8042893: compiler: PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC needs to be removed from source files
8042894: runtime: PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC needs to be removed from source files
Reviewed-by: goetz, brutisso
/*
* Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "utilities/globalDefinitions.hpp"
#include "prims/jvm.h"
#include "semaphore_posix.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/os.hpp"
#include "utilities/vmError.hpp"
#include <signal.h>
#include <unistd.h>
#include <sys/resource.h>
#include <sys/utsname.h>
#include <pthread.h>
#include <semaphore.h>
#include <signal.h>
// Todo: provide a os::get_max_process_id() or similar. Number of processes
// may have been configured, can be read more accurately from proc fs etc.
#ifndef MAX_PID
#define MAX_PID INT_MAX
#endif
#define IS_VALID_PID(p) (p > 0 && p < MAX_PID)
// Check core dump limit and report possible place where core can be found
void os::check_dump_limit(char* buffer, size_t bufferSize) {
int n;
struct rlimit rlim;
bool success;
char core_path[PATH_MAX];
n = get_core_path(core_path, PATH_MAX);
if (n <= 0) {
jio_snprintf(buffer, bufferSize, "core.%d (may not exist)", current_process_id());
success = true;
#ifdef LINUX
} else if (core_path[0] == '"') { // redirect to user process
jio_snprintf(buffer, bufferSize, "Core dumps may be processed with %s", core_path);
success = true;
#endif
} else if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
jio_snprintf(buffer, bufferSize, "%s (may not exist)", core_path);
success = true;
} else {
switch(rlim.rlim_cur) {
case RLIM_INFINITY:
jio_snprintf(buffer, bufferSize, "%s", core_path);
success = true;
break;
case 0:
jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
success = false;
break;
default:
jio_snprintf(buffer, bufferSize, "%s (max size %lu kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", core_path, (unsigned long)(rlim.rlim_cur >> 10));
success = true;
break;
}
}
VMError::record_coredump_status(buffer, success);
}
int os::get_native_stack(address* stack, int frames, int toSkip) {
#ifdef _NMT_NOINLINE_
toSkip++;
#endif
int frame_idx = 0;
int num_of_frames; // number of frames captured
frame fr = os::current_frame();
while (fr.pc() && frame_idx < frames) {
if (toSkip > 0) {
toSkip --;
} else {
stack[frame_idx ++] = fr.pc();
}
if (fr.fp() == NULL || fr.cb() != NULL ||
fr.sender_pc() == NULL || os::is_first_C_frame(&fr)) break;
if (fr.sender_pc() && !os::is_first_C_frame(&fr)) {
fr = os::get_sender_for_C_frame(&fr);
} else {
break;
}
}
num_of_frames = frame_idx;
for (; frame_idx < frames; frame_idx ++) {
stack[frame_idx] = NULL;
}
return num_of_frames;
}
bool os::unsetenv(const char* name) {
assert(name != NULL, "Null pointer");
return (::unsetenv(name) == 0);
}
int os::get_last_error() {
return errno;
}
bool os::is_debugger_attached() {
// not implemented
return false;
}
void os::wait_for_keypress_at_exit(void) {
// don't do anything on posix platforms
return;
}
// Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
// so on posix, unmap the section at the start and at the end of the chunk that we mapped
// rather than unmapping and remapping the whole chunk to get requested alignment.
