSizeBounds("OldPLABSize", value, verbose);
} else {
status = MinMaxPLABSizeBounds("OldPLABSize", value, verbose);
}
#endif
return status;
}
Flag::Error MinHeapFreeRatioConstraintFunc(uintx value, bool verbose) {
if (value > MaxHeapFreeRatio) {
CommandLineError::print(verbose,
"MinHeapFreeRatio (" UINTX_FORMAT ") must be "
"less than or equal to MaxHeapFreeRatio (" UINTX_FORMAT ")\n",
value, MaxHeapFreeRatio);
return Flag::VIOLATES_CONSTRAINT;
} else {
return Flag::SUCCESS;
}
}
Flag::Error MaxHeapFreeRatioConstraintFunc(uintx value, bool verbose) {
if (value < MinHeapFreeRatio) {
CommandLineError::print(verbose,
"MaxHeapFreeRatio (" UINTX_FORMAT ") must be "
"greater than or equal to MinHeapFreeRatio (" UINTX_FORMAT ")\n",
value, MinHeapFreeRatio);
return Flag::VIOLATES_CONSTRAINT;
} else {
return Flag::SUCCESS;
}
}
static Flag::Error CheckMaxHeapSizeAndSoftRefLRUPolicyMSPerMB(size_t maxHeap, intx softRef, bool verbose) {
if ((softRef > 0) && ((maxHeap / M) > (max_uintx / softRef))) {
CommandLineError::print(verbose,
"Desired lifetime of SoftReferences cannot be expressed correctly. "
"MaxHeapSize (" SIZE_FORMAT ") or SoftRefLRUPolicyMSPerMB "
"(" INTX_FORMAT ") is too large\n",
maxHeap, softRef);
return Flag::VIOLATES_CONSTRAINT;
} else {
return Flag::SUCCESS;
}
}
Flag::Error SoftRefLRUPolicyMSPerMBConstraintFunc(intx value, bool verbose) {
return CheckMaxHeapSizeAndSoftRefLRUPolicyMSPerMB(MaxHeapSize, value, verbose);
}
Flag::Error MinMetaspaceFreeRatioConstraintFunc(uintx value, bool verbose) {
if (value > MaxMetaspaceFreeRatio) {
CommandLineError::print(verbose,
"MinMetaspaceFreeRatio (" UINTX_FORMAT ") must be "
"less than or equal to MaxMetaspaceFreeRatio (" UINTX_FORMAT ")\n",
value, MaxMetaspaceFreeRatio);
return Flag::VIOLATES_CONSTRAINT;
} else {
return Flag::SUCCESS;
}
}
Flag::Error MaxMetaspaceFreeRatioConstraintFunc(uintx value, bool verbose) {
if (value < MinMetaspaceFreeRatio) {
CommandLineError::print(verbose,
"MaxMetaspaceFreeRatio (" UINTX_FORMAT ") must be "
"greater than or equal to MinMetaspaceFreeRatio (" UINTX_FORMAT ")\n",
value, MinMetaspaceFreeRatio);
return Flag::VIOLATES_CONSTRAINT;
} else {
return Flag::SUCCESS;
}
}
Flag::Error InitialTenuringThresholdConstraintFunc(uintx value, bool verbose) {
#if INCLUDE_ALL_GCS
// InitialTenuringThreshold is only used for ParallelGC.
if (UseParallelGC && (value > MaxTenuringThreshold)) {
CommandLineError::print(verbose,
"InitialTenuringThreshold (" UINTX_FORMAT ") must be "
"less than or equal to MaxTenuringThreshold (" UINTX_FORMAT ")\n",
value, MaxTenuringThreshold);
return Flag::VIOLATES_CONSTRAINT;
}
#endif
return Flag::SUCCESS;
}
Flag::Error MaxTenuringThresholdConstraintFunc(uintx value, bool verbose) {
#if INCLUDE_ALL_GCS
// As only ParallelGC uses InitialTenuringThreshold,
// we don't need to compare InitialTenuringThreshold with MaxTenuringThreshold.