char* os::reserve_memory_aligned(size_t size, size_t alignment) {
assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
"Alignment must be a multiple of allocation granularity (page size)");
assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
size_t extra_size = size + alignment;
assert(extra_size >= size, "overflow, size is too large to allow alignment");
char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
if (extra_base == NULL) {
return NULL;
}
// Do manual alignment
char* aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
// [ | | ]
// ^ extra_base
// ^ extra_base + begin_offset == aligned_base
// extra_base + begin_offset + size ^
// extra_base + extra_size ^
// |<>| == begin_offset
// end_offset == |<>|
size_t begin_offset = aligned_base - extra_base;
size_t end_offset = (extra_base + extra_size) - (aligned_base + size);
if (begin_offset > 0) {
os::release_memory(extra_base, begin_offset);
}
if (end_offset > 0) {
os::release_memory(extra_base + begin_offset + size, end_offset);
}
return aligned_base;
}
void os::Posix::print_load_average(outputStream* st) {
st->print("load average:");
double loadavg[3];
os::loadavg(loadavg, 3);
st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
st->cr();
}
void os::Posix::print_rlimit_info(outputStream* st) {
st->print("rlimit:");
struct rlimit rlim;
st->print(" STACK ");
getrlimit(RLIMIT_STACK, &rlim);
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
else st->print("%luk", rlim.rlim_cur >> 10);
st->print(", CORE ");
getrlimit(RLIMIT_CORE, &rlim);
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
else st->print("%luk", rlim.rlim_cur >> 10);
// Isn't there on solaris
#if !defined(TARGET_OS_FAMILY_solaris) && !defined(TARGET_OS_FAMILY_aix)
st->print(", NPROC ");
getrlimit(RLIMIT_NPROC, &rlim);
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
else st->print("%lu", rlim.rlim_cur);
#endif
st->print(", NOFILE ");
getrlimit(RLIMIT_NOFILE, &rlim);
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
else st->print("%lu", rlim.rlim_cur);
st->print(", AS ");
getrlimit(RLIMIT_AS, &rlim);
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
else st->print("%luk", rlim.rlim_cur >> 10);
st->cr();
}
void os::Posix::print_uname_info(outputStream* st) {
// kernel
st->print("uname:");
struct utsname name;
uname(&name);
st->print("%s ", name.sysname);
#ifdef ASSERT
st->print("%s ", name.nodename);
#endif
st->print("%s ", name.release);
st->print("%s ", name.version);
st->print("%s", name.machine);
st->cr();
}
#ifndef PRODUCT
bool os::get_host_name(char* buf, size_t buflen) {
struct utsname name;
uname(&name);
jio_snprintf(buf, buflen, "%s", name.nodename);
return true;
}
#endif // PRODUCT
bool os::has_allocatable_memory_limit(julong* limit) {
struct rlimit rlim;
int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
// if there was an error when calling getrlimit, assume that there is no limitation
// on virtual memory.
bool result;
if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
result = false;
} else {
*limit = (julong)rlim.rlim_cur;
result = true;
}
#ifdef _LP64
return result;
#else
// arbitrary virtual space limit for 32 bit Unices found by testing. If
// getrlimit above returned a limit, bound it with this limit. Otherwise
// directly use it.
const julong max_virtual_limit = (julong)3800*M;
if (result) {
*limit = MIN2(*limit, max_virtual_limit);
} else {
*limit = max_virtual_limit;
}
// bound by actually allocatable memory. The algorithm uses two bounds, an
// upper and a lower limit. The upper limit is the current highest amount of
// memory that could not be allocated, the lower limit is the current highest
// amount of memory that could be allocated.
// The algorithm iteratively refines the result by halving the difference
// between these limits, updating either the upper limit (if that value could
// not be allocated) or the lower limit (if the that value could be allocated)
// until the difference between these limits is "small".
// the minimum amount of memory we care about allocating.
const julong min_allocation_size = M;
julong upper_limit = *limit;
// first check a few trivial cases
if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
*limit = upper_limit;
} else if (!is_allocatable(min_allocation_size)) {
// we found that not even min_allocation_size is allocatable. Return it
// anyway. There is no point to search for a better value any more.
*limit = min_allocation_size;
} else {
// perform the binary search.
julong lower_limit = min_allocation_size;
while ((upper_limit - lower_limit) > min_allocation_size) {
julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
temp_limit = align_size_down_(temp_limit, min_allocation_size);
if (is_allocatable(temp_limit)) {
lower_limit = temp_limit;
} else {
upper_limit = temp_limit;
}
}
*limit = lower_limit;
}
return true;
#endif
}
const char* os::get_current_directory(char *buf, size_t buflen) {
return getcwd(buf, buflen);
}
FILE* os::open(int fd, const char* mode) {
return ::fdopen(fd, mode);
}
// Builds a platform dependent Agent_OnLoad_<lib_name> function name
// which is used to find statically linked in agents.
// Parameters:
// sym_name: Symbol in library we are looking for
// lib_name: Name of library to look in, NULL for shared libs.