if (UseParallelGC && (value < InitialTenuringThreshold)) {
CommandLineError::print(verbose,
"MaxTenuringThreshold (" UINTX_FORMAT ") must be "
"greater than or equal to InitialTenuringThreshold (" UINTX_FORMAT ")\n",
value, InitialTenuringThreshold);
return Flag::VIOLATES_CONSTRAINT;
}
#endif
// MaxTenuringThreshold=0 means NeverTenure=false && AlwaysTenure=true
if ((value == 0) && (NeverTenure || !AlwaysTenure)) {
CommandLineError::print(verbose,
"MaxTenuringThreshold (0) should match to NeverTenure=false "
"&& AlwaysTenure=true. But we have NeverTenure=%s "
"AlwaysTenure=%s\n",
NeverTenure ? "true" : "false",
AlwaysTenure ? "true" : "false");
return Flag::VIOLATES_CONSTRAINT;
}
return Flag::SUCCESS;
}
#if INCLUDE_ALL_GCS
Flag::Error G1RSetRegionEntriesConstraintFunc(intx value, bool verbose) {
if (!UseG1GC) return Flag::SUCCESS;
// Default value of G1RSetRegionEntries=0 means will be set ergonomically.
// Minimum value is 1.
if (FLAG_IS_CMDLINE(G1RSetRegionEntries) && (value < 1)) {
CommandLineError::print(verbose,
"G1RSetRegionEntries (" INTX_FORMAT ") must be "
"greater than or equal to 1\n",
value);
return Flag::VIOLATES_CONSTRAINT;
} else {
return Flag::SUCCESS;
}
}
Flag::Error G1RSetSparseRegionEntriesConstraintFunc(intx value, bool verbose) {
if (!UseG1GC) return Flag::SUCCESS;
// Default value of G1RSetSparseRegionEntries=0 means will be set ergonomically.
// Minimum value is 1.
if (FLAG_IS_CMDLINE(G1RSetSparseRegionEntries) && (value < 1)) {
CommandLineError::print(verbose,
"G1RSetSparseRegionEntries (" INTX_FORMAT ") must be "
"greater than or equal to 1\n",
value);
return Flag::VIOLATES_CONSTRAINT;
} else {
return Flag::SUCCESS;
}
}
Flag::Error G1YoungSurvRateNumRegionsSummaryConstraintFunc(intx value, bool verbose) {
if (!UseG1GC) return Flag::SUCCESS;
if (value > (intx)HeapRegionBounds::target_number()) {
CommandLineError::print(verbose,
"G1YoungSurvRateNumRegionsSummary (" INTX_FORMAT ") must be "
"less than or equal to region count (" SIZE_FORMAT ")\n",
value, HeapRegionBounds::target_number());
return Flag::VIOLATES_CONSTRAINT;
} else {
return Flag::SUCCESS;
}
}
Flag::Error G1HeapRegionSizeConstraintFunc(size_t value, bool verbose) {
if (!UseG1GC) return Flag::SUCCESS;
// Default value of G1HeapRegionSize=0 means will be set ergonomically.
if (FLAG_IS_CMDLINE(G1HeapRegionSize) && (value < HeapRegionBounds::min_size())) {
CommandLineError::print(verbose,
"G1HeapRegionSize (" SIZE_FORMAT ") must be "
"greater than or equal to ergonomic heap region minimum size\n",
value);
return Flag::VIOLATES_CONSTRAINT;
} else {
return Flag::SUCCESS;
}
}
Flag::Error G1NewSizePercentConstraintFunc(uintx value, bool verbose) {
if (!UseG1GC) return Flag::SUCCESS;
if (value > G1MaxNewSizePercent) {
CommandLineError::print(verbose,
"G1NewSizePercent (" UINTX_FORMAT ") must be "
"less than or equal to G1MaxNewSizePercent (" UINTX_FORMAT ")\n",
value, G1MaxNewSizePercent);
return Flag::VIOLATES_CONSTRAINT;
} else {
return Flag::SUCCESS;
}
}
Flag::Error G1MaxNewSizePercentConstraintFunc(uintx value, bool verbose) {
if (!UseG1GC) return Flag::SUCCESS;
if (value < G1NewSizePercent) {
CommandLineError::print(verbose,
"G1MaxNewSizePercent (" UINTX_FORMAT ") must be "
"greater than or equal to G1NewSizePercent (" UINTX_FORMAT ")\n",
value, G1NewSizePercent);
return Flag::VIOLATES_CONSTRAINT;
} else {
return Flag::SUCCESS;
}
}
#endif // INCLUDE_ALL_GCS
Flag::Error ParGCStridesPerThreadConstraintFunc(uintx value, bool verbose) {
#if INCLUDE_ALL_GCS
if (UseConcMarkSweepGC && (value > ((uintx)max_jint / (uintx)ParallelGCThreads))) {
CommandLineError::print(verbose,
"ParGCStridesPerThread (" UINTX_FORMAT ") must be "
"less than or equal to ergonomic maximum (" UINTX_FORMAT ")\n",
value, ((uintx)max_jint / (uintx)ParallelGCThreads));
return Flag::VIOLATES_CONSTRAINT;
}
#endif
return Flag::SUCCESS;
}
Flag::Error ParGCCardsPerStrideChunkConstraintFunc(intx value, bool verbose) {
#if INCLUDE_ALL_GCS
if (UseConcMarkSweepGC) {
// ParGCCardsPerStrideChunk should be compared with card table size.
size_t heap_size = Universe::heap()->reserved_region().word_size();
CardTableModRefBS* bs = (CardTableModRefBS*)GenCollectedHeap::heap()->rem_set()->bs();
size_t card_table_size = bs->cards_required(heap_size) - 1; // Valid card table size
if ((size_t)value > card_table_size) {
CommandLineError::print(verbose,
"ParGCCardsPerStrideChunk (" INTX_FORMAT ") is too large for the heap size and "
"must be less than or equal to card table size (" SIZE_FORMAT ")\n",
value, card_table_size);
return Flag::VIOLATES_CONSTRAINT;
}
// ParGCCardsPerStrideChunk is used with n_strides(ParallelGCThreads*ParGCStridesPerThread)
// from CardTableModRefBSForCTRS::process_stride(). Note that ParGCStridesPerThread is already checked
// not to make an overflow with ParallelGCThreads from its constraint function.
uintx n_strides = ParallelGCThreads * ParGCStridesPerThread;
uintx ergo_max = max_uintx / n_strides;
if ((uintx)value > ergo_max) {
CommandLineError::print(verbose,
"ParGCCardsPerStrideChunk (" INTX_FORMAT ") must be "
"less than or equal to ergonomic maximum (" UINTX_FORMAT ")\n",
value, ergo_max);
return Flag::VIOLATES_CONSTRAINT;
}
}
#endif
return Flag::SUCCESS;
}
Flag::Error CMSOldPLABMinConstraintFunc(size_t value, bool verbose) {
Flag::Error status = Flag::SUCCESS;
#if INCLUDE_ALL_GCS
if (UseConcMarkSweepGC) {
if (value > CMSOldPLABMax) {
CommandLineError::print(verbose,
"CMSOldPLABMin (" SIZE_FORMAT ") must be "
"less than or equal to CMSOldPLABMax (" SIZE_FORMAT ")\n",
value, CMSOldPLABMax);
return Flag::VIOLATES_CONSTRAINT;
}
status = MaxPLABSizeBounds("CMSOldPLABMin", value, verbose);
}
#endif
return status;
}
Flag::Error CMSOldPLABMaxConstraintFunc(size_t value, bool verbose) {
Flag::Error status = Flag::SUCCESS;
#if INCLUDE_ALL_GCS
if (UseConcMarkSweepGC) {
status = MaxPLABSizeBounds("CMSOldPLABMax", value, verbose);
}
#endif
return status;
}