// is_absolute_path == true if lib_name is absolute path to agent
// such as "/a/b/libL.so"
// == false if only the base name of the library is passed in
// such as "L"
char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
bool is_absolute_path) {
char *agent_entry_name;
size_t len;
size_t name_len;
size_t prefix_len = strlen(JNI_LIB_PREFIX);
size_t suffix_len = strlen(JNI_LIB_SUFFIX);
const char *start;
if (lib_name != NULL) {
len = name_len = strlen(lib_name);
if (is_absolute_path) {
// Need to strip path, prefix and suffix
if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
lib_name = ++start;
}
if (len <= (prefix_len + suffix_len)) {
return NULL;
}
lib_name += prefix_len;
name_len = strlen(lib_name) - suffix_len;
}
}
len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
if (agent_entry_name == NULL) {
return NULL;
}
strcpy(agent_entry_name, sym_name);
if (lib_name != NULL) {
strcat(agent_entry_name, "_");
strncat(agent_entry_name, lib_name, name_len);
}
return agent_entry_name;
}
int os::sleep(Thread* thread, jlong millis, bool interruptible) {
assert(thread == Thread::current(), "thread consistency check");
ParkEvent * const slp = thread->_SleepEvent ;
slp->reset() ;
OrderAccess::fence() ;
if (interruptible) {
jlong prevtime = javaTimeNanos();
for (;;) {
if (os::is_interrupted(thread, true)) {
return OS_INTRPT;
}
jlong newtime = javaTimeNanos();
if (newtime - prevtime < 0) {
// time moving backwards, should only happen if no monotonic clock
// not a guarantee() because JVM should not abort on kernel/glibc bugs
assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected in os::sleep(interruptible)");
} else {
millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
}
if (millis <= 0) {
return OS_OK;
}
prevtime = newtime;
{
assert(thread->is_Java_thread(), "sanity check");
JavaThread *jt = (JavaThread *) thread;
ThreadBlockInVM tbivm(jt);
OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
jt->set_suspend_equivalent();
// cleared by handle_special_suspend_equivalent_condition() or
// java_suspend_self() via check_and_wait_while_suspended()
slp->park(millis);
// were we externally suspended while we were waiting?
jt->check_and_wait_while_suspended();
}
}
} else {
OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
jlong prevtime = javaTimeNanos();
for (;;) {
// It'd be nice to avoid the back-to-back javaTimeNanos() calls on
// the 1st iteration ...
jlong newtime = javaTimeNanos();
if (newtime - prevtime < 0) {
// time moving backwards, should only happen if no monotonic clock
// not a guarantee() because JVM should not abort on kernel/glibc bugs
assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected on os::sleep(!interruptible)");
} else {
millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
}
if (millis <= 0) break ;
prevtime = newtime;
slp->park(millis);
}
return OS_OK ;
}
}
////////////////////////////////////////////////////////////////////////////////
// interrupt support
void os::interrupt(Thread* thread) {
assert(Thread::current() == thread || Threads_lock->owned_by_self(),
"possibility of dangling Thread pointer");
OSThread* osthread = thread->osthread();
if (!osthread->interrupted()) {
osthread->set_interrupted(true);
// More than one thread can get here with the same value of osthread,
// resulting in multiple notifications. We do, however, want the store
// to interrupted() to be visible to other threads before we execute unpark().
OrderAccess::fence();
ParkEvent * const slp = thread->_SleepEvent ;
if (slp != NULL) slp->unpark() ;
}
// For JSR166. Unpark even if interrupt status already was set
if (thread->is_Java_thread())
((JavaThread*)thread)->parker()->unpark();
ParkEvent * ev = thread->_ParkEvent ;
if (ev != NULL) ev->unpark() ;
}
bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
assert(Thread::current() == thread || Threads_lock->owned_by_self(),
"possibility of dangling Thread pointer");
OSThread* osthread = thread->osthread();
bool interrupted = osthread->interrupted();
// NOTE that since there is no "lock" around the interrupt and
// is_interrupted operations, there is the possibility that the
// interrupted flag (in osThread) will be "false" but that the
// low-level events will be in the signaled state. This is
// intentional. The effect of this is that Object.wait() and
// LockSupport.park() will appear to have a spurious wakeup, which
// is allowed and not harmful, and the possibility is so rare that
// it is not worth the added complexity to add yet another lock.