Flag::Error MarkStackSizeConstraintFunc(size_t value, bool verbose) {
if (value > MarkStackSizeMax) {
CommandLineError::print(verbose,
"MarkStackSize (" SIZE_FORMAT ") must be "
"less than or equal to MarkStackSizeMax (" SIZE_FORMAT ")\n",
value, MarkStackSizeMax);
return Flag::VIOLATES_CONSTRAINT;
} else {
return Flag::SUCCESS;
}
}
static Flag::Error CMSReservedAreaConstraintFunc(const char* name, size_t value, bool verbose) {
#if INCLUDE_ALL_GCS
if (UseConcMarkSweepGC) {
ConcurrentMarkSweepGeneration* cms = (ConcurrentMarkSweepGeneration*)GenCollectedHeap::heap()->old_gen();
const size_t ergo_max = cms->cmsSpace()->max_flag_size_for_task_size();
if (value > ergo_max) {
CommandLineError::print(verbose,
"%s (" SIZE_FORMAT ") must be "
"less than or equal to ergonomic maximum (" SIZE_FORMAT ") "
"which is based on the maximum size of the old generation of the Java heap\n",
name, value, ergo_max);
return Flag::VIOLATES_CONSTRAINT;
}
}
#endif
return Flag::SUCCESS;
}
Flag::Error CMSRescanMultipleConstraintFunc(size_t value, bool verbose) {
Flag::Error status = CMSReservedAreaConstraintFunc("CMSRescanMultiple", value, verbose);
#if INCLUDE_ALL_GCS
if (status == Flag::SUCCESS && UseConcMarkSweepGC) {
// CMSParRemarkTask::do_dirty_card_rescan_tasks requires CompactibleFreeListSpace::rescan_task_size()
// to be aligned to CardTableModRefBS::card_size * BitsPerWord.
// Note that rescan_task_size() will be aligned if CMSRescanMultiple is a multiple of 'HeapWordSize'
// because rescan_task_size() is CardTableModRefBS::card_size / HeapWordSize * BitsPerWord.
if (value % HeapWordSize != 0) {
CommandLineError::print(verbose,
"CMSRescanMultiple (" SIZE_FORMAT ") must be "
"a multiple of " SIZE_FORMAT "\n",
value, HeapWordSize);
status = Flag::VIOLATES_CONSTRAINT;
}
}
#endif
return status;
}
Flag::Error CMSConcMarkMultipleConstraintFunc(size_t value, bool verbose) {
return CMSReservedAreaConstraintFunc("CMSConcMarkMultiple", value, verbose);
}
Flag::Error CMSPrecleanDenominatorConstraintFunc(uintx value, bool verbose) {
#if INCLUDE_ALL_GCS
if (UseConcMarkSweepGC && (value <= CMSPrecleanNumerator)) {
CommandLineError::print(verbose,
"CMSPrecleanDenominator (" UINTX_FORMAT ") must be "
"strickly greater than CMSPrecleanNumerator (" UINTX_FORMAT ")\n",
value, CMSPrecleanNumerator);
return Flag::VIOLATES_CONSTRAINT;
}
#endif
return Flag::SUCCESS;
}
Flag::Error CMSPrecleanNumeratorConstraintFunc(uintx value, bool verbose) {
#if INCLUDE_ALL_GCS
if (UseConcMarkSweepGC && (value >= CMSPrecleanDenominator)) {
CommandLineError::print(verbose,
"CMSPrecleanNumerator (" UINTX_FORMAT ") must be "
"less than CMSPrecleanDenominator (" UINTX_FORMAT ")\n",
value, CMSPrecleanDenominator);
return Flag::VIOLATES_CONSTRAINT;
}
#endif
return Flag::SUCCESS;
}
Flag::Error CMSSamplingGrainConstraintFunc(uintx value, bool verbose) {
#if INCLUDE_ALL_GCS
if (UseConcMarkSweepGC) {
size_t max_capacity = GenCollectedHeap::heap()->young_gen()->max_capacity();
if (value > max_uintx - max_capacity) {
CommandLineError::print(verbose,
"CMSSamplingGrain (" UINTX_FORMAT ") must be "
"less than or equal to ergonomic maximum (" SIZE_FORMAT ")\n",
value, max_uintx - max_capacity);
return Flag::VIOLATES_CONSTRAINT;
}
}
#endif
return Flag::SUCCESS;
}
Flag::Error CMSWorkQueueDrainThresholdConstraintFunc(uintx value, bool verbose) {
#if INCLUDE_ALL_GCS
if (UseConcMarkSweepGC) {
return ParallelGCThreadsAndCMSWorkQueueDrainThreshold(ParallelGCThreads, value, verbose);
}
#endif
return Flag::SUCCESS;
}
Flag::Error CMSBitMapYieldQuantumConstraintFunc(size_t value, bool verbose) {
#if INCLUDE_ALL_GCS
// Skip for current default value.