// For the sleep event an explicit reset is performed on entry
// to os::sleep, so there is no early return. It has also been
// recommended not to put the interrupted flag into the "event"
// structure because it hides the issue.
if (interrupted && clear_interrupted) {
osthread->set_interrupted(false);
// consider thread->_SleepEvent->reset() ... optional optimization
}
return interrupted;
}
// Returned string is a constant. For unknown signals "UNKNOWN" is returned.
const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) {
static const struct {
int sig; const char* name;
}
info[] =
{
{ SIGABRT, "SIGABRT" },
#ifdef SIGAIO
{ SIGAIO, "SIGAIO" },
#endif
{ SIGALRM, "SIGALRM" },
#ifdef SIGALRM1
{ SIGALRM1, "SIGALRM1" },
#endif
{ SIGBUS, "SIGBUS" },
#ifdef SIGCANCEL
{ SIGCANCEL, "SIGCANCEL" },
#endif
{ SIGCHLD, "SIGCHLD" },
#ifdef SIGCLD
{ SIGCLD, "SIGCLD" },
#endif
{ SIGCONT, "SIGCONT" },
#ifdef SIGCPUFAIL
{ SIGCPUFAIL, "SIGCPUFAIL" },
#endif
#ifdef SIGDANGER
{ SIGDANGER, "SIGDANGER" },
#endif
#ifdef SIGDIL
{ SIGDIL, "SIGDIL" },
#endif
#ifdef SIGEMT
{ SIGEMT, "SIGEMT" },
#endif
{ SIGFPE, "SIGFPE" },
#ifdef SIGFREEZE
{ SIGFREEZE, "SIGFREEZE" },
#endif
#ifdef SIGGFAULT
{ SIGGFAULT, "SIGGFAULT" },
#endif
#ifdef SIGGRANT
{ SIGGRANT, "SIGGRANT" },
#endif
{ SIGHUP, "SIGHUP" },
{ SIGILL, "SIGILL" },
{ SIGINT, "SIGINT" },
#ifdef SIGIO
{ SIGIO, "SIGIO" },
#endif
#ifdef SIGIOINT
{ SIGIOINT, "SIGIOINT" },
#endif
#ifdef SIGIOT
// SIGIOT is there for BSD compatibility, but on most Unices just a
// synonym for SIGABRT. The result should be "SIGABRT", not
// "SIGIOT".
#if (SIGIOT != SIGABRT )
{ SIGIOT, "SIGIOT" },
#endif
#endif
#ifdef SIGKAP
{ SIGKAP, "SIGKAP" },
#endif
{ SIGKILL, "SIGKILL" },
#ifdef SIGLOST
{ SIGLOST, "SIGLOST" },
#endif
#ifdef SIGLWP
{ SIGLWP, "SIGLWP" },
#endif
#ifdef SIGLWPTIMER
{ SIGLWPTIMER, "SIGLWPTIMER" },
#endif
#ifdef SIGMIGRATE
{ SIGMIGRATE, "SIGMIGRATE" },
#endif
#ifdef SIGMSG
{ SIGMSG, "SIGMSG" },
#endif
{ SIGPIPE, "SIGPIPE" },
#ifdef SIGPOLL
{ SIGPOLL, "SIGPOLL" },
#endif
#ifdef SIGPRE
{ SIGPRE, "SIGPRE" },
#endif
{ SIGPROF, "SIGPROF" },
#ifdef SIGPTY
{ SIGPTY, "SIGPTY" },
#endif
#ifdef SIGPWR
{ SIGPWR, "SIGPWR" },
#endif
{ SIGQUIT, "SIGQUIT" },
#ifdef SIGRECONFIG
{ SIGRECONFIG, "SIGRECONFIG" },
#endif
#ifdef SIGRECOVERY
{ SIGRECOVERY, "SIGRECOVERY" },
#endif
#ifdef SIGRESERVE
{ SIGRESERVE, "SIGRESERVE" },
#endif
#ifdef SIGRETRACT
{ SIGRETRACT, "SIGRETRACT" },
#endif
#ifdef SIGSAK
{ SIGSAK, "SIGSAK" },
#endif
{ SIGSEGV, "SIGSEGV" },
#ifdef SIGSOUND
{ SIGSOUND, "SIGSOUND" },
#endif
{ SIGSTOP, "SIGSTOP" },
{ SIGSYS, "SIGSYS" },
#ifdef SIGSYSERROR
{ SIGSYSERROR, "SIGSYSERROR" },
#endif
#ifdef SIGTALRM
{ SIGTALRM, "SIGTALRM" },