if (UseConcMarkSweepGC && FLAG_IS_CMDLINE(CMSBitMapYieldQuantum)) {
// CMSBitMapYieldQuantum should be compared with mark bitmap size.
ConcurrentMarkSweepGeneration* cms = (ConcurrentMarkSweepGeneration*)GenCollectedHeap::heap()->old_gen();
size_t bitmap_size = cms->collector()->markBitMap()->sizeInWords();
if (value > bitmap_size) {
CommandLineError::print(verbose,
"CMSBitMapYieldQuantum (" SIZE_FORMAT ") must "
"be less than or equal to bitmap size (" SIZE_FORMAT ") "
"whose size corresponds to the size of old generation of the Java heap\n",
value, bitmap_size);
return Flag::VIOLATES_CONSTRAINT;
}
}
#endif
return Flag::SUCCESS;
}
Flag::Error MaxGCPauseMillisConstraintFunc(uintx value, bool verbose) {
#if INCLUDE_ALL_GCS
if (UseG1GC && FLAG_IS_CMDLINE(MaxGCPauseMillis) && (value >= GCPauseIntervalMillis)) {
CommandLineError::print(verbose,
"MaxGCPauseMillis (" UINTX_FORMAT ") must be "
"less than GCPauseIntervalMillis (" UINTX_FORMAT ")\n",
value, GCPauseIntervalMillis);
return Flag::VIOLATES_CONSTRAINT;
}
#endif
return Flag::SUCCESS;
}
Flag::Error GCPauseIntervalMillisConstraintFunc(uintx value, bool verbose) {
#if INCLUDE_ALL_GCS
if (UseG1GC) {
if (FLAG_IS_CMDLINE(GCPauseIntervalMillis)) {
if (value < 1) {
CommandLineError::print(verbose,
"GCPauseIntervalMillis (" UINTX_FORMAT ") must be "
"greater than or equal to 1\n",
value);
return Flag::VIOLATES_CONSTRAINT;
}
if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
CommandLineError::print(verbose,
"GCPauseIntervalMillis cannot be set "
"without setting MaxGCPauseMillis\n");
return Flag::VIOLATES_CONSTRAINT;
}
if (value <= MaxGCPauseMillis) {
CommandLineError::print(verbose,
"GCPauseIntervalMillis (" UINTX_FORMAT ") must be "
"greater than MaxGCPauseMillis (" UINTX_FORMAT ")\n",
value, MaxGCPauseMillis);
return Flag::VIOLATES_CONSTRAINT;
}
}
}
#endif
return Flag::SUCCESS;
}
Flag::Error InitialBootClassLoaderMetaspaceSizeConstraintFunc(size_t value, bool verbose) {
size_t aligned_max = (size_t)align_size_down(max_uintx/2, Metaspace::reserve_alignment_words());
if (value > aligned_max) {
CommandLineError::print(verbose,
"InitialBootClassLoaderMetaspaceSize (" SIZE_FORMAT ") must be "
"less than or equal to aligned maximum value (" SIZE_FORMAT ")\n",
value, aligned_max);
return Flag::VIOLATES_CONSTRAINT;
}
return Flag::SUCCESS;
}
// To avoid an overflow by 'align_size_up(value, alignment)'.