#endif
{ SIGTERM, "SIGTERM" },
#ifdef SIGTHAW
{ SIGTHAW, "SIGTHAW" },
#endif
{ SIGTRAP, "SIGTRAP" },
#ifdef SIGTSTP
{ SIGTSTP, "SIGTSTP" },
#endif
{ SIGTTIN, "SIGTTIN" },
{ SIGTTOU, "SIGTTOU" },
#ifdef SIGURG
{ SIGURG, "SIGURG" },
#endif
{ SIGUSR1, "SIGUSR1" },
{ SIGUSR2, "SIGUSR2" },
#ifdef SIGVIRT
{ SIGVIRT, "SIGVIRT" },
#endif
{ SIGVTALRM, "SIGVTALRM" },
#ifdef SIGWAITING
{ SIGWAITING, "SIGWAITING" },
#endif
#ifdef SIGWINCH
{ SIGWINCH, "SIGWINCH" },
#endif
#ifdef SIGWINDOW
{ SIGWINDOW, "SIGWINDOW" },
#endif
{ SIGXCPU, "SIGXCPU" },
{ SIGXFSZ, "SIGXFSZ" },
#ifdef SIGXRES
{ SIGXRES, "SIGXRES" },
#endif
{ -1, NULL }
};
const char* ret = NULL;
#ifdef SIGRTMIN
if (sig >= SIGRTMIN && sig <= SIGRTMAX) {
if (sig == SIGRTMIN) {
ret = "SIGRTMIN";
} else if (sig == SIGRTMAX) {
ret = "SIGRTMAX";
} else {
jio_snprintf(out, outlen, "SIGRTMIN+%d", sig - SIGRTMIN);
return out;
}
}
#endif
if (sig > 0) {
for (int idx = 0; info[idx].sig != -1; idx ++) {
if (info[idx].sig == sig) {
ret = info[idx].name;
break;
}
}
}
if (!ret) {
if (!is_valid_signal(sig)) {
ret = "INVALID";
} else {
ret = "UNKNOWN";
}
}
if (out && outlen > 0) {
strncpy(out, ret, outlen);
out[outlen - 1] = '\0';
}
return out;
}
// Returns true if signal number is valid.
bool os::Posix::is_valid_signal(int sig) {
// MacOS not really POSIX compliant: sigaddset does not return
// an error for invalid signal numbers. However, MacOS does not
// support real time signals and simply seems to have just 33
// signals with no holes in the signal range.
#ifdef __APPLE__
return sig >= 1 && sig < NSIG;
#else
// Use sigaddset to check for signal validity.
sigset_t set;
if (sigaddset(&set, sig) == -1 && errno == EINVAL) {
return false;
}
return true;
#endif
}
#define NUM_IMPORTANT_SIGS 32
// Returns one-line short description of a signal set in a user provided buffer.
const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) {
assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size");
// Note: for shortness, just print out the first 32. That should
// cover most of the useful ones, apart from realtime signals.
for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) {
const int rc = sigismember(set, sig);
if (rc == -1 && errno == EINVAL) {
buffer[sig-1] = '?';
} else {
buffer[sig-1] = rc == 0 ? '0' : '1';
}
}
buffer[NUM_IMPORTANT_SIGS] = 0;
return buffer;
}
// Prints one-line description of a signal set.
void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) {
char buf[NUM_IMPORTANT_SIGS + 1];
os::Posix::describe_signal_set_short(set, buf, sizeof(buf));
st->print("%s", buf);
}
// Writes one-line description of a combination of sigaction.sa_flags into a user
// provided buffer. Returns that buffer.