static Flag::Error MaxSizeForAlignment(const char* name, size_t value, size_t alignment, bool verbose) {
size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1));
if (value > aligned_max) {
CommandLineError::print(verbose,
"%s (" SIZE_FORMAT ") must be "
"less than or equal to aligned maximum value (" SIZE_FORMAT ")\n",
name, value, aligned_max);
return Flag::VIOLATES_CONSTRAINT;
}
return Flag::SUCCESS;
}
static Flag::Error MaxSizeForHeapAlignment(const char* name, size_t value, bool verbose) {
// For G1 GC, we don't know until G1CollectorPolicy is created.
size_t heap_alignment;
#if INCLUDE_ALL_GCS
if (UseG1GC) {
heap_alignment = HeapRegionBounds::max_size();
} else
#endif
{
heap_alignment = CollectorPolicy::compute_heap_alignment();
}
return MaxSizeForAlignment(name, value, heap_alignment, verbose);
}
Flag::Error InitialHeapSizeConstraintFunc(size_t value, bool verbose) {
return MaxSizeForHeapAlignment("InitialHeapSize", value, verbose);
}
Flag::Error MaxHeapSizeConstraintFunc(size_t value, bool verbose) {
Flag::Error status = MaxSizeForHeapAlignment("MaxHeapSize", value, verbose);
if (status == Flag::SUCCESS) {
status = CheckMaxHeapSizeAndSoftRefLRUPolicyMSPerMB(value, SoftRefLRUPolicyMSPerMB, verbose);
}
return status;
}
Flag::Error HeapBaseMinAddressConstraintFunc(size_t value, bool verbose) {
// If an overflow happened in Arguments::set_heap_size(), MaxHeapSize will have too large a value.
// Check for this by ensuring that MaxHeapSize plus the requested min base address still fit within max_uintx.
if (UseCompressedOops && FLAG_IS_ERGO(MaxHeapSize) && (value > (max_uintx - MaxHeapSize))) {
CommandLineError::print(verbose,
"HeapBaseMinAddress (" SIZE_FORMAT ") or MaxHeapSize (" SIZE_FORMAT ") is too large. "
"Sum of them must be less than or equal to maximum of size_t (" SIZE_FORMAT ")\n",
value, MaxHeapSize, max_uintx);
return Flag::VIOLATES_CONSTRAINT;
}
return MaxSizeForHeapAlignment("HeapBaseMinAddress", value, verbose);
}
Flag::Error NewSizeConstraintFunc(size_t value, bool verbose) {
#ifdef _LP64
#if INCLUDE_ALL_GCS
// Overflow would happen for uint type variable of YoungGenSizer::_min_desired_young_length
// when the value to be assigned exceeds uint range.
// i.e. result of '(uint)(NewSize / region size(1~32MB))'
// So maximum of NewSize should be 'max_juint * 1M'
if (UseG1GC && (value > (max_juint * 1 * M))) {
CommandLineError::print(verbose,
"NewSize (" SIZE_FORMAT ") must be less than ergonomic maximum value\n",
value);
return Flag::VIOLATES_CONSTRAINT;
}
#endif // INCLUDE_ALL_GCS
#endif // _LP64
return Flag::SUCCESS;
}
Flag::Error MinTLABSizeConstraintFunc(size_t value, bool verbose) {
// At least, alignment reserve area is needed.
if (value < ThreadLocalAllocBuffer::alignment_reserve_in_bytes()) {
CommandLineError::print(verbose,
"MinTLABSize (" SIZE_FORMAT ") must be "
"greater than or equal to reserved area in TLAB (" SIZE_FORMAT ")\n",
value, ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
return Flag::VIOLATES_CONSTRAINT;
}
if (value > (ThreadLocalAllocBuffer::max_size() * HeapWordSize)) {
CommandLineError::print(verbose,
"MinTLABSize (" SIZE_FORMAT ") must be "
"less than or equal to ergonomic TLAB maximum (" SIZE_FORMAT ")\n",
value, ThreadLocalAllocBuffer::max_size() * HeapWordSize);
return Flag::VIOLATES_CONSTRAINT;
}
return Flag::SUCCESS;
}
Flag::Error TLABSizeConstraintFunc(size_t value, bool verbose) {
// Skip for default value of zero which means set ergonomically.
if (FLAG_IS_CMDLINE(TLABSize)) {
if (value < MinTLABSize) {
CommandLineError::print(verbose,
"TLABSize (" SIZE_FORMAT ") must be "
"greater than or equal to MinTLABSize (" SIZE_FORMAT ")\n",
value, MinTLABSize);
return Flag::VIOLATES_CONSTRAINT;
}
if (value > (ThreadLocalAllocBuffer::max_size() * HeapWordSize)) {
CommandLineError::print(verbose,
"TLABSize (" SIZE_FORMAT ") must be "
"less than or equal to ergonomic TLAB maximum size (" SIZE_FORMAT ")\n",
value, (ThreadLocalAllocBuffer::max_size() * HeapWordSize));
return Flag::VIOLATES_CONSTRAINT;
}
}
return Flag::SUCCESS;
}
// We will protect overflow from ThreadLocalAllocBuffer::record_slow_allocation(),
// so AfterMemoryInit type is enough to check.
Flag::Error TLABWasteIncrementConstraintFunc(uintx value, bool verbose) {
if (UseTLAB) {
size_t refill_waste_limit = Thread::current()->tlab().refill_waste_limit();
// Compare with 'max_uintx' as ThreadLocalAllocBuffer::_refill_waste_limit is 'size_t'.
if (refill_waste_limit > (max_uintx - value)) {
CommandLineError::print(verbose,
"TLABWasteIncrement (" UINTX_FORMAT ") must be "
"less than or equal to ergonomic TLAB waste increment maximum size(" SIZE_FORMAT ")\n",
value, (max_uintx - refill_waste_limit));
return Flag::VIOLATES_CONSTRAINT;
}
}
return Flag::SUCCESS;
}
Flag::Error SurvivorRatioConstraintFunc(uintx value, bool verbose) {
if (FLAG_IS_CMDLINE(SurvivorRatio) &&
(value > (MaxHeapSize / Universe::heap()->collector_policy()->space_alignment()))) {
CommandLineError::print(verbose,
"SurvivorRatio (" UINTX_FORMAT ") must be "
"less than or equal to ergonomic SurvivorRatio maximum (" SIZE_FORMAT ")\n",
value,
(MaxHeapSize / Universe::heap()->collector_policy()->space_alignment()));
return Flag::VIOLATES_CONSTRAINT;
} else {
return Flag::SUCCESS;
}
}
Flag::Error MetaspaceSizeConstraintFunc(size_t value, bool verbose) {
if (value > MaxMetaspaceSize) {
CommandLineError::print(verbose,
"MetaspaceSize (" SIZE_FORMAT ") must be "
"less than or equal to MaxMetaspaceSize (" SIZE_FORMAT ")\n",
value, MaxMetaspaceSize);
return Flag::VIOLATES_CONSTRAINT;
} else {
return Flag::SUCCESS;
}
}
Flag::Error MaxMetaspaceSizeConstraintFunc(size_t value, bool verbose) {
if (value < MetaspaceSize) {
CommandLineError::print(verbose,
"MaxMetaspaceSize (" SIZE_FORMAT ") must be "
"greater than or equal to MetaspaceSize (" SIZE_FORMAT ")\n",
value, MaxMetaspaceSize);
return Flag::VIOLATES_CONSTRAINT;
} else {
return Flag::SUCCESS;
}
}
Flag::Error SurvivorAlignmentInBytesConstraintFunc(intx value, bool verbose) {
if (value != 0) {
if (!is_power_of_2(value)) {
CommandLineError::print(verbose,
"SurvivorAlignmentInBytes (" INTX_FORMAT ") must be "
"power of 2\n",
value);
return Flag::VIOLATES_CONSTRAINT;
}
if (value < ObjectAlignmentInBytes) {
CommandLineError::print(verbose,
"SurvivorAlignmentInBytes (" INTX_FORMAT ") must be "
"greater than or equal to ObjectAlignmentInBytes (" INTX_FORMAT ")\n",
value, ObjectAlignmentInBytes);
return Flag::VIOLATES_CONSTRAINT;
}
}
return Flag::SUCCESS;
}