const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) {
char* p = buffer;
size_t remaining = size;
bool first = true;
int idx = 0;
assert(buffer, "invalid argument");
if (size == 0) {
return buffer;
}
strncpy(buffer, "none", size);
const struct {
int i;
const char* s;
} flaginfo [] = {
{ SA_NOCLDSTOP, "SA_NOCLDSTOP" },
{ SA_ONSTACK, "SA_ONSTACK" },
{ SA_RESETHAND, "SA_RESETHAND" },
{ SA_RESTART, "SA_RESTART" },
{ SA_SIGINFO, "SA_SIGINFO" },
{ SA_NOCLDWAIT, "SA_NOCLDWAIT" },
{ SA_NODEFER, "SA_NODEFER" },
#ifdef AIX
{ SA_ONSTACK, "SA_ONSTACK" },
{ SA_OLDSTYLE, "SA_OLDSTYLE" },
#endif
{ 0, NULL }
};
for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) {
if (flags & flaginfo[idx].i) {
if (first) {
jio_snprintf(p, remaining, "%s", flaginfo[idx].s);
first = false;
} else {
jio_snprintf(p, remaining, "|%s", flaginfo[idx].s);
}
const size_t len = strlen(p);
p += len;
remaining -= len;
}
}
buffer[size - 1] = '\0';
return buffer;
}
// Prints one-line description of a combination of sigaction.sa_flags.
void os::Posix::print_sa_flags(outputStream* st, int flags) {
char buffer[0x100];
os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer));
st->print("%s", buffer);
}
// Helper function for os::Posix::print_siginfo_...():
// return a textual description for signal code.
struct enum_sigcode_desc_t {
const char* s_name;
const char* s_desc;
};
static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) {
const struct {
int sig; int code; const char* s_code; const char* s_desc;
} t1 [] = {
{ SIGILL, ILL_ILLOPC, "ILL_ILLOPC", "Illegal opcode." },
{ SIGILL, ILL_ILLOPN, "ILL_ILLOPN", "Illegal operand." },
{ SIGILL, ILL_ILLADR, "ILL_ILLADR", "Illegal addressing mode." },
{ SIGILL, ILL_ILLTRP, "ILL_ILLTRP", "Illegal trap." },
{ SIGILL, ILL_PRVOPC, "ILL_PRVOPC", "Privileged opcode." },
{ SIGILL, ILL_PRVREG, "ILL_PRVREG", "Privileged register." },
{ SIGILL, ILL_COPROC, "ILL_COPROC", "Coprocessor error." },
{ SIGILL, ILL_BADSTK, "ILL_BADSTK", "Internal stack error." },
#if defined(IA64) && defined(LINUX)
{ SIGILL, ILL_BADIADDR, "ILL_BADIADDR", "Unimplemented instruction address" },
{ SIGILL, ILL_BREAK, "ILL_BREAK", "Application Break instruction" },
#endif
{ SIGFPE, FPE_INTDIV, "FPE_INTDIV", "Integer divide by zero." },
{ SIGFPE, FPE_INTOVF, "FPE_INTOVF", "Integer overflow." },
{ SIGFPE, FPE_FLTDIV, "FPE_FLTDIV", "Floating-point divide by zero." },
{ SIGFPE, FPE_FLTOVF, "FPE_FLTOVF", "Floating-point overflow." },
{ SIGFPE, FPE_FLTUND, "FPE_FLTUND", "Floating-point underflow." },
{ SIGFPE, FPE_FLTRES, "FPE_FLTRES", "Floating-point inexact result." },
{ SIGFPE, FPE_FLTINV, "FPE_FLTINV", "Invalid floating-point operation." },
{ SIGFPE, FPE_FLTSUB, "FPE_FLTSUB", "Subscript out of range." },
{ SIGSEGV, SEGV_MAPERR, "SEGV_MAPERR", "Address not mapped to object." },
{ SIGSEGV, SEGV_ACCERR, "SEGV_ACCERR", "Invalid permissions for mapped object." },
#ifdef AIX
// no explanation found what keyerr would be
{ SIGSEGV, SEGV_KEYERR, "SEGV_KEYERR", "key error" },
#endif
#if defined(IA64) && !defined(AIX)
{ SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF", "Paragraph stack overflow" },
#endif
{ SIGBUS, BUS_ADRALN, "BUS_ADRALN", "Invalid address alignment." },
{ SIGBUS, BUS_ADRERR, "BUS_ADRERR", "Nonexistent physical address." },
{ SIGBUS, BUS_OBJERR, "BUS_OBJERR", "Object-specific hardware error." },
{ SIGTRAP, TRAP_BRKPT, "TRAP_BRKPT", "Process breakpoint." },
{ SIGTRAP, TRAP_TRACE, "TRAP_TRACE", "Process trace trap." },
{ SIGCHLD, CLD_EXITED, "CLD_EXITED", "Child has exited." },
{ SIGCHLD, CLD_KILLED, "CLD_KILLED", "Child has terminated abnormally and did not create a core file." },
{ SIGCHLD, CLD_DUMPED, "CLD_DUMPED", "Child has terminated abnormally and created a core file." },
{ SIGCHLD, CLD_TRAPPED, "CLD_TRAPPED", "Traced child has trapped." },
{ SIGCHLD, CLD_STOPPED, "CLD_STOPPED", "Child has stopped." },
{ SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED","Stopped child has continued." },
#ifdef SIGPOLL
{ SIGPOLL, POLL_OUT, "POLL_OUT", "Output buffers available." },
{ SIGPOLL, POLL_MSG, "POLL_MSG", "Input message available." },
{ SIGPOLL, POLL_ERR, "POLL_ERR", "I/O error." },
{ SIGPOLL, POLL_PRI, "POLL_PRI", "High priority input available." },
{ SIGPOLL, POLL_HUP, "POLL_HUP", "Device disconnected. [Option End]" },
#endif
{ -1, -1, NULL, NULL }
};
// Codes valid in any signal context.
const struct {
int code; const char* s_code; const char* s_desc;
} t2 [] = {
{ SI_USER, "SI_USER", "Signal sent by kill()." },
{ SI_QUEUE, "SI_QUEUE", "Signal sent by the sigqueue()." },
{ SI_TIMER, "SI_TIMER", "Signal generated by expiration of a timer set by timer_settime()." },
{ SI_ASYNCIO, "SI_ASYNCIO", "Signal generated by completion of an asynchronous I/O request." },
{ SI_MESGQ, "SI_MESGQ", "Signal generated by arrival of a message on an empty message queue." },
// Linux specific
#ifdef SI_TKILL
{ SI_TKILL, "SI_TKILL", "Signal sent by tkill (pthread_kill)" },
#endif
#ifdef SI_DETHREAD
{ SI_DETHREAD, "SI_DETHREAD", "Signal sent by execve() killing subsidiary threads" },
#endif
#ifdef SI_KERNEL
{ SI_KERNEL, "SI_KERNEL", "Signal sent by kernel." },
#endif
#ifdef SI_SIGIO
{ SI_SIGIO, "SI_SIGIO", "Signal sent by queued SIGIO" },
#endif
#ifdef AIX
{ SI_UNDEFINED, "SI_UNDEFINED","siginfo contains partial information" },
{ SI_EMPTY, "SI_EMPTY", "siginfo contains no useful information" },
#endif
#ifdef __sun
{ SI_NOINFO, "SI_NOINFO", "No signal information" },
{ SI_RCTL, "SI_RCTL", "kernel generated signal via rctl action" },
{ SI_LWP, "SI_LWP", "Signal sent via lwp_kill" },
#endif
{ -1, NULL, NULL }
};
const char* s_code = NULL;
const char* s_desc = NULL;
for (int i = 0; t1[i].sig != -1; i ++) {
if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) {
s_code = t1[i].s_code;
s_desc = t1[i].s_desc;
break;
}
}
if (s_code == NULL) {
for (int i = 0; t2[i].s_code != NULL; i ++) {
if (t2[i].code == si->si_code) {
s_code = t2[i].s_code;
s_desc = t2[i].s_desc;
}
}
}
if (s_code == NULL) {
out->s_name = "unknown";
out->s_desc = "unknown";
return false;
}
out->s_name = s_code;
out->s_desc = s_desc;
return true;
}
// A POSIX conform, platform-independend siginfo print routine.
// Short print out on one line.
void os::Posix::print_siginfo_brief(outputStream* os, const siginfo_t* si) {
char buf[20];
os->print("siginfo: ");
if (!si) {
os->print("<null>");
return;
}
// See print_siginfo_full() for details.
const int sig = si->si_signo;
os->print("si_signo: %d (%s)", sig, os::Posix::get_signal_name(sig, buf, sizeof(buf)));
enum_sigcode_desc_t ed;
if (get_signal_code_description(si, &ed)) {
os->print(", si_code: %d (%s)", si->si_code, ed.s_name);
} else {
os->print(", si_code: %d (unknown)", si->si_code);
}
if (si->si_errno) {
os->print(", si_errno: %d", si->si_errno);
}
const int me = (int) ::getpid();
const int pid = (int) si->si_pid;
if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
if (IS_VALID_PID(pid) && pid != me) {
os->print(", sent from pid: %d (uid: %d)", pid, (int) si->si_uid);
}
} else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
sig == SIGTRAP || sig == SIGFPE) {
os->print(", si_addr: " PTR_FORMAT, p2i(si->si_addr));
#ifdef SIGPOLL
} else if (sig == SIGPOLL) {
os->print(", si_band: " PTR64_FORMAT, (uint64_t)si->si_band);
#endif
} else if (sig == SIGCHLD) {
os->print_cr(", si_pid: %d, si_uid: %d, si_status: %d", (int) si->si_pid, si->si_uid, si->si_status);
}
}
os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
}
/*
* See the caveats for this class in os_posix.hpp
* Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
* method and returns false. If none of the signals are raised, returns true.
* The callback is supposed to provide the method that should be protected.
*/
bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
sigset_t saved_sig_mask;
assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
assert(!WatcherThread::watcher_thread()->has_crash_protection(),
"crash_protection already set?");
// we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask
// since on at least some systems (OS X) siglongjmp will restore the mask
// for the process, not the thread
pthread_sigmask(0, NULL, &saved_sig_mask);
if (sigsetjmp(_jmpbuf, 0) == 0) {
// make sure we can see in the signal handler that we have crash protection
// installed
WatcherThread::watcher_thread()->set_crash_protection(this);
cb.call();
// and clear the crash protection
WatcherThread::watcher_thread()->set_crash_protection(NULL);
return true;
}
// this happens when we siglongjmp() back
pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL);
WatcherThread::watcher_thread()->set_crash_protection(NULL);
return false;
}
void os::WatcherThreadCrashProtection::restore() {
assert(WatcherThread::watcher_thread()->has_crash_protection(),
"must have crash protection");
siglongjmp(_jmpbuf, 1);
}
void os::WatcherThreadCrashProtection::check_crash_protection(int sig,
Thread* thread) {
if (thread != NULL &&
thread->is_Watcher_thread() &&
WatcherThread::watcher_thread()->has_crash_protection()) {
if (sig == SIGSEGV || sig == SIGBUS) {
WatcherThread::watcher_thread()->crash_protection()->restore();
}
}
}
#define check_with_errno(check_type, cond, msg) \
do { \
int err = errno; \
check_type(cond, "%s; error='%s' (errno=%d)", msg, strerror(err), err); \
} while (false)
#define assert_with_errno(cond, msg) check_with_errno(assert, cond, msg)
#define guarantee_with_errno(cond, msg) check_with_errno(guarantee, cond, msg)
// POSIX unamed semaphores are not supported on OS X.
#ifndef __APPLE__
PosixSemaphore::PosixSemaphore(uint value) {
int ret = sem_init(&_semaphore, 0, value);
guarantee_with_errno(ret == 0, "Failed to initialize semaphore");
}
PosixSemaphore::~PosixSemaphore() {
sem_destroy(&_semaphore);
}
void PosixSemaphore::signal(uint count) {
for (uint i = 0; i < count; i++) {
int ret = sem_post(&_semaphore);
assert_with_errno(ret == 0, "sem_post failed");
}
}
void PosixSemaphore::wait() {
int ret;
do {
ret = sem_wait(&_semaphore);
} while (ret != 0 && errno == EINTR);
assert_with_errno(ret == 0, "sem_wait failed");
}
bool PosixSemaphore::trywait() {
int ret;
do {
ret = sem_trywait(&_semaphore);
} while (ret != 0 && errno == EINTR);
assert_with_errno(ret == 0 || errno == EAGAIN, "trywait failed");
return ret == 0;
}
bool PosixSemaphore::timedwait(struct timespec ts) {
while (true) {
int result = sem_timedwait(&_semaphore, &ts);
if (result == 0) {
return true;
} else if (errno == EINTR) {
continue;
} else if (errno == ETIMEDOUT) {
return false;
} else {
assert_with_errno(false, "timedwait failed");
return false;
}
}
}
#endif // __APPLE__